1
|
Kerry GL, Ross KE, Wright JL, Walker GS. A Review of Methods Used to Detect Methamphetamine from Indoor Air and Textiles in Confined Spaces. TOXICS 2022; 10:710. [PMID: 36422918 PMCID: PMC9695000 DOI: 10.3390/toxics10110710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/02/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
Methamphetamine manufacture, use, and the resulting contamination is a significant issue that affects public health, the environment, and the economy. Third-hand exposure to methamphetamine can result in adverse health risks for individuals and first responders. Such exposures can result from the inhalation of airborne residues or from contact with contaminated objects. This review was conducted to determine the current methods used for methamphetamine extraction from indoor air and porous fabric materials. Dynamic solid phase microextraction (SPME) and sorbent sampling tubes have been applied to extract airborne methamphetamine residues from contaminated properties. SPME and solvent extraction have been applied to sample clothing and textiles for methamphetamine detection. This review demonstrates that there is limited literature on the detection of methamphetamine from indoor air and clothing. Supplementary and consistent methods to detect methamphetamine from air and porous surfaces should be developed and published to allow better assessment of the environmental risk to public health caused by third-hand exposure to methamphetamine.
Collapse
Affiliation(s)
- Gemma L. Kerry
- Physical and Molecular Sciences, College of Science and Engineering, Flinders University, Adelaide 5042, Australia
| | - Kirstin E. Ross
- Environmental Health, College of Science and Engineering, Flinders University, Adelaide 5042, Australia
| | - Jackie L. Wright
- Environmental Health, College of Science and Engineering, Flinders University, Adelaide 5042, Australia
- Environmental Risk Sciences Pty Ltd., Carlingford Court, P.O. Box 2537, Sydney 2118, Australia
| | - G. Stewart Walker
- Physical and Molecular Sciences, College of Science and Engineering, Flinders University, Adelaide 5042, Australia
| |
Collapse
|
2
|
Evaluation of capillary microextraction of volatiles (CMV) coupled to a person-portable gas chromatograph mass spectrometer (GC–MS) for the analysis of gasoline residues. Forensic Chem 2022. [DOI: 10.1016/j.forc.2021.100397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Abstract
Understanding of the levels of psychoactive drugs in air is important for assessing both occupational and environmental exposure. Intelligence on the usage and manufacture of illegal drugs can also be gained. Environmental analysis and determination of air quality has recently expanded from its traditional focus to new pollutant categories that include illicit and psychoactive drugs. This is attributed to a greater part on the development of new, advanced techniques, such as liquid chromatography/mass spectrometry (LC/MS), allowing for the trace determination of such compounds down to the parts-per-trillion (ng/L) levels generally reported in air. Studies have also investigated the effects of firsthand and secondhand smoking of drugs, such as cocaine, cannabis and opium. Generally, these have shown secondhand smoke effects to be limited, apart from in the case of opium. Some studies have highlighted ill effects resulting through the exposure of vapors and dusts from the storage of drugs, but this has been shown to result from mould and other fungal contaminates. Investigations into the possible occupational exposures resulting from the use of anesthetic drugs in surgery and accident and emergency have focused on nitrous oxide, sevoflurane, methoxyflurane, isoflurane, propofol and fentanyl. This review focuses on developments and applications for the determination of psychoactive drugs in air.
