1
|
Kornienko IV, Faleeva TG, Schurr TG, Aramova OY, Ochir-Goryaeva MA, Batieva EF, Vdovchenkov EV, Moshkov NE, Kukanova VV, Ivanov IN, Sidorenko YS, Tatarinova TV. Y-Chromosome Haplogroup Diversity in Khazar Burials from Southern Russia. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421040049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
2
|
Trombetta B, D'Atanasio E, Cruciani F. Patterns of Inter-Chromosomal Gene Conversion on the Male-Specific Region of the Human Y Chromosome. Front Genet 2017; 8:54. [PMID: 28515739 PMCID: PMC5413550 DOI: 10.3389/fgene.2017.00054] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/18/2017] [Indexed: 12/31/2022] Open
Abstract
The male-specific region of the human Y chromosome (MSY) is characterized by the lack of meiotic recombination and it has long been considered an evolutionary independent region of the human genome. In recent years, however, the idea that human MSY did not have an independent evolutionary history begun to emerge with the discovery that inter-chromosomal gene conversion (ICGC) can modulate the genetic diversity of some portions of this genomic region. Despite the study of the dynamics of this molecular mechanism in humans is still in its infancy, some peculiar features and consequences of it can be summarized. The main effect of ICGC is to increase the allelic diversity of MSY by generating a significant excess of clustered single nucleotide polymorphisms (SNPs) (defined as groups of two or more SNPs occurring in close proximity and on the same branch of the Y phylogeny). On the human MSY, 13 inter-chromosomal gene conversion hotspots (GCHs) have been identified so far, involving donor sequences mainly from the X-chromosome and, to a lesser extent, from autosomes. Most of the GCHs are evolutionary conserved and overlap with regions involved in aberrant X–Y crossing-over. This review mainly focuses on the dynamics and the current knowledge concerning the recombinational landscape of the human MSY in the form of ICGC, on how this molecular mechanism may influence the evolution of the MSY, and on how it could affect the information enclosed within a genomic region which, until recently, appeared to be an evolutionary independent unit.
Collapse
Affiliation(s)
- Beniamino Trombetta
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di RomaRome, Italy
| | - Eugenia D'Atanasio
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di RomaRome, Italy
| | - Fulvio Cruciani
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di RomaRome, Italy.,Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche (CNR),Rome, Italy
| |
Collapse
|
3
|
Y chromosome palindromes and gene conversion. Hum Genet 2017; 136:605-619. [PMID: 28303348 DOI: 10.1007/s00439-017-1777-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 03/07/2017] [Indexed: 02/02/2023]
Abstract
The presence of large and near-identical inverted repeat sequences (called palindromes) is a common feature of the constitutively haploid sex chromosomes of different species. Despite the fact palindromes originated in a non-recombining context, they have evolved a strong recombinational activity in the form of abundant arm-to-arm gene conversion. Their independent appearance in different species suggests they can have a profound biological significance that has yet to be fully clarified. It has been theorized that natural selection may have favored palindromic organization of male-specific genes and that the establishment of intra-palindrome gene conversion has strong adaptive significance. Arm-to-arm gene conversion allows the efficient removal of deleterious mutations, increases the fixation rate of beneficial mutations and has played an important role in modulating the equilibrium between gene loss and acquisition during Y chromosome evolution. Additionally, a palindromic organization of duplicates could favor the formation of unusual chromatin structures and could optimize the use of gene conversion as a mechanism to maintain the structural integrity of male-specific genes. In this review, we describe the structural features of palindromes on mammalian sex chromosomes and summarize different hypotheses regarding palindrome evolution and the functional benefits of arm-to-arm gene conversion on the unique haploid portion of the nuclear genome.
Collapse
|
4
|
Trombetta B, Fantini G, D'Atanasio E, Sellitto D, Cruciani F. Evidence of extensive non-allelic gene conversion among LTR elements in the human genome. Sci Rep 2016; 6:28710. [PMID: 27346230 PMCID: PMC4921805 DOI: 10.1038/srep28710] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/06/2016] [Indexed: 12/16/2022] Open
Abstract
Long Terminal Repeats (LTRs) are nearly identical DNA sequences found at either end of Human Endogenous Retroviruses (HERVs). The high sequence similarity that exists among different LTRs suggests they could be substrate of ectopic gene conversion events. To understand the extent to which gene conversion occurs and to gain new insights into the evolutionary history of these elements in humans, we performed an intra-species phylogenetic study of 52 LTRs on different unrelated Y chromosomes. From this analysis, we obtained direct evidence that demonstrates the occurrence of ectopic gene conversion in several LTRs, with donor sequences located on both sex chromosomes and autosomes. We also found that some of these elements are characterized by an extremely high density of polymorphisms, showing one of the highest nucleotide diversities in the human genome, as well as a complex patchwork of sequences derived from different LTRs. Finally, we highlighted the limits of current short-read NGS studies in the analysis of genetic diversity of the LTRs in the human genome. In conclusion, our comparative re-sequencing analysis revealed that ectopic gene conversion is a common event in the evolution of LTR elements, suggesting complex genetic links among LTRs from different chromosomes.
Collapse
Affiliation(s)
- Beniamino Trombetta
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, Rome, Italy
| | - Gloria Fantini
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, Rome, Italy
| | - Eugenia D'Atanasio
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, Rome, Italy
| | | | - Fulvio Cruciani
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, Rome, Italy.,Istituto di Biologia e Patologia Molecolari, CNR, Rome, Italy.,Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza Università di Roma, Rome, Italy
| |
Collapse
|
5
|
Veerappa AM, Vishweswaraiah S, Lingaiah K, Murthy M, Suresh RV, Manjegowda DS, Ramachandra NB. Global spectrum of copy number variations reveals genome organizational plasticity and proposes new migration routes. PLoS One 2015; 10:e0121846. [PMID: 25909454 PMCID: PMC4409114 DOI: 10.1371/journal.pone.0121846] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 02/16/2015] [Indexed: 11/19/2022] Open
Abstract
Global spectrum of CNVs is required to catalog variations to provide a high-resolution on the dynamics of genome-organization and human migration. In this study, we performed genome-wide genotyping using high-resolution arrays and identified 44,109 CNVs from 1,715 genomes across 12 populations. The study unraveled the force of independent evolutionary dynamics on genome-organizational plasticity across populations. We demonstrated the use of CNV tool to study human migration and identified a second major settlement establishing new migration routes in addition to existing ones.
