1
|
Li W, Wang L, Qian Y, Wang M, Li F, Zeng M. True-solution-scale utilization of natural chlorophyll a in aqueous media through cooperative aggregation with phycocyanin. Food Chem 2024; 460:140678. [PMID: 39098190 DOI: 10.1016/j.foodchem.2024.140678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/13/2024] [Accepted: 07/25/2024] [Indexed: 08/06/2024]
Abstract
The challenge of applying chlorophyll(Chl) in aqueous media has been a significant obstacle to the diversified development of Chl a-related industries. This study presents the first report on the true-solution-scale utilization of Chl in aqueous media through the construction of chlorophyll a-phycocyanin (Chls-PC) composite nanoparticles. This study determined the optimal conditions for Chls-PC preparation: a composite ratio of 1:25, a solvent ratio of 1:4, and a stirring time of 1 h. Fluorescence spectroscopy, transmission electron microscope, and confocal microscopy confirmed Chl a and PC aggregation. Surface hydrophobicity and contact angle measurements showed that Chls-PC water solubility was similar to PC and much higher than Chl. Infrared spectroscopy, quantum chemical calculations, X-ray photoelectron spectroscopy, and molecular dynamics simulations elucidated the water solubilization mechanism of Chls-PC both experimentally and theoretically. This research provides theoretical guidance for the development and production of water-based products using Chl as a raw material.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266400, People's Republic of China; Sanya Institute of Oceanography, Ocean University of China, Sanya 572000, People's Republic of China
| | - Lijuan Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266400, People's Republic of China; Sanya Institute of Oceanography, Ocean University of China, Sanya 572000, People's Republic of China
| | - Yuemiao Qian
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266400, People's Republic of China; Sanya Institute of Oceanography, Ocean University of China, Sanya 572000, People's Republic of China
| | - Mengwei Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266400, People's Republic of China
| | - Fangwei Li
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266400, People's Republic of China; Sanya Institute of Oceanography, Ocean University of China, Sanya 572000, People's Republic of China.
| | - Mingyong Zeng
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266400, People's Republic of China; Sanya Institute of Oceanography, Ocean University of China, Sanya 572000, People's Republic of China.
| |
Collapse
|
2
|
Cheng Y, Sun X, Zhang Z, Li W, Yuan L, Yang X. High internal phase emulsions stabilized by fluorescent phycocyanin for improved stability and bioaccessibility of β-carotene. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 39253908 DOI: 10.1002/jsfa.13868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/22/2024] [Accepted: 08/20/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND High internal phase emulsions (HIPE) are distinguished from ordinary emulsions by higher oil-phase percentage and better storage stability. Recently, HIPE stabilized with protein-based particles has received more attention. However, organic precipitation, chemical cross-linking and thermal denaturation are often needed to stabilize emulsions with natural proteins, and there is an urgent need to reduce the pollution of organic reagents. RESULTS HIPE loaded with β-carotene stabilized by phycocyanin was prepared under mild conditions. It demonstrated strong stability in terms of temperature and storage, as evidenced by its 94.17% retention rate and 81.06% bioavailability. This stability was ascribed to the efficient defense against heat and UV rays, which was probably associated with the oil-droplet environment and interfacial protection of phycocyanin. It is speculated that the possible main interaction site between phycocyanin and sorbitol exists near amino acids 110 to 120 of the B chain. The hydrogen bond and hydrophobic interaction between them make the phycocyanin fully adsorbed on the oil-water interface when sorbitol is stable, forming a strong oil-water structure, which increases the stability of the emulsion. CONCLUSION The outstanding fluorescence characteristics provide a feasible alternative for fluorescent emulsions to distribute and trace active compounds in vitro. HIPE loaded with β-carotene might have potential as a 3D printing material for edible functional foods. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yu Cheng
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, Engineering Research Center of High Value Utilization of Western Fruit Resources, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Xiaolin Sun
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, Engineering Research Center of High Value Utilization of Western Fruit Resources, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Zhong Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, Engineering Research Center of High Value Utilization of Western Fruit Resources, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Wenjun Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Li Yuan
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, Engineering Research Center of High Value Utilization of Western Fruit Resources, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, Engineering Research Center of High Value Utilization of Western Fruit Resources, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
3
|
Bai Y, Jiang S, Wang Y, Huang X, Wang Y, Feng D, Dong X, Qi H. Phycocyanin-phlorotannin complexes improve the structure and functional properties of yogurt. Int J Biol Macromol 2024; 274:133327. [PMID: 38908620 DOI: 10.1016/j.ijbiomac.2024.133327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Adding natural bioactive ingredients to yogurt can improve the nutritional and physiological benefits. In this study, we used ultrasonic-assisted phlorotannin from Ascophyllum nodosum (A. nodosum) modified phycocyanin (PC) to form a complex (UPP) to produce a fortified fermented yogurt. The effects of PC and UPP on the structure, stability, and function of fermented yogurt within 7 days were assessed using physicochemical properties, texture analysis, rheological testing, 16S rDNA sequencing analysis, and lipidomics analysis. Molecular docking indicated that PC might bind to phlorotannin via ARG-77, ARG-84, LEU-120, ALA-81, CYS-82, and ASP-85 sites.When the mass ratio of the complex is 1:1, the ability of UPP1:1 to remove DPPH· scavenging ability in an acid environment increased by about 50 %. UPP1:1 with more acid stability changed the microstructure of the yogurt, enhanced the stability of the yogurt, improved the antioxidant properties, and inhibited the growth of harmful bacteria within 7 days. This work encouraged the extraction and use of phlorotannin from edible brown algae and offered a straightforward method for making yogurt supplemented with PC.
