1
|
Pais-Costa AJ, Marques A, Oliveira H, Gonçalves A, Camacho C, Augusto HC, Nunes ML. New Perspectives on Canned Fish Quality and Safety on the Road to Sustainability. Foods 2025; 14:99. [PMID: 39796393 PMCID: PMC11719813 DOI: 10.3390/foods14010099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 12/09/2024] [Indexed: 01/13/2025] Open
Abstract
Canning extends the shelf life of seafood products while preserving their quality. It is increasingly considered a more sustainable food processing method due to the primary fishing methods used for key species and the lower energy costs compared to the production of fresh and frozen fish. However, canning can change key components, allow some contaminants to persist, and generate undesirable compounds. This review revisits the effects of canning on product quality and highlights the potential hazards that may compromise safety. It also examines emerging trends in product development, particularly novel formulations aimed at optimizing nutritional value while maintaining safety standards without compromising sustainability. Overall, the quality of most canned seafood meets industry requirements, for example, with improvements in processing strategies and strict safety protocols, leading to reduced histamine levels. However, data on marine biotoxins and microplastics in canned seafood remain limited, calling for more research and monitoring. Environmental contaminants, along with those generated during processing, are generally found to be within acceptable limits. Product recalls related to these contaminants in Europe are scarce, but continuous monitoring and regulatory enforcement remain essential. While new formulations of canned fish show promise, they require thorough evaluation to ensure both nutritional value and safety.
Collapse
Affiliation(s)
- Antónia Juliana Pais-Costa
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIIMAR-LA), University of Porto, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal (A.G.); (C.C.)
| | - António Marques
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIIMAR-LA), University of Porto, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal (A.G.); (C.C.)
- Division of Aquaculture, Upgrading and Bioprospection, Portuguese Institute for the Sea and Atmosphere, I.P. (IPMA, I.P.), 1495-165 Algés, Portugal
| | - Helena Oliveira
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIIMAR-LA), University of Porto, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal (A.G.); (C.C.)
- Division of Aquaculture, Upgrading and Bioprospection, Portuguese Institute for the Sea and Atmosphere, I.P. (IPMA, I.P.), 1495-165 Algés, Portugal
| | - Amparo Gonçalves
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIIMAR-LA), University of Porto, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal (A.G.); (C.C.)
- Division of Aquaculture, Upgrading and Bioprospection, Portuguese Institute for the Sea and Atmosphere, I.P. (IPMA, I.P.), 1495-165 Algés, Portugal
| | - Carolina Camacho
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIIMAR-LA), University of Porto, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal (A.G.); (C.C.)
| | - Helga Coelho Augusto
- Cofisa, S.A., Terrapleno do Porto de Pesca—Gala, 3090-735 Figueira da Foz, Portugal;
| | - Maria Leonor Nunes
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIIMAR-LA), University of Porto, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal (A.G.); (C.C.)
| |
Collapse
|
2
|
Kurek M, Pišonić P, Ščetar M, Janči T, Čanak I, Vidaček Filipec S, Benbettaieb N, Debeaufort F, Galić K. Edible Coatings for Fish Preservation: Literature Data on Storage Temperature, Product Requirements, Antioxidant Activity, and Coating Performance-A Review. Antioxidants (Basel) 2024; 13:1417. [PMID: 39594558 PMCID: PMC11591116 DOI: 10.3390/antiox13111417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/01/2024] [Accepted: 11/09/2024] [Indexed: 11/28/2024] Open
Abstract
Fresh fish is among the most nutritive foodstuffs, but it is also the most perishable one. Therefore, huge efforts have been made to find the most suitable tools to deliver fish of the highest quality to exigent consumers. Scientific studies help the industry to exploit the newest findings to scale up emerging industrial technologies. In this review article, the focus is on the latest scientific findings on edible films used for fish coatings and storage. Since today's packaging processing and economy are governed by sustainability, naturality underpins packaging science. The synthesis of edible coatings, their components, processing advantages, and disadvantages are outlined with respect to the preservation requirements for sensitive fish. The requirements of coating properties are underlined for specific scenarios distinguishing cold and freezing conditions. This review raises the importance of antioxidants and their role in fish storage and preservation. A summary of their impact on physical, chemical, microbiological, and sensory alterations upon application in real fish is given. Studies on their influence on product stability, including pro-oxidant activity and the prevention of the autolysis of fish muscle, are given. Examples of lipid oxidation and its inhibition by the antioxidants embedded in edible coatings are given together with the relationship to the development of off-odors and other unwanted impacts. This review selects the most significant and valuable work performed in the past decade in the field of edible coatings whose development is on the global rise and adheres to food waste and sustainable development goals 2 (zero hunger), 3 (good health and well-being), and 12 (responsible consumption and production).