Collapse
Affiliation(s)
- Avinash M. Veerappa
- Genetics and Genomics Lab, Department of Studies in Zoology, University of Mysore, Manasagangotri, Mysore-06, Karnataka, India
| | - Sangeetha Vishweswaraiah
- Genetics and Genomics Lab, Department of Studies in Zoology, University of Mysore, Manasagangotri, Mysore-06, Karnataka, India
| | - Kusuma Lingaiah
- Genetics and Genomics Lab, Department of Studies in Zoology, University of Mysore, Manasagangotri, Mysore-06, Karnataka, India
| | - Megha Murthy
- Genetics and Genomics Lab, Department of Studies in Zoology, University of Mysore, Manasagangotri, Mysore-06, Karnataka, India
| | - Raviraj V. Suresh
- Genetics and Genomics Lab, Department of Studies in Zoology, University of Mysore, Manasagangotri, Mysore-06, Karnataka, India
| | - Dinesh S. Manjegowda
- NUCSER, KS Hegde Medical Academy, Nitte University, Mangalore-18, Karnataka, India
| | - Nallur B. Ramachandra
- Genetics and Genomics Lab, Department of Studies in Zoology, University of Mysore, Manasagangotri, Mysore-06, Karnataka, India
- * E-mail:
| |
Collapse
|
6
|
Trombetta B, Sellitto D, Scozzari R, Cruciani F. Inter- and intraspecies phylogenetic analyses reveal extensive X-Y gene conversion in the evolution of gametologous sequences of human sex chromosomes. Mol Biol Evol 2014; 31:2108-23. [PMID: 24817545 PMCID: PMC4104316 DOI: 10.1093/molbev/msu155] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
It has long been believed that the male-specific region of the human Y chromosome (MSY) is genetically independent from the X chromosome. This idea has been recently dismissed due to the discovery that X–Y gametologous gene conversion may occur. However, the pervasiveness of this molecular process in the evolution of sex chromosomes has yet to be exhaustively analyzed. In this study, we explored how pervasive X–Y gene conversion has been during the evolution of the youngest stratum of the human sex chromosomes. By comparing about 0.5 Mb of human–chimpanzee gametologous sequences, we identified 19 regions in which extensive gene conversion has occurred. From our analysis, two major features of these emerged: 1) Several of them are evolutionarily conserved between the two species and 2) almost all of the 19 hotspots overlap with regions where X–Y crossing-over has been previously reported to be involved in sex reversal. Furthermore, in order to explore the dynamics of X–Y gametologous conversion in recent human evolution, we resequenced these 19 hotspots in 68 widely divergent Y haplogroups and used publicly available single nucleotide polymorphism data for the X chromosome. We found that at least ten hotspots are still active in humans. Hence, the results of the interspecific analysis are consistent with the hypothesis of widespread reticulate evolution within gametologous sequences in the differentiation of hominini sex chromosomes. In turn, intraspecific analysis demonstrates that X–Y gene conversion may modulate human sex-chromosome-sequence evolution to a greater extent than previously thought.
Collapse
Affiliation(s)
- Beniamino Trombetta
- Dipartimento di Biologia e Biotecnologie "Charles Darwin," Sapienza Università di Roma, Roma, Italy
| | | | - Rosaria Scozzari
- Dipartimento di Biologia e Biotecnologie "Charles Darwin," Sapienza Università di Roma, Roma, Italy
| | - Fulvio Cruciani
- Dipartimento di Biologia e Biotecnologie "Charles Darwin," Sapienza Università di Roma, Roma, ItalyIstituto di Biologia e Patologia Molecolari, CNR, Roma, ItalyIstituto Pasteur-Fondazione Cenci Bolognetti, Sapienza Università di Roma, Roma, Italy
| |
Collapse
|
7
|
Niederstätter H, Berger B, Erhart D, Willuweit S, Geppert M, Gassner C, Schennach H, Parson W, Roewer L. Multiple recurrent mutations at four human Y-chromosomal single nucleotide polymorphism sites in a 37 bp sequence tract on the ARSDP1 pseudogene. Forensic Sci Int Genet 2013; 7:593-600. [DOI: 10.1016/j.fsigen.2013.05.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 05/22/2013] [Accepted: 05/23/2013] [Indexed: 10/26/2022]
|
8
|
Retrieving Y chromosomal haplogroup trees using GWAS data. Eur J Hum Genet 2013; 22:1046-50. [PMID: 24281365 DOI: 10.1038/ejhg.2013.272] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 10/06/2013] [Accepted: 10/25/2013] [Indexed: 11/09/2022] Open
Abstract
Phylogenetically informative Y chromosomal single-nucleotide polymorphisms (Y-SNPs) integrated in DNA chips have not been sufficiently explored in most genome-wide association studies (GWAS). Herein, we introduce a pipeline to retrieve Y-SNP data. We introduce the software YTool (http://mitotool.org/ytool/) to handle conversion, filtering, and annotation of the data. Genome-wide SNP data from populations in Myanmar are used to construct a haplogroup tree for 117 Y chromosomes based on 369 high-confidence Y-SNPs. Parallel genotyping and published resequencing data of Y chromosomes confirm the validity of our pipeline. We apply this strategy to the CEU HapMap data set and construct a haplogroup tree with 107 Y-SNPs from 39 individuals. The retrieved Y-SNPs can discern the parental genetic structure of populations. Given the massive quantity of data from GWAS, this method facilitates future investigations of Y chromosome diversity.
Collapse
|
9
|
van Oven M, Van Geystelen A, Kayser M, Decorte R, Larmuseau MHD. Seeing the wood for the trees: a minimal reference phylogeny for the human Y chromosome. Hum Mutat 2013; 35:187-91. [PMID: 24166809 DOI: 10.1002/humu.22468] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 10/11/2013] [Indexed: 11/11/2022]
Abstract
During the last few decades, a wealth of studies dedicated to the human Y chromosome and its DNA variation, in particular Y-chromosome single-nucleotide polymorphisms (Y-SNPs), has led to the construction of a well-established Y-chromosome phylogeny. Since the recent advent of new sequencing technologies, the discovery of additional Y-SNPs is exploding and their continuous incorporation in the phylogenetic tree is leading to an ever higher resolution. However, the large and increasing amount of information included in the "complete" Y-chromosome phylogeny, which now already includes many thousands of identified Y-SNPs, can be overwhelming and complicates its understanding as well as the task of selecting suitable markers for genotyping purposes in evolutionary, demographic, anthropological, genealogical, medical, and forensic studies. As a solution, we introduce a concise reference phylogeny whereby we do not aim to provide an exhaustive tree that includes all known Y-SNPs but, rather, a quite stable reference tree aiming for optimal global discrimination capacity based on a strongly reduced set that includes only the most resolving Y-SNPs. Furthermore, with this reference tree, we wish to propose a common standard for Y-marker as well as Y-haplogroup nomenclature. The current version of our tree is based on a core set of 417 branch-defining Y-SNPs and is available online at http://www.phylotree.org/Y.
