Thomson EL, Powell E, Gandini Wheeler-Kingshott CAM, Parker GJM. Quantification of water exchange across the blood-brain barrier using noncontrast MR fingerprinting.
Magn Reson Med 2024;
92:1392-1403. [PMID:
38725240 DOI:
10.1002/mrm.30127]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 07/23/2024]
Abstract
PURPOSE
A method is proposed to quantify cerebral blood volume (v b $$ {v}_b $$ ) and intravascular water residence time (τ b $$ {\tau}_b $$ ) using MR fingerprinting (MRF), applied using a spoiled gradient echo sequence without the need for contrast agent.
METHODS
An in silico study optimized an acquisition protocol to maximize the sensitivity of the measurement tov b $$ {v}_b $$ andτ b $$ {\tau}_b $$ changes. Its accuracy in the presence of variations inT 1 , t $$ {\mathrm{T}}_{1,t} $$ ,T 1 , b $$ {\mathrm{T}}_{1,b} $$ , andB 1 $$ {\mathrm{B}}_1 $$ was evaluated. The optimized protocol (scan time of 19 min) was then tested in a exploratory healthy volunteer study (10 volunteers, mean age 24± $$ \pm $$ 3, six males) at 3 T with a repeat scan taken after repositioning to allow estimation of repeatability.
RESULTS
Simulations show that assuming literature values forT 1 , b $$ {\mathrm{T}}_{1,b} $$ andT 1 , t $$ {\mathrm{T}}_{1,t} $$ , no variation inB 1 $$ {\mathrm{B}}_1 $$ , while fitting onlyv b $$ {v}_b $$ andτ b $$ {\tau}_b $$ , leads to large errors in quantification ofv b $$ {v}_b $$ andτ b $$ {\tau}_b $$ , regardless of noise levels. However, simulations also show that matchingT 1 , t $$ {\mathrm{T}}_{1,t} $$ ,T 1 , b $$ {\mathrm{T}}_{1,b} $$ ,B 1 + $$ {\mathrm{B}}_1^{+} $$ ,v b $$ {v}_b $$ andτ b $$ {\tau}_b $$ , simultaneously is feasible at clinically achievable noise levels. Across the healthy volunteers, all parameter quantifications fell within the expected literature range. In addition, the maps show good agreement between hemispheres suggesting physiologically relevant information is being extracted. Expected differences between white and gray matterT 1 , t $$ {\mathrm{T}}_{1,t} $$ (p < 0.0001) andv b $$ {v}_b $$ (p < 0.0001) are observed,T 1 , b $$ {\mathrm{T}}_{1,b} $$ andτ b $$ {\tau}_b $$ show no significant differences, p = 0.4 and p = 0.6, respectively. Moderate to excellent repeatability was seen between repeat scans: mean intra-class correlation coefficient ofT 1 , t : 0 . 91 $$ {\mathrm{T}}_{1,t}:0.91 $$ ,T 1 , b : 0 . 58 $$ {\mathrm{T}}_{1,b}:0.58 $$ ,v b : 0 . 90 $$ {v}_b:0.90 $$ , andτ b : 0 . 96 $$ {\tau}_b:0.96 $$ .
CONCLUSION
We demonstrate that regional simultaneous quantification ofv b $$ {v}_b $$ ,τ b $$ {\tau}_b $$ ,T 1 , b , T 1 , t $$ {\mathrm{T}}_{1,b},{T}_{1,t} $$ , andB 1 + $$ {\mathrm{B}}_1^{+} $$ using MRF is feasible in vivo.
Collapse