1
|
Macedo AA, Arantes LC, Pimentel DM, de Deus Melo T, Magalhães de Almeida Melo L, Alves de Barros W, Rocha CM, de Fátima Â, Pio Dos Santos WT. Comprehensive detection of lysergic acid diethylamide (LSD) in forensic samples using carbon nanotube screen-printed electrodes. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5837-5845. [PMID: 37874181 DOI: 10.1039/d3ay01385e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Lysergic acid diethylamide (LSD) is a prevalent psychoactive substance recognized for its hallucinogenic properties, often encountered in blotter papers for illicit consumption. Given that LSD ranks among the most widely abused illicit drugs globally, its prompt identification in seized samples is vital for forensic investigations. This study presents, for the first time, an electrochemical screening method for detecting LSD in forensic samples, utilizing a multi-wall carbon nanotube screen-printed electrode (SPE-MWCNT). The LSD detection process was optimized on SPE-MWCNT in a phosphate buffer solution (0.1 mol L-1, pH 12.0) using square wave voltammetry (SWV). The combined use of SPE-MWCNT with SWV displayed robust stability in electrochemical responses for both qualitative (peak potential) and quantitative (peak current) LSD assessment, with a relative standard deviation (RSD) of less than 5% across the same or different electrodes (N = 3). A linear detection range was established between 0.16 and 40.0 μmol L-1 (R2 = 0.998), featuring a low limit of detection (LOD) of 0.05 μmol L-1. Interference studies with twenty-three other substances, including groups of phenethylamines typically found in blotting papers (e.g., NBOHs and NBOMes) and traditional illicit drugs, were performed, revealing a highly selective response for LSD using the proposed method. Consequently, the integration of SPE-MWCNT with SWV offers a robust tool for qualitative and quantitative LSD analysis in forensic applications, providing rapid, sensitive, selective, reproducible, and straightforward preliminary identification in seized samples.
Collapse
Affiliation(s)
- Anne Alves Macedo
- Departamento de Química, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Campus JK, Diamantina, 39100000, Minas Gerais, Brazil.
| | - Luciano C Arantes
- Laboratório de Química e Física Forense, Instituto de Criminalística, Polícia Civil do Distrito Federal, 70610-907, Brasília, Distrito Federal, Brazil
| | - Dilton Martins Pimentel
- Laboratório Integrado de Pesquisas do Vale do Jequitinhonha, Pró-Reitoria de Pesquisa e Pós-Graduação, Universidade Federal dos Vales do Jequitinhonha e Mucuri, CampusJK, 39100000 Diamantina, Minas Gerais, Brazil
| | - Tifany de Deus Melo
- Departamento de Farmácia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Campus JK, 39100000, Diamantina, Minas Gerais, Brazil
| | - Larissa Magalhães de Almeida Melo
- Departamento de Química, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Campus JK, Diamantina, 39100000, Minas Gerais, Brazil.
| | - Wellington Alves de Barros
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Cláudia Mancilha Rocha
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Ângelo de Fátima
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Wallans Torres Pio Dos Santos
- Departamento de Química, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Campus JK, Diamantina, 39100000, Minas Gerais, Brazil.