Collapse
Affiliation(s)
- Mannis van Oven
- Department of Forensic Molecular Biology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
10
|
Hallast P, Balaresque P, Bowden GR, Ballereau S, Jobling MA. Recombination dynamics of a human Y-chromosomal palindrome: rapid GC-biased gene conversion, multi-kilobase conversion tracts, and rare inversions. PLoS Genet 2013; 9:e1003666. [PMID: 23935520 PMCID: PMC3723533 DOI: 10.1371/journal.pgen.1003666] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 06/07/2013] [Indexed: 11/19/2022] Open
Abstract
The male-specific region of the human Y chromosome (MSY) includes eight large inverted repeats (palindromes) in which arm-to-arm similarity exceeds 99.9%, due to gene conversion activity. Here, we studied one of these palindromes, P6, in order to illuminate the dynamics of the gene conversion process. We genotyped ten paralogous sequence variants (PSVs) within the arms of P6 in 378 Y chromosomes whose evolutionary relationships within the SNP-defined Y phylogeny are known. This allowed the identification of 146 historical gene conversion events involving individual PSVs, occurring at a rate of 2.9–8.4×10−4 events per generation. A consideration of the nature of nucleotide change and the ancestral state of each PSV showed that the conversion process was significantly biased towards the fixation of G or C nucleotides (GC-biased), and also towards the ancestral state. Determination of haplotypes by long-PCR allowed likely co-conversion of PSVs to be identified, and suggested that conversion tract lengths are large, with a mean of 2068 bp, and a maximum in excess of 9 kb. Despite the frequent formation of recombination intermediates implied by the rapid observed gene conversion activity, resolution via crossover is rare: only three inversions within P6 were detected in the sample. An analysis of chimpanzee and gorilla P6 orthologs showed that the ancestral state bias has existed in all three species, and comparison of human and chimpanzee sequences with the gorilla outgroup confirmed that GC bias of the conversion process has apparently been active in both the human and chimpanzee lineages. The sex-determining role of the human Y chromosome makes it male-specific, and always present in only a single copy. This solo lifestyle has endowed it with some bizarre features, among which are eight large DNA units constituting about a quarter of the chromosome's length, and containing many genes important for sperm production. These units are called palindromes, since, taking into account the polarity of the DNA strands, the sequence is the same read from either end of the unit. We investigated the details of a process (gene conversion) that transfers sequence variants in one half of a palindrome into the other, thereby maintaining >99.9% similarity between the halves. We analysed patterns of sequence variants within one palindrome in a set of Y chromosomes whose evolutionary relationships are known. This allowed us to identify past gene conversion events, and to demonstrate a bias towards events that eliminate new variants, and retain old ones. Gene conversion has therefore acted during human evolution to retard sequence change in these regions. Analysis of the chimpanzee and gorilla versions of the palindrome shows that the dynamic processes we see in human Y chromosomes have a deep evolutionary history.
Collapse
Affiliation(s)
- Pille Hallast
- Department of Genetics, University of Leicester, Leicester, United Kingdom
| | | | - Georgina R. Bowden
- Department of Genetics, University of Leicester, Leicester, United Kingdom
| | - Stéphane Ballereau
- Department of Genetics, University of Leicester, Leicester, United Kingdom
| | - Mark A. Jobling
- Department of Genetics, University of Leicester, Leicester, United Kingdom
- * E-mail:
| |
Collapse
|
11
|
Van Geystelen A, Decorte R, Larmuseau MHD. Updating the Y-chromosomal phylogenetic tree for forensic applications based on whole genome SNPs. Forensic Sci Int Genet 2013; 7:573-580. [PMID: 23597787 DOI: 10.1016/j.fsigen.2013.03.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 03/19/2013] [Indexed: 01/17/2023]
Abstract
The Y-chromosomal phylogenetic tree has a wide variety of important forensic applications and therefore it needs to be state-of-the-art. Nevertheless, since the last 'official' published tree many publications reported additional Y-chromosomal lineages and other phylogenetic topologies. Therefore, it is difficult for forensic scientists to interpret those reports and use an up-to-date tree and corresponding nomenclature in their daily work. Whole genome sequencing (WGS) data is useful to verify and optimise the current phylogenetic tree for haploid markers. The AMY-tree software is the first open access program which analyses WGS data for Y-chromosomal phylogenetic applications. Here, all published information is collected in a phylogenetic tree and the correctness of this tree is checked based on the first large analysis of 747 WGS samples with AMY-tree. The obtained result is one phylogenetic tree with all peer-reviewed reported Y-SNPs without the observed recurrent and ambiguous mutations. Nevertheless, the results showed that currently only the genomes of a limited set of Y-chromosomal (sub-)haplogroups is available and that many newly reported Y-SNPs based on WGS projects are false positives, even with high sequencing coverage methods. This study demonstrates the usefulness of AMY-tree in the process of checking the quality of the present Y-chromosomal tree and it accentuates the difficulties to enlarge this tree based on only WGS methods.
Collapse
Affiliation(s)
- A Van Geystelen
- UZ Leuven, Laboratory of Forensic Genetics and Molecular Archaeology, Leuven, Belgium; KU Leuven, Department of Biology, Laboratory of Socioecology and Social Evolution, Leuven, Belgium
| | - R Decorte
- UZ Leuven, Laboratory of Forensic Genetics and Molecular Archaeology, Leuven, Belgium; KU Leuven, Department of Imaging & Pathology, Forensic Medicine, Leuven, Belgium
| | - M H D Larmuseau
- UZ Leuven, Laboratory of Forensic Genetics and Molecular Archaeology, Leuven, Belgium; KU Leuven, Department of Imaging & Pathology, Forensic Medicine, Leuven, Belgium; KU Leuven, Department of Biology, Laboratory of Biodiversity and Evolutionary Genomics, Leuven, Belgium.
| |
Collapse
|
12
|
AMY-tree: an algorithm to use whole genome SNP calling for Y chromosomal phylogenetic applications. BMC Genomics 2013; 14:101. [PMID: 23405914 PMCID: PMC3583733 DOI: 10.1186/1471-2164-14-101] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 12/19/2012] [Indexed: 12/02/2022] Open
Abstract
Background Due to the rapid progress of next-generation sequencing (NGS) facilities, an explosion of human whole genome data will become available in the coming years. These data can be used to optimize and to increase the resolution of the phylogenetic Y chromosomal tree. Moreover, the exponential growth of known Y chromosomal lineages will require an automatic determination of the phylogenetic position of an individual based on whole genome SNP calling data and an up to date Y chromosomal tree. Results We present an automated approach, ‘AMY-tree’, which is able to determine the phylogenetic position of a Y chromosome using a whole genome SNP profile, independently from the NGS platform and SNP calling program, whereby mistakes in the SNP calling or phylogenetic Y chromosomal tree are taken into account. Moreover, AMY-tree indicates ambiguities within the present phylogenetic tree and points out new Y-SNPs which may be phylogenetically relevant. The AMY-tree software package was validated successfully on 118 whole genome SNP profiles of 109 males with different origins. Moreover, support was found for an unknown recurrent mutation, wrong reported mutation conversions and a large amount of new interesting Y-SNPs. Conclusions Therefore, AMY-tree is a useful tool to determine the Y lineage of a sample based on SNP calling, to identify Y-SNPs with yet unknown phylogenetic position and to optimize the Y chromosomal phylogenetic tree in the future. AMY-tree will not add lineages to the existing phylogenetic tree of the Y-chromosome but it is the first step to analyse whole genome SNP profiles in a phylogenetic framework.