Collapse
Affiliation(s)
- Ying Bai
- National Engineering Research Center for Seafood, State Key Laboratory of Marine Food Processing and Safety Control, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Pre-made Food, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Shan Jiang
- National Engineering Research Center for Seafood, State Key Laboratory of Marine Food Processing and Safety Control, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Pre-made Food, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yujiao Wang
- National Engineering Research Center for Seafood, State Key Laboratory of Marine Food Processing and Safety Control, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Pre-made Food, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xu Huang
- National Engineering Research Center for Seafood, State Key Laboratory of Marine Food Processing and Safety Control, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Pre-made Food, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yuze Wang
- National Engineering Research Center for Seafood, State Key Laboratory of Marine Food Processing and Safety Control, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Pre-made Food, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Dingding Feng
- National Engineering Research Center for Seafood, State Key Laboratory of Marine Food Processing and Safety Control, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Pre-made Food, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xiuping Dong
- National Engineering Research Center for Seafood, State Key Laboratory of Marine Food Processing and Safety Control, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Pre-made Food, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Hang Qi
- National Engineering Research Center for Seafood, State Key Laboratory of Marine Food Processing and Safety Control, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Pre-made Food, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
4
|
Tian X, Li J, Wang K, Fei S, Zhang X, Wu C, Tan M, Su W. Microfluidic fabrication of core-shell fucoxanthin nanofibers with improved environmental stability for reducing lipid accumulation in vitro. Food Chem 2024; 442:138474. [PMID: 38245982 DOI: 10.1016/j.foodchem.2024.138474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/04/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
Fucoxanthin is a xanthophyll carotenoid that possesses potent antioxidant, anti-obesity, and anti-tumor properties. However, its limited solubility in water and susceptibility to degradation create challenges for its application. In this study, a microfluidic coaxial electrospinning technique was used to produce core-shell zein-gelatin nanofibers for encapsulating fucoxanthin, enhancing its bioavailability, and improving its stability. In comparison to uniaxially-loaded fucoxanthin nanofibers, the encapsulation efficiency of fucoxanthin reached 98.58 % at a core-shell flow rate ratio of 0.26:1, representing a 14.29 % improvement. The photostability of the nanofibers increased by 74.59 % after three days, UV stability increased by 38.82 % after 2 h, and temperature stability also significantly improved, demonstrating a protective effect under harsh environmental conditions (P < 0.05). Additionally, nanofibers effectively alleviated oleic acid-induced reactive oxygen species production and reduced fluorescence intensity by 54.76 %. MTT experiments indicated great biocompatibility of the nanofibers, effectively mitigating mitochondrial membrane potential polarization and lipid accumulation in HepG2 cells. Overall, the microfluidic coaxial electrospinning technique enables promising applications of fucoxanthin delivery in the food industry.