- Laboratório Integrado de Pesquisas do Vale do Jequitinhonha, Pró-Reitoria de Pesquisa e Pós-Graduação, Universidade Federal dos Vales do Jequitinhonha e Mucuri, CampusJK, 39100000 Diamantina, Minas Gerais, Brazil
| |
Collapse
|
2
|
Lugo Vargas AF, Quevedo Buitrago WG, Chaves Silva DC, Martínes Suárez JF. Voltammetric Responses of a CYP2D6‐Based Biosensor to 3,4‐methylenedioxymethamphetamine (MDMA) and the Synthetic Cathinone α‐pyrrolidinopentiophenone (α‐PVP). ChemistrySelect 2022. [DOI: 10.1002/slct.202202748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
3
|
Van Echelpoel R, Kranenburg RF, van Asten AC, De Wael K. Electrochemical detection of MDMA and 2C-B in ecstasy tablets using a selectivity enhancement strategy by in-situ derivatization. Forensic Chem 2022. [DOI: 10.1016/j.forc.2021.100383] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
4
|
Arrieiro MO, Arantes LC, Moreira DA, Pimentel DM, Lima CD, Costa LM, Verly RM, dos Santos WT. Electrochemical detection of eutylone using screen-printed electrodes: Rapid and simple screening method for application in forensic samples. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140106] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
5
|
Rocha RG, Silva IC, Arantes LC, Stefano JS, Lima CD, Melo LM, Munoz RA, dos Santos WT, Richter EM. Simple and rapid electrochemical detection of 1-benzylpiperazine on carbon screen-printed electrode. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
6
|
De Rycke E, Stove C, Dubruel P, De Saeger S, Beloglazova N. Recent developments in electrochemical detection of illicit drugs in diverse matrices. Biosens Bioelectron 2020; 169:112579. [PMID: 32947080 DOI: 10.1016/j.bios.2020.112579] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/20/2020] [Accepted: 08/31/2020] [Indexed: 01/24/2023]
Abstract
Drug abuse is a global problem, requiring an interdisciplinary approach. Discovery, production, trafficking, and consumption of illicit drugs have been constantly growing, leading to heavy consequences for environment, human health, and society in general. Therefore, an urgent need for rapid, sensitive, portable and easy-to-operate detection methods for numerous drugs of interest in diverse matrices, from police samples, biological fluids and hair to sewage water has risen. Electrochemical sensors are promising alternatives to chromatography and spectrometry. Last decades, electrochemical sensing of illegal drugs has experienced a very significant growth, driven by improved transducers and signal amplifiers helping to improve the sensitivity and selectivity. The present review summarizes recent advances (last 10 years) in electrochemical detection of the most prevailing illicit drugs (such as cocaine, heroin, and (meth)amphetamine), their precursors and derivatives in different matrices. Various electrochemical sensors making use of different transducers with their (dis)advantages were discussed, and their sensitivity and applicability were critically compared. In those cases where natural or synthetic recognition elements were included in the sensing system to increase specificity, selected recognition elements, their immobilization, working conditions, and analytical performance were discussed. Finally, an outlook is presented with suggestions and recommendations for future developments.
Collapse
Affiliation(s)
- Esther De Rycke
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bioanalysis, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium; Polymer Chemistry & Biomaterials Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, Building S4-Bis, B-9000 Ghent, Belgium.
| | - Christophe Stove
- Laboratory of Toxicology, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Peter Dubruel
- Polymer Chemistry & Biomaterials Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, Building S4-Bis, B-9000 Ghent, Belgium
| | - Sarah De Saeger
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bioanalysis, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Natalia Beloglazova
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bioanalysis, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium; Nanotechnology Education and Research Center, South Ural State University, 454080 Chelyabinsk, Russia
| |
Collapse
|
7
|
Electrochemical detection of the synthetic cathinone 3,4-methylenedioxypyrovalerone using carbon screen-printed electrodes: A fast, simple and sensitive screening method for forensic samples. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136728] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Naomi Oiye É, Midori Toia Katayama J, Fernanda Muzetti Ribeiro M, Oka Duarte L, de Castro Baker Botelho R, José Ipólito A, Royston McCord B, Firmino de Oliveira M. Voltammetric detection of 3,4-methylenedioxymethamphetamine (mdma) in saliva in low cost systems. Forensic Chem 2020. [DOI: 10.1016/j.forc.2020.100268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
9
|
Ribeiro MFM, Bento F, Ipólito AJ, de Oliveira MF. Development of a Pencil Drawn Paper-based Analytical Device to Detect Lysergic Acid Diethylamide (LSD)* , †. J Forensic Sci 2020; 65:2121-2128. [PMID: 32602943 DOI: 10.1111/1556-4029.14494] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 01/04/2023]