Collapse
|
13
|
Assignment of Y-chromosomal SNPs found in Japanese population to Y-chromosomal haplogroup tree. J Hum Genet 2013; 58:195-201. [PMID: 23389242 DOI: 10.1038/jhg.2012.159] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The relationship between Y-chromosome single-nucleotide polymorphisms (SNPs) registered in the Japanese SNP (JSNP) database (http://snp.ims.u-tokyo.ac.jp) and Y-binary haplogroup lineages was investigated to identify new Y-chromosomal binary haplogroup markers and further refine Y-chromosomal haplogroup classification in the Japanese population. We used SNPs for which it was possible to construct primers to make Y-specific PCR product sizes small enough to obtain amplification products even from degraded DNA, as this would allow their use not only in genetic but also in archeological and forensic studies. The genotype of 35 JSNP markers were determined, of which 14 were assigned to appropriate positions on the Y-chromosomal haplogroup tree, together with 5 additional new non-JSNP markers. These markers defined 14 new branches (C3/64562+13, C3/2613-27, D2a1b/006841*, D2a1b/119166-11A, D2a/022456*, D2a/119166-11A, D2a/119167rec/119167-40rec*, D2a/75888-GC, O3a3c/075888-9T/10T*, O3a3c/075888-9T/9T, O3a3/8425+6, O3a3/119166-13A*, O3a3/008002 and O3a4/037852) and 21 new internal markers on the 2008 Y-chromosome haplogroup tree. These results will provide useful information for Y-chromosomal polymorphic studies of East Asian populations, particularly those in and around Japan, in the fields of anthropology, genetics and forensics.
Collapse
|
14
|
SNaPshot® minisequencing analysis of multiple ancestry-informative Y-SNPs using capillary electrophoresis. Methods Mol Biol 2012; 830:127-40. [PMID: 22139657 DOI: 10.1007/978-1-61779-461-2_9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This protocol describes a strategy for analyzing phylogenetic Y-SNPs in a hierarchical multiplex assay by utilizing the SNaPshot(®) Multiplex System. Step by step, the protocol assists in the appropriate selection of SNPs, the primer design, the set up of PCR/SBE reactions as well as in the analysis of the results. Furthermore, a forensic approach is highlighted, in which the most probable ancestry of an unknown male DNA is inferred by the geographical distribution of the assigned Y-SNP haplogroup.
Collapse
|
15
|
Damas J, Amorim A, Gusmão L. InDels in Y chromosome haplogroup definition. FORENSIC SCIENCE INTERNATIONAL GENETICS SUPPLEMENT SERIES 2011. [DOI: 10.1016/j.fsigss.2011.08.089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Amorim A. A comment on “The hare and the tortoise: One small step for four SNPs, one giant leap for SNP-kind”. Forensic Sci Int Genet 2011; 5:358-60; discussion 361-2. [DOI: 10.1016/j.fsigen.2010.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 03/02/2010] [Accepted: 04/14/2010] [Indexed: 10/19/2022]
|
17
|
Batini C, Ferri G, Destro-Bisol G, Brisighelli F, Luiselli D, Sanchez-Diz P, Rocha J, Simonson T, Brehm A, Montano V, Elwali NE, Spedini G, D'Amato ME, Myres N, Ebbesen P, Comas D, Capelli C. Signatures of the Preagricultural Peopling Processes in Sub-Saharan Africa as Revealed by the Phylogeography of Early Y Chromosome Lineages. Mol Biol Evol 2011; 28:2603-13. [DOI: 10.1093/molbev/msr089] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
18
|
Naidoo T, Schlebusch CM, Makkan H, Patel P, Mahabeer R, Erasmus JC, Soodyall H. Development of a single base extension method to resolve Y chromosome haplogroups in sub-Saharan African populations. INVESTIGATIVE GENETICS 2010; 1:6. [PMID: 21092339 PMCID: PMC2988483 DOI: 10.1186/2041-2223-1-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 09/01/2010] [Indexed: 11/10/2022]
Abstract
BACKGROUND The ability of the Y chromosome to retain a record of its evolution has seen it become an essential tool of molecular anthropology. In the last few years, however, it has also found use in forensic genetics, providing information on the geographic origin of individuals. This has been aided by the development of efficient screening methods and an increased knowledge of geographic distribution. In this study, we describe the development of single base extension assays used to resolve 61 Y chromosome haplogroups, mainly within haplogroups A, B and E, found in Africa. RESULTS Seven multiplex assays, which incorporated 60 Y chromosome markers, were developed. These resolved Y chromosomes to 61 terminal branches of the major African haplogroups A, B and E, while also including a few Eurasian haplogroups found occasionally in African males. Following its validation, the assays were used to screen 683 individuals from Southern Africa, including south eastern Bantu speakers (BAN), Khoe-San (KS) and South African Whites (SAW). Of the 61 haplogroups that the assays collectively resolved, 26 were found in the 683 samples. While haplogroup sharing was common between the BAN and KS, the frequencies of these haplogroups varied appreciably. Both groups showed low levels of assimilation of Eurasian haplogroups and only two individuals in the SAW clearly had Y chromosomes of African ancestry. CONCLUSIONS The use of these single base extension assays in screening increased haplogroup resolution and sampling throughput, while saving time and DNA. Their use, together with the screening of short tandem repeat markers would considerably improve resolution, thus refining the geographic ancestry of individuals.
