1
|
Geng T, Pan L, Liu X, Li Z, Liu J, Dong D, Cui B, Liu H. Characterization of modified starch-based complexes-stabilized linolenic acid emulsions and their enhanced oxidative stability in vitro gastrointestinal digestion. Int J Biol Macromol 2024; 271:132548. [PMID: 38782323 DOI: 10.1016/j.ijbiomac.2024.132548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
A new approach of fabricating α-linolenic acid emulsions with enhanced oxidative stability in vitro digestion was established, using covalent octenyl succinic anhydride starch (OSAS)-soy protein (SP)-epigallocatechin-3-gallate (EGCG) complexes as emulsifiers. The physicochemical characteristics and surface morphology of emulsions were mainly characterized by rheological measurements, laser scanning microscope (CLSM) and cryo-scanning electron microscopy (Cryo-SEM). Results indicated that emulsions had dense interfacial layers and strong network structures. As a result, the stability and antioxidant ability of emulsions were improved significantly. In addition, the oxidative stability of emulsions in vitro gastrointestinal digestion was explored. Results showed that emulsions could maintain better oxidative stability owing to antioxidant activity of covalent OSAS-SP-EGCG complexes under gastrointestinal conditions. In particular, lipid hydroperoxide and malondialdehyde contents of emulsions prepared by 1:4 complexes were lower than 0.35 mmol/L and 20.5 nmol/mL, respectively, approximately half those of emulsions stabilized by OSAS (0.65 mmol/L and 39.5 nmol/mL). It was indicated that covalent OSAS-SP-EGCG complexes could effectively inhibit α-linolenic acid oxidation in emulsions during vitro gastrointestinal digestion. This work will provide a theoretical basis for the development of α-linolenic acid emulsions, which will help to broaden application of α-linolenic acid in food industry.
Collapse
Affiliation(s)
- Tenglong Geng
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Lidan Pan
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Xiaorui Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Zimei Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Jiayi Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Die Dong
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Haiyan Liu
- Qingdao Bright Moon Seaweed Bio-Health Technology Group Co., Ltd, Qingdao 266400, China
| |
Collapse
|
2
|
Sun M, Chen H, Geng F, Zhou Q, Hao Q, Zhang S, Chen Y, Deng Q. Fabrication and Characterization of Botanical-Based Double-Layered Emulsion: Protection of DHA and Astaxanthin Based on Interface Remodeling. Foods 2022; 11:foods11223557. [PMID: 36429149 PMCID: PMC9689186 DOI: 10.3390/foods11223557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 11/11/2022] Open
Abstract
Both DHA and astaxanthin, with multiple conjugated double bonds, are considered as health-promoting molecules. However, their utilizations into food systems are restricted due to their poor water solubility and high oxidizability, plus their certain off-smell. In this study, the interactions between perilla protein isolate (PPI) and flaxseed gum (FG) were firstly investigated using multiple spectroscopies, suggesting that hydrophobic, electrostatic force and hydrogen bonds played important roles. Additionally, double-layer emulsion was constructed by layer-by-layer deposition technology and exhibited preferable effects on masking the fishy smell of algae oil. Calcium ions also showed an improving effect on the elasticity modulus of O/W emulsions and was managed to significantly protect the stability of co-delivered astaxanthin and DHA, without additional antioxidants during storage for 21 days. The vegan system produced in this study may, therefore, be suitable for effective delivery of both ω-3 fatty acid and carotenoids for their further incorporation into food systems, such as plant-based yoghourt, etc.
Collapse
Affiliation(s)
- Mengjia Sun
- Key Laboratory of Oilseeds Processing, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan 430062, China
| | - Hongjian Chen
- Key Laboratory of Oilseeds Processing, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan 430062, China
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China
| | - Qi Zhou
- Key Laboratory of Oilseeds Processing, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan 430062, China
| | - Qian Hao
- College of Biological Engineering and Food, Hubei University of Technology, Wuhan 430068, China
| | - Shan Zhang
- Key Laboratory of Oilseeds Processing, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan 430062, China
| | - Yashu Chen
- Key Laboratory of Oilseeds Processing, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan 430062, China
- Correspondence: (Y.C.); (Q.D.); Tel.: +86-18696198198 (Q.D.)
| | - Qianchun Deng
- Key Laboratory of Oilseeds Processing, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan 430062, China
- Correspondence: (Y.C.); (Q.D.); Tel.: +86-18696198198 (Q.D.)