Abstract
The need for agile and proper identification of drugs of abuse has encouraged the scientific community to improve and to develop new methodologies. The drug lysergic acid diethylamide (LSD) is still widely used due to its hallucinogenic effects. The use of voltammetric methods to analyze narcotics has increased in recent years, and the possibility of miniaturizing the electrochemical equipment allows these methods to be applied outside the laboratory; for example, in crime scenes. In addition to portability, the search for affordable and sustainable materials for use in electroanalytical research has grown in recent decades. In this context, employing paper substrate, graphite pencil, and silver paint to construct paper-based electrodes is a great alternative. Here, a paper-based device comprising three electrodes was drawn on 300 g/m2 watercolor paper with 8B pencils, and its efficiency was compared to the efficiency of a commercially available screen-printed carbon electrode. Square wave voltammetry was used for LSD analysis in aqueous medium containing 0.05 mol/L LiClO4 . The limits of detection and quantification were 0.38 and 1.27 μmol/L, respectively. Both electrodes exhibited a similar voltammetric response, which was also confirmed during analysis of a seized LSD sample, with recovery of less than 10%. The seized samples were previously analyzed by GCMS technique, employing the full scan spectra against the software spectral library. The electrode selectivity was also tested against 3,4-methylenedioxymethamphetamine (MDMA) and methamphetamine. It was possible to differentiate these compounds from LSD, indicating that the developed paper-based device has potential application in forensic chemistry analyses.
Collapse
Affiliation(s)
| | - Fátima Bento
- Centro de Química, Universidade do Minho, Campus de Gualtar, Braga, 4710 - 057, Portugal
| | - Antônio J Ipólito
- Superintendência Polícia Técnica Científica, SPTC, Rua São Sebastião, Ribeirão Preto, SP, 1339, Brazil
| | - Marcelo F de Oliveira
- Universidade de São Paulo, USP, Avenida Bandeirantes, Ribeirão Preto, SP, 3900, Brazil
| |
Collapse
|
10
|
Moro G, Barich H, Driesen K, Felipe Montiel N, Neven L, Domingues Mendonça C, Thiruvottriyur Shanmugam S, Daems E, De Wael K. Unlocking the full power of electrochemical fingerprinting for on-site sensing applications. Anal Bioanal Chem 2020; 412:5955-5968. [DOI: 10.1007/s00216-020-02584-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/28/2020] [Accepted: 03/09/2020] [Indexed: 02/07/2023]
|
11
|
Elbardisy H, Foster CW, Marron J, Mewis RE, Sutcliffe OB, Belal TS, Talaat W, Daabees HG, Banks CE. Quick Test for Determination of N-Bombs (Phenethylamine Derivatives, NBOMe) Using High-Performance Liquid Chromatography: A Comparison between Photodiode Array and Amperometric Detection. ACS OMEGA 2019; 4:14439-14450. [PMID: 31528797 PMCID: PMC6740171 DOI: 10.1021/acsomega.9b01366] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 07/23/2019] [Indexed: 05/02/2023]
Abstract
The emergence of a new class of novel psychoactive substances, N-benzyl-substituted phenethylamine derivatives so-called "NBOMes" or "Smiles", in the recreational drug market has forced the development of new sensitive analytical methodologies for their detection and quantitation. NBOMes' hallucinogenic effects mimic those of the illegal psychedelic drug lysergic acid diethylamide (LSD) and are typically sold as LSD on blotter papers, resulting in a remarkable number of fatalities worldwide. In this article, four halide derivatives of NBOMe, namely, 2-(4-fluoro-2,5-dimethoxyphenyl)-N-(2-methoxybenzyl)ethan-1-amine, 2-(4-chloro-2,5-dimethoxyphenyl)-N-(2-methoxybenzyl)ethan-1-amine, 2-(4-bromo-2,5-dimethoxyphenyl)-N-(2-methoxybenzyl)ethan-1-amine, and 2-(4-iodo-2,5-dimethoxyphenyl)-N-(2-methoxybenzyl)ethan-1-amine, were detected and quantified simultaneously using a high-performance liquid chromatographic method, and two detection systems were compared: photodiode array detection (detection system I) and amperometric detection via a commercially available impinging jet flow-cell system incorporating embedded graphite screen-printed macroelectrodes (detection system II). Under optimized experimental conditions, linear calibration plots were obtained in the concentration range of 10-300 and 20-300 μg mL-1, for detection systems I and II, respectively. Detection limit (limit of detection) values were between 4.6-6.7 and 9.7-18 μg mL-1, for detection systems I and II, respectively. Both detectors were employed for the analysis of the four NBOMe derivatives in the bulk form, in the presence of LSD and adulterants commonly found in street samples (e.g. paracetamol, caffeine, and benzocaine). Furthermore, the method was applied for the analysis of simulated blotter papers, and the obtained percentage recoveries were satisfactory, emphasizing its advantageous applicability for the routine analysis of NBOMes in forensic laboratories.