Collapse
Affiliation(s)
- Thijessen Naidoo
- Human Genomic Diversity and Disease Research Unit, Division of Human Genetics, School of Pathology, University of the Witwatersrand and the National Health Laboratory Services, Johannesburg, South Africa.
| | | | | | | | | | | | | |
Collapse
|
19
|
A major Y-chromosome haplogroup R1b Holocene era founder effect in Central and Western Europe. Eur J Hum Genet 2010; 19:95-101. [PMID: 20736979 DOI: 10.1038/ejhg.2010.146] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The phylogenetic relationships of numerous branches within the core Y-chromosome haplogroup R-M207 support a West Asian origin of haplogroup R1b, its initial differentiation there followed by a rapid spread of one of its sub-clades carrying the M269 mutation to Europe. Here, we present phylogeographically resolved data for 2043 M269-derived Y-chromosomes from 118 West Asian and European populations assessed for the M412 SNP that largely separates the majority of Central and West European R1b lineages from those observed in Eastern Europe, the Circum-Uralic region, the Near East, the Caucasus and Pakistan. Within the M412 dichotomy, the major S116 sub-clade shows a frequency peak in the upper Danube basin and Paris area with declining frequency toward Italy, Iberia, Southern France and British Isles. Although this frequency pattern closely approximates the spread of the Linearbandkeramik (LBK), Neolithic culture, an advent leading to a number of pre-historic cultural developments during the past ≤10 thousand years, more complex pre-Neolithic scenarios remain possible for the L23(xM412) components in Southeast Europe and elsewhere.
Collapse
|
20
|
Menkis A, Whittle CA, Johannesson H. Gene genealogies indicates abundant gene conversions and independent evolutionary histories of the mating-type chromosomes in the evolutionary history of Neurospora tetrasperma. BMC Evol Biol 2010; 10:234. [PMID: 20673371 PMCID: PMC2923516 DOI: 10.1186/1471-2148-10-234] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 07/31/2010] [Indexed: 11/27/2022] Open
Abstract
Background The self-fertile filamentous ascomycete Neurospora tetrasperma contains a large (~7 Mbp) and young (< 6 MYA) region of suppressed recombination within its mating-type (mat) chromosomes. The objective of the present study is to reveal the evolutionary history, including key genomic events, associated with the various regions of the mat chromosomes among ten strains representing all the nine known species (lineages) contained within the N. tetrasperma species complex. Results Comparative analysis of sequence divergence among alleles of 24 mat-linked genes (mat A and mat a) indicates that a large region of suppressed recombination exists within the mat chromosome for each of nine lineages of N. tetrasperma sensu latu. The recombinationally suppressed region varies in size and gene composition among lineages, and is flanked on both ends by normally recombining regions. Genealogical analyses among lineages reveals that eight gene conversion events have occurred between homologous mat A and mat a-linked alleles of genes located within the region of restricted recombination during the evolutionary history of N. tetrasperma. Conclusions We conclude that the region of suppressed recombination in the mat chromosomes has likely been subjected to independent contraction and/or expansion during the evolutionary history of the N. tetrasperma species complex. Furthermore, we infer that gene conversion events are likely a common phenomenon within this recombinationally suppressed genomic region. We argue that gene conversions might provide an efficient mechanism of adaptive editing of functional genes, including the removal of deleterious mutations, within the young recombinationally suppressed region of the mat chromosomes.
Collapse
Affiliation(s)
- Audrius Menkis
- Uppsala BioCenter, Department of Forest Mycology and Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | | |
Collapse
|
21
|
Human Y chromosome haplogroup R-V88: a paternal genetic record of early mid Holocene trans-Saharan connections and the spread of Chadic languages. Eur J Hum Genet 2010; 18:800-7. [PMID: 20051990 DOI: 10.1038/ejhg.2009.231] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Although human Y chromosomes belonging to haplogroup R1b are quite rare in Africa, being found mainly in Asia and Europe, a group of chromosomes within the paragroup R-P25(*) are found concentrated in the central-western part of the African continent, where they can be detected at frequencies as high as 95%. Phylogenetic evidence and coalescence time estimates suggest that R-P25(*) chromosomes (or their phylogenetic ancestor) may have been carried to Africa by an Asia-to-Africa back migration in prehistoric times. Here, we describe six new mutations that define the relationships among the African R-P25(*) Y chromosomes and between these African chromosomes and earlier reported R-P25 Eurasian sub-lineages. The incorporation of these new mutations into a phylogeny of the R1b haplogroup led to the identification of a new clade (R1b1a or R-V88) encompassing all the African R-P25(*) and about half of the few European/west Asian R-P25(*) chromosomes. A worldwide phylogeographic analysis of the R1b haplogroup provided strong support to the Asia-to-Africa back-migration hypothesis. The analysis of the distribution of the R-V88 haplogroup in >1800 males from 69 African populations revealed a striking genetic contiguity between the Chadic-speaking peoples from the central Sahel and several other Afroasiatic-speaking groups from North Africa. The R-V88 coalescence time was estimated at 9.2-5.6 [corrected] kya, in the early mid Holocene. We suggest that R-V88 is a paternal genetic record of the proposed mid-Holocene migration of proto-Chadic Afroasiatic speakers through the Central Sahara into the Lake Chad Basin, and geomorphological evidence is consistent with this view.
Collapse
|
22
|
Trombetta B, Cruciani F, Underhill PA, Sellitto D, Scozzari R. Footprints of X-to-Y gene conversion in recent human evolution. Mol Biol Evol 2009; 27:714-25. [PMID: 19812029 DOI: 10.1093/molbev/msp231] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Different X-homologous regions of the male-specific portion of the human Y chromosome (MSY) are characterized by a different content of putative single nucleotide polymorphisms (SNPs), as reported in public databases. The possible role of X-to-Y nonallelic gene conversion in contributing to these differences remains poorly understood. We explored this issue by analyzing sequence variation in three regions of the MSY characterized by a different degree of X-Y similarity and a different density of putative SNPs: the PCDH11Y gene in the X-transposed (X-Y identity 99%, high putative SNP content); the TBL1Y gene in the X-degenerate (X-Y identity 86-88%, low putative SNP content); and VCY genes-containing region in the P8 palindrome (X-Y identity 95%, low putative SNP content). Present findings do not provide any evidence for gene conversion in the PCDH11Y and TBL1Y genes; they also strongly suggest that most putative SNPs of the PCDH11Y gene (and possibly the entire X-transposed region) are most likely X-Y paralogous sequence variants, which have been entered in the databases as SNPs. On the other hand, clear evidence for the VCY genes in the P8 palindrome having acted as an acceptor of X-to-Y gene conversion was obtained. A rate of 1.8 x 10(-7) X-to-Y conversions/bp/year was estimated for these genes. These findings indicate that in the VCY region of the MSY, X-to-Y gene conversion can be highly effective to increase the level of diversity among human Y chromosomes and suggest an additional explanation for the ability of the Y chromosome to retard degradation during evolution. Present data are expected to pave the way for future investigations on the role of nonallelic gene conversion in double-strand break repair and the maintenance of Y chromosome integrity.