Collapse
Affiliation(s)
- Mia Kurek
- Laboratory for Food Packaging, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (P.P.); (M.Š.); (K.G.)
| | - Petra Pišonić
- Laboratory for Food Packaging, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (P.P.); (M.Š.); (K.G.)
| | - Mario Ščetar
- Laboratory for Food Packaging, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (P.P.); (M.Š.); (K.G.)
| | - Tibor Janči
- Laboratory for Meat and Fish Technology, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (T.J.); (S.V.F.)
| | - Iva Čanak
- Laboratory for General Microbiology and Food Microbiology, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia;
| | - Sanja Vidaček Filipec
- Laboratory for Meat and Fish Technology, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (T.J.); (S.V.F.)
| | - Nasreddine Benbettaieb
- Joint Unit PAM-PCAV (Physico-Chemistry of Food and Wine Laboratory), Université Bourgogne-Franche-Comté, Institut AgroDijon, INRAé, Université de Bourgogne, 1 Esplanade Erasme, 21000 Dijon, France; (N.B.); (F.D.)
- Department of BioEngineering, Institute of Technology, University of Burgundy, 7 Blvd Docteur Petitjean, 210780 Dijon, France
| | - Frédéric Debeaufort
- Joint Unit PAM-PCAV (Physico-Chemistry of Food and Wine Laboratory), Université Bourgogne-Franche-Comté, Institut AgroDijon, INRAé, Université de Bourgogne, 1 Esplanade Erasme, 21000 Dijon, France; (N.B.); (F.D.)
- Department of BioEngineering, Institute of Technology, University of Burgundy, 7 Blvd Docteur Petitjean, 210780 Dijon, France
| | - Kata Galić
- Laboratory for Food Packaging, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (P.P.); (M.Š.); (K.G.)
| |
Collapse
|
3
|
Zhang M, Chen Y, Chen H, Deng Q. Fatty Acid Release and Gastrointestinal Oxidation Status: Different Methods of Processing Flaxseed. Foods 2024; 13:784. [PMID: 38472897 DOI: 10.3390/foods13050784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Flaxseed has been recognized as a superfood worldwide due to its abundance of diverse functional phytochemicals and nutrients. Various studies have shown that flaxseed consumption is beneficial to human health, though methods of processing flaxseed may significantly affect the absorption and metabolism of its bioactive components. Hence, flaxseed was subjected to various processing methods including microwaving treatment, microwave-coupled dry milling, microwave-coupled wet milling, and high-pressure homogenization. In vitro digestion experiments were conducted to assess the impact of these processing techniques on the potential gastrointestinal fate of flaxseed oil. Even though more lipids were released by the flaxseed at the beginning of digestion after it was microwaved and dry-milled, the full digestion of flaxseed oil was still restricted in the intestine. In contrast, oil droplets were more evenly distributed in wet-milled flaxseed milk, and there was a greater release of fatty acids during simulated digestion (7.33 ± 0.21 μmol/mL). Interestingly, wet-milled flaxseed milk showed higher oxidative stability compared with flaxseed powder during digestion despite the larger specific surface area of its oil droplets. This study might provide insight into the choice of flaxseed processing technology for better nutrient delivery efficiency.
Collapse
Affiliation(s)
- Mingkai Zhang
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China
- Oil Crops Research Institute, Chinese Academy of Agricultural Science, Wuhan 430062, China
| | - Yashu Chen
- Oil Crops Research Institute, Chinese Academy of Agricultural Science, Wuhan 430062, China
| | - Hongjian Chen
- College of Health Science and Engineering, Hubei University, Wuhan 430062, China
| | - Qianchun Deng
- Oil Crops Research Institute, Chinese Academy of Agricultural Science, Wuhan 430062, China
| |
Collapse
|
4
|
Wang Y, Cai Z, Sang X, Deng W, Zeng L, Wang J, Zhang J. LC-MS-based lipidomics analyses of alterations in lipid profiles of Asian sea bass (Lates calcarifer) induced by plasma-activated water treatment. Food Res Int 2024; 177:113866. [PMID: 38225136 DOI: 10.1016/j.foodres.2023.113866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 01/17/2024]
Abstract
A lipidomics approach based on liquid chromatography-mass spectrometry was employed to investigate alterations in lipid profiles within the muscles of Asian sea bass (ASB) (Lates calcarifer) post-treatment with plasms-activated water (PAW). Lipidomics studies detected 1500 diverse lipid types in ASB muscles; the phosphatidylcholine (PC) lipid subclass constituted the highest number of lipids (21.07 %), followed by triglycerides (TGs, 20.53 %) and phosphatidylethanolamine (PE, 12.73 %). Comparative analysis between PAW-treated ASB and raw ASB revealed the presence of differentially abundant lipids, with 48 lipids accumulating at high levels and 92 at low levels. Pathway enrichment analysis identified a total of seven lipid-related metabolic pathways; glycerophospholipid metabolism emerged as the predominant pathway. Furthermore, the content of saturated fatty acids in PAW-treated ASB increased from 1059.81 μg/g (raw ASB) to 1099.77 μg/g. Conversely, the content of monounsaturated and polyunsaturated fatty acids decreased from 645.81 μg/g and 875.02 μg/g to 640.80 μg/g and 825.25 μg/g, respectively. Collectively, these results indicate significant alterations in ASB lipid profiles following PAW treatment, establishing a theoretical foundation for understanding the mechanism involved in promoting lipid oxidation.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Zhicheng Cai
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Xiaohan Sang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Wentao Deng
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Lixian Zeng
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Jiamei Wang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China; Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| | - Jianhao Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|