Collapse
|
4
|
Rodriguez JL, Almirall JR. Continuous vapor sampling of volatile organic compounds associated with explosives using capillary microextraction of volatiles (CMV) coupled to a portable GC–MS. Forensic Chem 2021. [DOI: 10.1016/j.forc.2021.100380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
5
|
Chen X, Wu X, Luan T, Jiang R, Ouyang G. Sample preparation and instrumental methods for illicit drugs in environmental and biological samples: A review. J Chromatogr A 2021; 1640:461961. [PMID: 33582515 DOI: 10.1016/j.chroma.2021.461961] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 12/13/2022]
Abstract
Detection of illicit drugs in the environmental samples has been challenged as the consumption increases globally. Current review examines the recent developments and applications of sample preparation techniques for illicit drugs in solid, liquid, and gas samples. For solid samples, traditional sample preparation methods such as liquid-phase extraction, solid-phase extraction, and the ones with external energy including microwave-assisted, ultrasonic-assisted, and pressurized liquid extraction were commonly used. The sample preparation methods mainly applied for liquid samples were microextraction techniques including solid-phase microextraction, microextraction by packed sorbent, dispersive solid-phase extraction, dispersive liquid-liquid microextraction, hollow fiber-based liquid-phase microextraction, and so on. Capillary microextraction of volatiles and airborne particulate sampling were primarily utilized to extract illicit drugs from gas samples. Besides, the paper introduced recently developed instrumental techniques applied to detect illicit drugs. Liquid chromatograph mass spectrometry and gas chromatograph mass spectrometry were the most widely used methods for illicit drugs samples. In addition, the development of ambient mass spectrometry techniques, such as desorption electrospray ionization mass spectrometry and paper spray mass spectrometry, created potential for rapid in-situ analysis.
Collapse
Affiliation(s)
- Xinlv Chen
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Xinyan Wu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Tiangang Luan
- Guangdong Provincial Key Laboratory of Psychoactive Substances Monitoring and safety, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, 100 Waihuanxi Road, Guangzhou 510006, China
| | - Ruifen Jiang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China.
| | - Gangfeng Ouyang
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Institute of Analysis (China National Analytical Center Guangzhou), Guangzhou, 510070, China; Chemistry College, Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Kexue Avenue 100, Zhengzhou 450001, China.
| |
Collapse
|
6
|
Wright J, Symons B, Angell J, Ross KE, Walker S. Current practices underestimate environmental exposures to methamphetamine: inhalation exposures are important. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2021; 31:45-52. [PMID: 32873859 PMCID: PMC7790752 DOI: 10.1038/s41370-020-00260-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 08/06/2020] [Accepted: 08/21/2020] [Indexed: 05/23/2023]
Abstract
Current practice for determining the exposure to methamphetamine in contaminated homes relies on the analysis of surface wipe sample to address direct contact exposures. The movement of methamphetamine into the air phase, and the potential for inhalation exposures to occur within residential homes contaminated from former clandestine manufacture or smoking of methamphetamine has been generally poorly characterised and understood. All available risk-based guidelines for determining safe levels of methamphetamine in residential properties do not include any consideration of the inhalation pathway as an exposure route. This study showed that methamphetamine can readily move from contaminated materials in a home into the air phase. This movement of methamphetamine into the air phase provides both an exposure pathway and a mechanism for the transfer of methamphetamine throughout a property. The inhalation exposure pathway has the potential to result in significant intake of methamphetamine, adding to dermal absorption and ingestion exposure routes. Guidelines that are established for the assessment of methamphetamine contaminated properties that ignore inhalation exposures can significantly underestimate exposure and result in guidelines that are not adequately protective of health. This study also demonstrates that sampling methamphetamine in air can be undertaken using commercially available sorption tubes and analytical methods.
Collapse
Affiliation(s)
- Jackie Wright
- Health and Environment, College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, SA, 5001, Australia.
- Environmental Risk Sciences Pty Ltd, PO Box 2537, Carlingford Court, NSW, 2118, Australia.