Collapse
Affiliation(s)
- Beniamino Trombetta
- Dipartimento di Genetica e Biologia Molecolare, Sapienza Università di Roma, Rome, Italy
| | | | | | | | | |
Collapse
|
23
|
Rosser ZH, Balaresque P, Jobling MA. Gene conversion between the X chromosome and the male-specific region of the Y chromosome at a translocation hotspot. Am J Hum Genet 2009; 85:130-4. [PMID: 19576564 PMCID: PMC2706966 DOI: 10.1016/j.ajhg.2009.06.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 06/15/2009] [Accepted: 06/16/2009] [Indexed: 11/18/2022] Open
Abstract
Outside the pseudoautosomal regions, the mammalian sex chromosomes are thought to have been genetically isolated for up to 350 million years. However, in humans pathogenic XY translocations occur in XY-homologous (gametologous) regions, causing sex-reversal and infertility. Gene conversion might accompany recombination intermediates that resolve without translocation and persist in the population. We resequenced X and Y copies of a translocation hotspot adjacent to the PRKX and PRKY genes and found evidence of historical exchange between the male-specific region of the human Y and the X in patchy flanking gene-conversion tracts on both chromosomes. The rate of X-to-Y conversion (per base per generation) is four to five orders of magnitude more rapid than the rate of Y-chromosomal base-substitution mutation, and given assumptions about the recombination history of the X locus, tract lengths have an overall average length of approximately 100 bp. Sequence exchange outside the pseudoautosomal regions could play a role in protecting the Y-linked copies of gametologous genes from degeneration.
Collapse
Affiliation(s)
- Zoë H Rosser
- Department of Genetics, University of Leicester, University Road, Leicester, UK
| | | | | |
Collapse
|
24
|
King TE, Jobling MA. Founders, drift, and infidelity: the relationship between Y chromosome diversity and patrilineal surnames. Mol Biol Evol 2009; 26:1093-102. [PMID: 19204044 PMCID: PMC2668828 DOI: 10.1093/molbev/msp022] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Most heritable surnames, like Y chromosomes, are passed from father to son. These unique cultural markers of coancestry might therefore have a genetic correlate in shared Y chromosome types among men sharing surnames, although the link could be affected by mutation, multiple foundation for names, nonpaternity, and genetic drift. Here, we demonstrate through an analysis of 1,678 Y-chromosomal haplotypes within 40 British surnames a remarkably high degree of coancestry that generally increases as surnames become rarer. On average, the proportion of haplotypes lying within descent clusters is 62% but ranges from 0% to 87%. The shallow time depth of many descent clusters within names, the lack of a detectable effect of surname derivation on diversity, and simulations of surname descent suggest that genetic drift through variation in reproductive success is important in structuring haplotype diversity. Modern patterns therefore provide little reliable information about the original founders of surnames some 700 years ago. A comparative analysis of published data on Y diversity within Irish surnames demonstrates a relative lack of surname frequency dependence of coancestry, a difference probably mediated through distinct Irish and British demographic histories including even more marked genetic drift in Ireland.
Collapse
Affiliation(s)
- Turi E King
- Department of Genetics, University of Leicester, Leicester, United Kingdom
| | | |
Collapse
|
25
|
Hassan HY, Underhill PA, Cavalli-Sforza LL, Ibrahim ME. Y-chromosome variation among Sudanese: restricted gene flow, concordance with language, geography, and history. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2009; 137:316-23. [PMID: 18618658 DOI: 10.1002/ajpa.20876] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We study the major levels of Y-chromosome haplogroup variation in 15 Sudanese populations by typing major Y-haplogroups in 445 unrelated males representing the three linguistic families in Sudan. Our analysis shows Sudanese populations fall into haplogroups A, B, E, F, I, J, K, and R in frequencies of 16.9, 7.9, 34.4, 3.1, 1.3, 22.5, 0.9, and 13% respectively. Haplogroups A, B, and E occur mainly in Nilo-Saharan speaking groups including Nilotics, Fur, Borgu, and Masalit; whereas haplogroups F, I, J, K, and R are more frequent among Afro-Asiatic speaking groups including Arabs, Beja, Copts, and Hausa, and Niger-Congo speakers from the Fulani ethnic group. Mantel tests reveal a strong correlation between genetic and linguistic structures (r = 0.31, P = 0.007), and a similar correlation between genetic and geographic distances (r = 0.29, P = 0.025) that appears after removing nomadic pastoralists of no known geographic locality from the analysis. The bulk of genetic diversity appears to be a consequence of recent migrations and demographic events mainly from Asia and Europe, evident in a higher migration rate for speakers of Afro-Asiatic as compared with the Nilo-Saharan family of languages, and a generally higher effective population size for the former. The data provide insights not only into the history of the Nile Valley, but also in part to the history of Africa and the area of the Sahel.
Collapse
Affiliation(s)
- Hisham Y Hassan
- Institute of Endemic Diseases, University of Khartoum, Sudan
| | | | | | | |
Collapse
|
26
|
Adams SM, Bosch E, Balaresque PL, Ballereau SJ, Lee AC, Arroyo E, López-Parra AM, Aler M, Grifo MSG, Brion M, Carracedo A, Lavinha J, Martínez-Jarreta B, Quintana-Murci L, Picornell A, Ramon M, Skorecki K, Behar DM, Calafell F, Jobling MA. The genetic legacy of religious diversity and intolerance: paternal lineages of Christians, Jews, and Muslims in the Iberian Peninsula. Am J Hum Genet 2008; 83:725-36. [PMID: 19061982 PMCID: PMC2668061 DOI: 10.1016/j.ajhg.2008.11.007] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 11/13/2008] [Accepted: 11/17/2008] [Indexed: 11/05/2022] Open
Abstract
Most studies of European genetic diversity have focused on large-scale variation and interpretations based on events in prehistory, but migrations and invasions in historical times could also have had profound effects on the genetic landscape. The Iberian Peninsula provides a suitable region for examination of the demographic impact of such recent events, because its complex recent history has involved the long-term residence of two very different populations with distinct geographical origins and their own particular cultural and religious characteristics-North African Muslims and Sephardic Jews. To address this issue, we analyzed Y chromosome haplotypes, which provide the necessary phylogeographic resolution, in 1140 males from the Iberian Peninsula and Balearic Islands. Admixture analysis based on binary and Y-STR haplotypes indicates a high mean proportion of ancestry from North African (10.6%) and Sephardic Jewish (19.8%) sources. Despite alternative possible sources for lineages ascribed a Sephardic Jewish origin, these proportions attest to a high level of religious conversion (whether voluntary or enforced), driven by historical episodes of social and religious intolerance, that ultimately led to the integration of descendants. In agreement with the historical record, analysis of haplotype sharing and diversity within specific haplogroups suggests that the Sephardic Jewish component is the more ancient. The geographical distribution of North African ancestry in the peninsula does not reflect the initial colonization and subsequent withdrawal and is likely to result from later enforced population movement-more marked in some regions than in others-plus the effects of genetic drift.