| |
Collapse
|
3
|
Jia Y, Sun S, Zhang D, Yan X, Man H, Huang Y, Qi B, Li Y. Dynamic monitoring of the protein-lipid co-oxidation of algae oil-enriched emulsions coated with soybean protein-rutin covalent conjugates. Food Res Int 2022; 162:112173. [DOI: 10.1016/j.foodres.2022.112173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
|
4
|
Impact of pea protein-inulin conjugates prepared via the Maillard reaction using a combination of ultrasonic and pH-shift treatments on physical and oxidative stability of algae oil emulsions. Food Res Int 2022; 156:111161. [DOI: 10.1016/j.foodres.2022.111161] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 11/20/2022]
|
5
|
Floros S, Toskas A, Pasidi E, Vareltzis P. Bioaccessibility and Oxidative Stability of Omega-3 Fatty Acids in Supplements, Sardines and Enriched Eggs Studied Using a Static In Vitro Gastrointestinal Model. Molecules 2022; 27:415. [PMID: 35056730 PMCID: PMC8780033 DOI: 10.3390/molecules27020415] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/30/2021] [Accepted: 01/06/2022] [Indexed: 11/17/2022] Open
Abstract
Modern dietary habits have created the need for the design and production of functional foods enriched in bioactive compounds for a healthy lifestyle. However, the fate of many of these bioactive compounds in the human gastrointestinal (GI) tract has not been thoroughly investigated. Thus, in the present study, the bioaccessibility of omega-3 fatty acids was examined. To that end, different foods and supplements underwent simulated digestion following the INFOGEST protocol. The selected samples were foods rich in omega-3 fatty acids both in free and bound form-i.e., dietary fish oil supplements, heat-treated fish, and eggs enriched with omega-3 fatty acids. The oxidation of polyunsaturated fatty acids (PUFAs) was measured at each stage of the digestion process using peroxide value (PV) and TBARS and by quantifying individual omega-3 fatty acids using a gas chromatograph with flame ionization detector (GC-FID). The final bioaccessibility values of omega-3 fatty acids were determined. Changes in the quantity of mono-saturated fatty acids (MUFAs) and saturated fatty acids (SFAs) were recorded as well. The results indicated a profound oxidation of omega-3 fatty acids, giving rise to both primary and secondary oxidation products. Additionally, stomach conditions seemed to exert the most significant effect on the oxidation of PUFAs during digestion, significantly decreasing their bioaccessibility. The oxidation rate of each fatty acid was found to be strongly correlated with its initial concentration. Finally, the oxidation pattern was found to be different for each matrix and emulsified lipids seemed to be better protected than non-emulsified lipids. It is concluded that digestion has a profound negative effect on omega-3 bioaccessibility and therefore there is a need for improved protective mechanisms.
Collapse
Affiliation(s)
- Stylianos Floros
- Department of Chemical Engineering, Faculty of Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.F.); (E.P.)
| | - Alexandros Toskas
- Petros Androulakis Medical Biology Analytical Laboratories, 57001 Thermi, Greece;
| | - Evagelia Pasidi
- Department of Chemical Engineering, Faculty of Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.F.); (E.P.)
| | - Patroklos Vareltzis
- Department of Chemical Engineering, Faculty of Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.F.); (E.P.)
| |
Collapse
|
6
|
Vellido-Perez JA, Ochando-Pulido JM, Brito-de la Fuente E, Martinez-Ferez A. Effect of operating parameters on the physical and chemical stability of an oil gelled-in-water emulsified curcumin delivery system. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:6395-6406. [PMID: 33969886 DOI: 10.1002/jsfa.11310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/15/2021] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Curcumin is a natural antioxidant with important beneficial properties for health, although its low bioavailability and sensitivity to many environmental agents limits its use in the food industry. Furthermore, some studies mention a potential synergistic effect with omega-3 polyunsaturated fatty acids, comprising other bioactive compounds extremely unstable and susceptible to oxidation. A relatively novel strategy to avoid oxidation processes is to transform liquid oils into three-dimensional structures by adding a gelling agent and forming a self-assembled network that can later be vectorized by incorporating it into other systems. The present study aimed to design and optimize an oil gelled-in-water curcumin-loaded emulsion to maximize curcumin stability and minimize lipid oxidation in terms of some critical operating parameters, such as dispersed phase, emulsifier and stabilizer concentrations, and homogenization rate. RESULTS The operating conditions that had a significant effect on the formulation were the dispersed phase weight fraction affecting droplet size and total lipid oxidation, homogenization conditions affecting droplet size and primary lipid oxidation, and emulsifier concentration affecting droplet size (significance level = 95%). The optimal formulation for maximizing curcumin load and minimizing lipid oxidation in the oleogelified matrix was 140.4 g kg-1 dispersed phase, 50.0 g kg-1 emulsifier, 4.9 g kg-1 stabilizer and homogenization speed 1016 × g. CONCLUSION The results obtained in the present study provide a valuable tool for the rational design and development of oil gelled-in-water emulsions that stabilize and transport bioactive compounds such as curcumin. © 2021 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | - Edmundo Brito-de la Fuente
- Innovation & Development Centers China & Germany Business Unit Parenteral Nutrition, Ketoanalogues & IV Fluids Pharmaceuticals & Devices Division, Fresenius Kabi Deutschland GmbH, Bad Homburg, Germany
| | - Antonio Martinez-Ferez
- Department of Chemical Engineering, Faculty of Sciences, University of Granada, Granada, Spain
| |
Collapse
|
7
|
HPLC Method for Separation of Cannabidiol Hemp Seed Oil with Skin Lipids and Tandem HRMS Technology for Characterization of a Chemical Marker. COSMETICS 2021. [DOI: 10.3390/cosmetics8040108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cannabidiol (CBD) hemp seed oil is a commercial raw material with antioxidant and anti-inflammatory benefits that has been formulated into body wash and skin care products. The biggest analytical challenge is how to simultaneously quantify CBD and hemp seed oil as they deposited on the skin surface. CBD is easily separated and quantified from skin surface extracts via a HPLC-mass spectrometry methodology. However, the structural skeleton of triacylglycerides (TAGs) in hemp seed oil is same as those from the skin surface sebum. The strong hydrophobicity with subtle structural difference challenges their separation. In this project, a new reverse phase HPLC-high resolution mass spectrometry methodology was developed with a strong mobile phase normal propanol. The separated hemp seed oil TAGs in the chromatogram were identified and characterized using data-dependent acquisition (DDA) technology. Based on the daughter ion characterization, the separated peak with an ammonium adduct at 890.7226 [M + NH4]+ was confirmed as the parent ion of glycerol with three omega-3 fatty acid chains. This is the first time TAG structure with direct HPLC-tandem mass spectrometry technology has been elucidated without a hydrolysis reaction. The confirmed TAG structure with an ammonium adduct at 890.7226 ± 0.0020 can be used as a representative chemical marker for the hemp seed oil quantification.
Collapse
|
8
|
Improve the physical and oxidative stability of O/W emulsions by moderate solidification of the oil phase by stearic acid. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|