Collapse
Affiliation(s)
- Hadil
M. Elbardisy
- Faculty
of Science and Engineering and MANchester DRug Analysis and Knowledge
Exchange (MANDRAKE), Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, U.K.
- Pharmaceutical Analysis Department, Faculty of Pharmacy and Pharmaceutical
Chemistry Department, Faculty of Pharmacy, Damanhour University, Damanhour 22511, Egypt
| | - Christopher W. Foster
- Faculty
of Science and Engineering and MANchester DRug Analysis and Knowledge
Exchange (MANDRAKE), Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, U.K.
| | - Jack Marron
- Faculty
of Science and Engineering and MANchester DRug Analysis and Knowledge
Exchange (MANDRAKE), Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, U.K.
| | - Ryan E. Mewis
- Faculty
of Science and Engineering and MANchester DRug Analysis and Knowledge
Exchange (MANDRAKE), Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, U.K.
| | - Oliver B. Sutcliffe
- Faculty
of Science and Engineering and MANchester DRug Analysis and Knowledge
Exchange (MANDRAKE), Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, U.K.
| | - Tarek S. Belal
- Department
of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Wael Talaat
- Pharmaceutical Analysis Department, Faculty of Pharmacy and Pharmaceutical
Chemistry Department, Faculty of Pharmacy, Damanhour University, Damanhour 22511, Egypt
| | - Hoda G. Daabees
- Pharmaceutical Analysis Department, Faculty of Pharmacy and Pharmaceutical
Chemistry Department, Faculty of Pharmacy, Damanhour University, Damanhour 22511, Egypt
| | - Craig E. Banks
- Faculty
of Science and Engineering and MANchester DRug Analysis and Knowledge
Exchange (MANDRAKE), Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, U.K.
- E-mail: . Tel: ++(0)1612471196. Website: www.craigbanksresearch.com
| |
Collapse
|
12
|
|
13
|
Davidson JT, Jackson GP. The differentiation of 2,5-dimethoxy-N-(N-methoxybenzyl)phenethylamine (NBOMe) isomers using GC retention indices and multivariate analysis of ion abundances in electron ionization mass spectra. Forensic Chem 2019. [DOI: 10.1016/j.forc.2019.100160] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
Belchior de Andrade AF, Gonzalez-Rodriguez J. Electroanalytical identification of 25I-NBOH and 2C-I via differential pulse voltammetry: a rapid and sensitive screening method to avoid misidentification. Analyst 2019; 144:2965-2972. [DOI: 10.1039/c9an00062c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
25I-NBOH is a new potent serotonin 5-HT2A receptor agonist recently identified in blotter paper seizures.
Collapse
|
15
|
de Araujo WR, Cardoso TM, da Rocha RG, Santana MH, Muñoz RA, Richter EM, Paixão TR, Coltro WK. Portable analytical platforms for forensic chemistry: A review. Anal Chim Acta 2018; 1034:1-21. [DOI: 10.1016/j.aca.2018.06.014] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 05/18/2018] [Accepted: 06/07/2018] [Indexed: 01/28/2023]
|