Collapse
Affiliation(s)
- Susan M. Adams
- Department of Genetics, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Elena Bosch
- Department of Genetics, University of Leicester, University Road, Leicester LE1 7RH, UK
| | | | - Stéphane J. Ballereau
- Department of Genetics, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Andrew C. Lee
- Department of Genetics, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Eduardo Arroyo
- Laboratorio de Genética Forense y Genética de Poblaciones, Departamento de Toxicología y Legislación Sanitaria, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Ana M. López-Parra
- Laboratorio de Genética Forense y Genética de Poblaciones, Departamento de Toxicología y Legislación Sanitaria, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Mercedes Aler
- Unidad Docente de Medicina Legal, Sección de Biología Forense, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain
| | - Marina S. Gisbert Grifo
- Unidad Docente de Medicina Legal, Sección de Biología Forense, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain
| | - Maria Brion
- Instituto de Medicina Legal, Universidade de Santiago, Fundación de Medicina Xenómica–Hospital Clínico Universitario, 15706 Santiago de Compostela, Spain
| | - Angel Carracedo
- Instituto de Medicina Legal, Universidade de Santiago, Fundación de Medicina Xenómica–Hospital Clínico Universitario, 15706 Santiago de Compostela, Spain
| | - João Lavinha
- Centro de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisboa, Portugal
| | - Begoña Martínez-Jarreta
- Unidad Docente de Medicina Legal y Forense, Universidad de Zaragoza, 50.009, Zaragoza, Spain
| | - Lluis Quintana-Murci
- Unit of Human Evolutionary Genetics, CNRS URA3012, Institut Pasteur, 75015, Paris, France
| | - Antònia Picornell
- Laboratori de Genètica, IUNICS i Departament Biologia, Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain
| | - Misericordia Ramon
- Laboratori de Genètica, IUNICS i Departament Biologia, Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain
| | - Karl Skorecki
- Molecular Medicine Laboratory, Rambam Health Care Campus, Haifa 31096, Israel
- Rappaport Faculty of Medicine and Research Institute, Technion, Israel Institute of Technology, Haifa 31096, Israel
| | - Doron M. Behar
- Molecular Medicine Laboratory, Rambam Health Care Campus, Haifa 31096, Israel
| | - Francesc Calafell
- Institute of Evolutionary Biology (UPF-CSIC), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Mark A. Jobling
- Department of Genetics, University of Leicester, University Road, Leicester LE1 7RH, UK
| |
Collapse
|
27
|
Complex germline and somatic mutation processes at a haploid human minisatellite shown by single-molecule analysis. Mutat Res 2008; 648:46-53. [PMID: 18929582 PMCID: PMC2599865 DOI: 10.1016/j.mrfmmm.2008.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 09/03/2008] [Accepted: 09/12/2008] [Indexed: 11/21/2022]
Abstract
Mutation at most human minisatellites is driven by complex interallelic processes that give rise to a high degree of length polymorphism and internal structural variation. MSY1, the only highly variable minisatellite on the non-recombining region of the Y chromosome, is constitutively haploid and therefore precluded from interallelic interactions, yet maintains high diversity in both length and structure. To investigate the basis of its mutation processes, an unbiased structural analysis of >500 single-molecule MSY1 PCR products from matched sperm and blood samples from a single donor was undertaken. The overall mutation frequencies in sperm and blood DNAs were not significantly different, at 2.68% and 1.88%, respectively. Sperm DNA showed significantly more length mutants than blood DNA, with mutants in both tissues involving small-scale (1–3 repeat units in a 77 repeat progenitor allele) increases or decreases in repeat block lengths, with no gain or loss bias. Isometric mutations altering structure but not length were found in both tissues, and involved either the apparent shift of a boundary between repeat unit blocks (a ‘boundary switch’) or the conversion of a repeat within a block to a different repeat type (‘modular structure’ mutant). There was a significant excess of boundary switch mutants and deficit of modular structure mutants in sperm. A comparison of mutant structures with phylogenetically matched alleles in population samples showed that alleles with structures resembling the blood mutants were unlikely to arise in populations. Mutation seems likely to involve gene conversion via synthesis-dependent strand annealing, and the blood-sperm differences may reflect more relaxed constraint on sister chromatid alignment in blood.
Collapse
|
28
|
Karafet TM, Mendez FL, Meilerman MB, Underhill PA, Zegura SL, Hammer MF. New binary polymorphisms reshape and increase resolution of the human Y chromosomal haplogroup tree. Genome Res 2008; 18:830-8. [PMID: 18385274 DOI: 10.1101/gr.7172008] [Citation(s) in RCA: 597] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Markers on the non-recombining portion of the human Y chromosome continue to have applications in many fields including evolutionary biology, forensics, medical genetics, and genealogical reconstruction. In 2002, the Y Chromosome Consortium published a single parsimony tree showing the relationships among 153 haplogroups based on 243 binary markers and devised a standardized nomenclature system to name lineages nested within this tree. Here we present an extensively revised Y chromosome tree containing 311 distinct haplogroups, including two new major haplogroups (S and T), and incorporating approximately 600 binary markers. We describe major changes in the topology of the parsimony tree and provide names for new and rearranged lineages within the tree following the rules presented by the Y Chromosome Consortium in 2002. Several changes in the tree topology have important implications for studies of human ancestry. We also present demography-independent age estimates for 11 of the major clades in the new Y chromosome tree.
Collapse
Affiliation(s)
- Tatiana M Karafet
- ARL Division of Biotechnology, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | | | | | |
Collapse
|
29
|
Gusmão A, Gusmão L, Gomes V, Alves C, Calafell F, Amorim A, Prata MJ. A perspective on the history of the Iberian gypsies provided by phylogeographic analysis of Y-chromosome lineages. Ann Hum Genet 2008; 72:215-27. [PMID: 18205888 DOI: 10.1111/j.1469-1809.2007.00421.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The European Gypsies, commonly referred to as Roma, are represented by a vast number of groups spread across many countries. Although sharing a common origin, the Gypsy groups are highly heterogeneous as a consequence of genetic drift and different levels of admixture with surrounding populations. With this study we aimed at contributing to the knowledge of the Roma history by studying 17 Y-STR and 34 Y-SNP loci in a sample of 126 Portuguese Gypsies. Distinct genetic hallmarks of their past and migration route were detected, namely: an ancestral component, shared by all Roma groups, that reflects their origin in India (H1a-M82; approximately 17%); an influence from their long permanence in the Balkans/Middle-East region (J2a1b-M67, J2a1b1-M92, I-M170, Q-M242; approximately 31%); traces of contacts with European populations preceding the entrance in the Iberian Peninsula (R1b1c-M269, J2b1a-M241; approximately 10%); and a high proportion of admixture with the non-Gypsy population from Iberia (R1b1c-M269, R1-M173/del.M269, J2a-M410, I1b1b-M26, E3b1b-M81; approximately 37%). Among the Portuguese Gypsies the proportion of introgression from host populations is higher than observed in other groups, a fact which is somewhat unexpected since the arrival of the Roma to Portugal is documented to be more recent than in Central or East Europe.