| | - Bob Symons
- Eurofins, 1/21 Smallwood Place, Murarrie, QLD, 4172, Australia
| | - Jonathon Angell
- Eurofins, 1/21 Smallwood Place, Murarrie, QLD, 4172, Australia
| | - Kirstin E Ross
- Health and Environment, College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, SA, 5001, Australia
| | - Stewart Walker
- Physical and Chemical Sciences, College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, SA, 5001, Australia
| |
Collapse
|
7
|
Torres MN, Valdes NB, Almirall JR. Comparison of portable and benchtop GC–MS coupled to capillary microextraction of volatiles (CMV) for the extraction and analysis of ignitable liquid residues. Forensic Chem 2020. [DOI: 10.1016/j.forc.2020.100240] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Jones NS, Comparin JH. Interpol review of controlled substances 2016-2019. Forensic Sci Int Synerg 2020; 2:608-669. [PMID: 33385148 PMCID: PMC7770462 DOI: 10.1016/j.fsisyn.2020.01.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 01/23/2020] [Indexed: 12/14/2022]
Abstract
This review paper covers the forensic-relevant literature in controlled substances from 2016 to 2019 as a part of the 19th Interpol International Forensic Science Managers Symposium. The review papers are also available at the Interpol website at: https://www.interpol.int/content/download/14458/file/Interpol%20Review%20Papers%202019.pdf.
Collapse
Affiliation(s)
- Nicole S. Jones
- RTI International, Applied Justice Research Division, Center for Forensic Sciences, 3040 E. Cornwallis Road, Research Triangle Park, NC, 22709-2194, USA
| | - Jeffrey H. Comparin
- United States Drug Enforcement Administration, Special Testing and Research Laboratory, USA
| |
Collapse
|
9
|
Application of a Microfluidic Gas-to-Liquid Interface for Extraction of Target Amphetamines and Precursors from Air Samples. MICROMACHINES 2020; 11:mi11030315. [PMID: 32192094 PMCID: PMC7142577 DOI: 10.3390/mi11030315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/10/2020] [Accepted: 03/14/2020] [Indexed: 11/16/2022]
Abstract
The investigation of clandestine laboratories poses serious hazards for first responders, emergency services, investigators and the surrounding public due to the risk of exposure to volatile organic compounds (VOCs) used in the manufacture of illicit substances. A novel gas sampling interface using open microfluidic channels that enables the extraction of VOCs out of the gas phase and into a liquid, where it can be analysed by conventional detection systems, has recently been developed. This paper investigates the efficiency and effectiveness of such a gas-to-liquid (GTL) extraction system for the extraction of amphetamine-type substances (ATS) and their precursors from the vapour phase. The GTL interface was evaluated across a range of different ATS and their precursors (methamphetamine, dimethylamphetamine, N-formylmethamphetamine, benzaldehyde, phenyl-2-propanone, ephedrine and pseudoephedrine) at concentrations ranging between 10 and 32 mg m-3. These gas samples were produced by a gas generation system directly in Tedlar® bags and gas canisters for controlled volume sampling. When using gas sampled from Tedlar® bags, four of the seven compounds were able to be extracted by the GTL interface, with the majority of the VOCs having extraction yields between 0.005% and 4.5%, in line with the results from an initial study. When samples were taken from gas canisters, only benzaldehyde was able to be detected, with extraction efficiencies between 0.2% and 0.4%. A custom-built mount for the GTL interface helped to automate the extraction process, with the aim of increasing extraction efficiency or reducing variability. However, the extraction efficiency did not improve when using this accessory, but the procedure did become more efficient. The results from the study indicated that the GTL interface could be employed for the collection of gaseous ATS and incorporated into mobile detection systems for onsite collection and analysis of volatile compounds related to ATS manufacture.
Collapse
|
10
|
Nair MV, Miskelly GM. Determination of airborne methamphetamine via capillary microextraction of volatiles (CMV) with on-sorbent derivatisation using o-pentafluorobenzyl chloroformate. Forensic Chem 2019. [DOI: 10.1016/j.forc.2019.100161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
11
|
Gura S, Tarifa A, Mulloor J, Torres MN, Almirall JR. Capillary microextraction of volatiles device for enhanced BTEX vapors sampling based on a phenyl modified PDMS sol-gel adsorption phase. Anal Chim Acta 2018. [DOI: 10.1016/j.aca.2018.01.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Williamson R, Gura S, Tarifa A, Almirall JR. The coupling of capillary microextraction of volatiles (CMV) dynamic air sampling device with DART-MS analysis for the detection of gunshot residues. Forensic Chem 2018. [DOI: 10.1016/j.forc.2018.01.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|