Collapse
Affiliation(s)
- Xueying Tian
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China; SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Jiaxuan Li
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China; SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Kuiyou Wang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China; SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Siyuan Fei
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China; SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Xiumin Zhang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China; SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Caiyun Wu
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China; SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Mingqian Tan
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China; SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Wentao Su
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China; SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
| |
Collapse
|
5
|
Li M, Chen P, Lin Y, Miao S, Bao H. Preparation and Characterization of a Hypoglycemic Complex of Gallic Acid-Antarctic Krill Polypeptide Based on Polylactic Acid-Hydroxyacetic Acid (PLGA) and High-Pressure Microjet Microencapsulation. Foods 2024; 13:1177. [PMID: 38672849 PMCID: PMC11049101 DOI: 10.3390/foods13081177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/10/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Gallic acid-Antarctic krill peptides (GA-AKP) nanocapsules (GA-AKP-Ns) were prepared using a dual delivery system with complex emulsion as the technical method, a high-pressure microjet as the technical means, polylactic acid-hydroxyacetic acid (PLGA) as the drug delivery vehicle, and GA-AKP as the raw material for delivery. This study aimed to investigate the effects of microjet treatment and the concentration of PLGA on the physicochemical properties and stability of the emulsion. Under optimal conditions, the physicochemical properties and hypoglycemic function of nano-microcapsules prepared after lyophilization by the solvent evaporation method were analyzed. Through the microjet treatment, the particle size of the emulsion was reduced, the stability of the emulsion was improved, and the encapsulation rate of GA-AKP was increased. The PLGA at low concentrations decreased the particle size of the emulsion, while PLGA at high concentrations enhanced the encapsulation efficiency of the emulsion. Additionally, favorable results were obtained for emulsion preparation through high-pressure microjet treatment. After three treatment cycles with a PLGA concentration of 20 mg/mL and a microjet pressure of 150 MPa (manometric pressure), the emulsion displayed the smallest particle size (285.1 ± 3.0 nm), the highest encapsulation rates of GA (71.5%) and AKP (85.2%), and optimal physical stability. GA-AKP was uniformly embedded in capsules, which can be slowly released in in vitro environments, and effectively inhibited α-amylase, α-glucosidase, and DPP-IV at different storage temperatures. This study demonstrated that PLGA as a carrier combined with microjet technology can produce excellent microcapsules, especially nano-microcapsules, and these microcapsules effectively improve the bioavailability and effectiveness of bioactive ingredients.
Collapse
Affiliation(s)
- Mengjie Li
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Puyu Chen
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yichen Lin
- Teagasc Food Research Centre, Moorepark, Fermoy, Co., P61 C996 Cork, Ireland
| | - Song Miao
- Teagasc Food Research Centre, Moorepark, Fermoy, Co., P61 C996 Cork, Ireland
| | - Hairong Bao
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
6
|
Zhong X, Wang K, Chen Z, Fei S, Li J, Tan M, Su W. Incorporation of fucoxanthin into 3D printed Pickering emulsion gels stabilized by salmon by-product protein/pectin complexes. Food Funct 2024; 15:1323-1339. [PMID: 38205590 DOI: 10.1039/d3fo04945k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
The remarkable performance of fucoxanthin (FX) in antioxidant and weight loss applications has generated considerable interest. However, the application of fucoxanthin in the food and pharmaceutical industries is limited due to its highly unsaturated structure. This research aimed to investigate the synergistic mechanism of a unique Pickering emulsion gel stabilized by salmon byproduct protein (SP)-pectin (PE) aggregates and evaluate its ability to enhance the stability and bioavailability of FX. Various analytical techniques, including fluorescence spectroscopy, contact angle testing, turbidity analysis, and cryo-field scanning electron microscopy, were used to demonstrate that electrostatic and hydrophobic interactions between SP and PE contribute to the exceptional stability and wettability of the Pickering emulsion gels. Rheological analysis revealed that increasing the concentration of SP-PEs resulted in shear-thinning behavior, excellent thixotropic recovery performance, higher viscoelasticity, and good thermal stability of the Pickering emulsion gels stabilized by SP-PEs(SEGs). Furthermore, encapsulation of FX in the gels showed protected release under simulated oral and gastric conditions, with the subsequent controlled release in the intestine. Compared to free FX and the control group without PE (SEG-0), SEG-4 exhibited a 1.92-fold and 1.37-fold increase in the total bioavailable fraction of FX, respectively. Notably, during the study, it was observed that SEGs have the potential to serve as cake decoration for 3D printing to replace traditional cream under lower oil phase conditions (50%). These findings suggest that SP-PEs-stabilized Pickering emulsion gels hold promise as carriers for delivering bioactive compounds, offering the potential for various innovative food applications.
Collapse
Affiliation(s)
- Xu Zhong
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian, 116034, Liaoning, China.
- SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
| | - Kuiyou Wang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian, 116034, Liaoning, China.
- SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
| | - Zhejin Chen
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian, 116034, Liaoning, China.
- SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
| | - Siyuan Fei
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian, 116034, Liaoning, China.
- SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
| | - Jiaxuan Li
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian, 116034, Liaoning, China.
- SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
| | - Mingqian Tan
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian, 116034, Liaoning, China.
- SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
| | - Wentao Su
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian, 116034, Liaoning, China.
- SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
| |
Collapse
|