Collapse
Affiliation(s)
- A Gusmão
- Instituto de Patologia e Imunologia da Universidade do Porto, Rua Dr. Roberto Frias s/n, Porto, Portugal
| | | | | | | | | | | | | |
Collapse
|
30
|
Underhill PA, Kivisild T. Use of Y Chromosome and Mitochondrial DNA Population Structure in Tracing Human Migrations. Annu Rev Genet 2007; 41:539-64. [PMID: 18076332 DOI: 10.1146/annurev.genet.41.110306.130407] [Citation(s) in RCA: 308] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Peter A. Underhill
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305-5120;
| | - Toomas Kivisild
- Leverhulme Center of Human Evolutionary Studies, University of Cambridge, Cambridge CB2 1QH, United Kingdom;
| |
Collapse
|
31
|
Bowden GR, Balaresque P, King TE, Hansen Z, Lee AC, Pergl-Wilson G, Hurley E, Roberts SJ, Waite P, Jesch J, Jones AL, Thomas MG, Harding SE, Jobling MA. Excavating past population structures by surname-based sampling: the genetic legacy of the Vikings in northwest England. Mol Biol Evol 2007; 25:301-9. [PMID: 18032405 DOI: 10.1093/molbev/msm255] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The genetic structures of past human populations are obscured by recent migrations and expansions and have been observed only indirectly by inference from modern samples. However, the unique link between a heritable cultural marker, the patrilineal surname, and a genetic marker, the Y chromosome, provides a means to target sets of modern individuals that might resemble populations at the time of surname establishment. As a test case, we studied samples from the Wirral Peninsula and West Lancashire, in northwest England. Place-names and archaeology show clear evidence of a past Viking presence, but heavy immigration and population growth since the industrial revolution are likely to have weakened the genetic signal of a 1,000-year-old Scandinavian contribution. Samples ascertained on the basis of 2 generations of residence were compared with independent samples based on known ancestry in the region plus the possession of a surname known from historical records to have been present there in medieval times. The Y-chromosomal haplotypes of these 2 sets of samples are significantly different, and in admixture analyses, the surname-ascertained samples show markedly greater Scandinavian ancestry proportions, supporting the idea that northwest England was once heavily populated by Scandinavian settlers. The method of historical surname-based ascertainment promises to allow investigation of the influence of migration and drift over the last few centuries in changing the population structure of Britain and will have general utility in other regions where surnames are patrilineal and suitable historical records survive.
Collapse
Affiliation(s)
- Georgina R Bowden
- Department of Genetics, University of Leicester, Leicester, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Choi J, Koh E, Suzuki H, Maeda Y, Yoshida A, Namiki M. Alu sequence variants of the BPY2 gene in proven fertile and infertile men with Sertoli cell-only phenotype. Int J Urol 2007; 14:431-5. [PMID: 17511727 DOI: 10.1111/j.1442-2042.2007.01741.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE The basic protein on Y chromosome, 2 gene (BPY2) is implicated in the spermatogenic process. Three copies (paralogs) of the BPY2 sequence lie in the AZFc region, within huge palindromic repeats consisting of Alu sequences located in 5' flanking regions. Our objective was to screen the single nucleotide variation of BPY2 gene paralogously. METHODS Mutation screening of the exons and 5' flanking region of the BPY2 genes was carried out by polymerase chain reaction (PCR) and sequencing in 106 infertile patients with a Sertoli cell-only (SCO) phenotype and in 126 fertile men. RESULTS No sequence variation was detected in any of the BPY2 exons. Paralogous A/A/A and mixed A/G genotypes are referred to the promoter of the gene. The G/G/G genotype (wild type) was observed at the rates of 89.6% (95/106) in the SCO subjects and 96.0% (121/126) in the proven-fertile subjects. The G/G/G plus mixed A/G paralogous variants and the A/A/A paralogous variant were detected in 96.2% (102/106) and 3.8% (4/106) of infertile patients with SCO, respectively. The G/G/G plus mixed A/G paralogous variants were detected in 100% (126/126) of the fertile controls, with no instances of the A/A/A phenotype, and this difference was statistically significant (P = 0.038, Fisher's exact test). CONCLUSION The A/A/A genotype may be associated with the SCO phenotype. The alteration of all three copies of BPY2 within the AZFc region on the Y chromosome may affect spermatogenic process.
Collapse
Affiliation(s)
- Jin Choi
- Department of Integrated Cancer Therapy and Urology, Kanazawa University Graduate School, Kanazawa, Japan
| | | | | | | | | | | |
Collapse
|
33
|
King TE, Ballereau SJ, Schürer KE, Jobling MA. Genetic Signatures of Coancestry within Surnames. Curr Biol 2006; 16:384-8. [PMID: 16488872 DOI: 10.1016/j.cub.2005.12.048] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Accepted: 12/21/2005] [Indexed: 11/23/2022]
Abstract
Surnames are cultural markers of shared ancestry within human populations. The Y chromosome, like many surnames, is paternally inherited, so men sharing surnames might be expected to share similar Y chromosomes as a signature of coancestry. Such a relationship could be used to connect branches of family trees, to validate population genetic studies based on isonymy, and to predict surname from crime-scene samples in forensics. However, the link may be weak or absent due to multiple independent founders for many names, adoptions, name changes and nonpaternities, and mutation of Y haplotypes. Here, rather than focusing on a single name, we take a general approach by seeking evidence for a link in a sample of 150 randomly ascertained pairs of males who each share a British surname. We show that sharing a surname significantly elevates the probability of sharing a Y-chromosomal haplotype and that this probability increases as surname frequency decreases. Within our sample, we estimate that up to 24% of pairs share recent ancestry and that a large surname-based forensic database might contribute to the intelligence-led investigation of up to approximately 70 rapes and murders per year in the UK. This approach would be applicable to any society that uses patrilineal surnames of reasonable time-depth.
Collapse
Affiliation(s)
- Turi E King
- Department of Genetics, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom
| | | | | | | |
Collapse
|