1
|
Hutchinson K, van Zandwijk JP, Vester MEM, Seth A, Bilo RAC, van Rijn RR, Loeve AJ. Modeling of inflicted head injury by shaking trauma in children: what can we learn? : Update to parts I&II: A systematic review of animal, mathematical and physical models. Forensic Sci Med Pathol 2024:10.1007/s12024-023-00765-5. [PMID: 38236351 DOI: 10.1007/s12024-023-00765-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2023] [Indexed: 01/19/2024]
Abstract
Inflicted shaking trauma can cause injury in infants, but exact injury mechanisms remain unclear. Controversy exists, particularly in courts, whether additional causes such as impact are required to produce injuries found in cases of (suspected) shaking. Publication rates of studies on animal and biomechanical models of inflicted head injury by shaking trauma (IHI-ST) in infants continue rising. Dissention on the topic, combined with its legal relevance, makes maintaining an up-to-date, clear and accessible overview of the current knowledge-base on IHI-ST essential. The current work reviews recent (2017-2023) studies using models of IHI-ST, serving as an update to two previously published reviews. A systematic review was conducted in Scopus and PubMed for articles using animal, physical and mathematical models for IHI-ST. Using the PRISMA methodology, two researchers independently screened the publications. Two, five, and ten publications were included on animal, physical, and mathematical models of IHI-ST, respectively. Both animal model studies used rodents. It is unknown to what degree these can accurately represent IHI-ST. Physical models were used mostly to investigate gross head-kinematics during shaking. Most mathematical models were used to study local effects on the eye and the head's internal structures. All injury thresholds and material properties used were based on scaled adult or animal data. Shaking motions used as inputs for animal, physical and mathematical models were mostly greatly simplified. Future research should focus on using more accurate shaking inputs for models, and on developing or and validating accurate injury thresholds applicable for shaking.
Collapse
Affiliation(s)
- Kim Hutchinson
- Department of BioMechanical Engineering, Faculty of Mechanical, Maritime & Materials Engineering, Delft University of Technology, Mekelweg 2, 2628, Delft, CD, Netherlands
| | - Jan Peter van Zandwijk
- Division of Digital and Biometric Traces, Netherlands Forensic Institute, Laan Van Ypenburg 6, 2497, The Hague, GB, Netherlands
| | - Marloes E M Vester
- Care Needs Assessment Centre CIZ, Orteliuslaan 1000, 3500 GR, Utrecht, Netherlands
| | - Ajay Seth
- Department of BioMechanical Engineering, Faculty of Mechanical, Maritime & Materials Engineering, Delft University of Technology, Mekelweg 2, 2628, Delft, CD, Netherlands
| | - Rob A C Bilo
- Veilig Thuis Rotterdam Rijnmond (Center for the Reporting of Child Abuse, Domestic Violence and Elder Abuse), Paul Krugerstraat 181, 3072 GJ, Rotterdam, Netherlands
| | - Rick R van Rijn
- Department of Radiology and Nuclear Medicine, Academic Medical Center Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, Netherlands
- Department of Forensic Medicine, Netherlands Forensic Institute, Laan Van Ypenburg 6, 2497, The Hague, GB, Netherlands
| | - Arjo J Loeve
- Department of BioMechanical Engineering, Faculty of Mechanical, Maritime & Materials Engineering, Delft University of Technology, Mekelweg 2, 2628, Delft, CD, Netherlands.
| |
Collapse
|
2
|
Schiks LAH, Dankelman J, Loeve AJ. Inflicted head-injury by shaking-trauma in infants: the importance of spatiotemporal variations of the head's rotation center. Sci Rep 2023; 13:15226. [PMID: 37709812 PMCID: PMC10502057 DOI: 10.1038/s41598-023-42373-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/09/2023] [Indexed: 09/16/2023] Open
Abstract
Inflicted head injury by shaking trauma (IHI-ST) in infants is a type of abusive head trauma often simulated computationally to investigate causalities between violent shaking and injury. This is commonly done with the head's rotation center kept fixed over time. However, due to the flexibility of the infant's neck and the external shaking motion imposed by the perpetrator it is unlikely that the rotation center is static. Using a test-dummy, shaken by volunteers, we demonstrated experimentally that the location of the head's rotation center moves considerably over time. We further showed that implementation of a spatiotemporal-varying rotation center in an improved kinematic model resulted in strongly improved replication of shaking compared to existing methods. Hence, we stress that the validity of current infant shaking injury risk assessments and the injury thresholds on which these assessments are based, both often used in court cases, should be re-evaluated.
Collapse
Affiliation(s)
- L A H Schiks
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, The Netherlands
| | - J Dankelman
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, The Netherlands
| | - A J Loeve
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, The Netherlands.
- Co van Ledden Hulsebosch Center for Forensic Science and Medicine, Amsterdam, The Netherlands.
| |
Collapse
|
3
|
Zahl SM, Mack JA, Rossant C, Squier W, Wester K. Thrombosis is not a marker of bridging vein rupture in infants with alleged abusive head trauma. Acta Paediatr 2021; 110:2686-2694. [PMID: 33964045 PMCID: PMC8519117 DOI: 10.1111/apa.15908] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 12/13/2022]
Abstract
Aim Thrombosis of bridging veins has been suggested to be a marker of bridging vein rupture, and thus AHT, in infants with subdural haematoma. Methods This is a non‐systematic review based on Pubmed search, secondary reference tracking and authors’ own article collections. Results Radiological studies asserting that imaging signs of cortical vein thrombosis were indicative of traumatic bridging vein rupture were unreliable as they lacked pathological verification of either thrombosis or rupture, and paid little regard to medical conditions other than trauma. Autopsy attempts at confirmation of ruptured bridging veins as the origin of SDH were fraught with difficulty. Moreover, microscopic anatomy demonstrated alternative non‐traumatic sources of a clot in or around bridging veins. Objective pathological observations did not support the hypothesis that a radiological finding of bridging vein thrombosis was the result of traumatic rupture by AHT. No biomechanical models have produced reliable and reproducible data to demonstrate that shaking alone can be a cause of bridging vein rupture. Conclusion There is no conclusive evidence supporting the hypothesis that diagnostic imaging showing thrombosed bridging veins in infants correlates with bridging vein rupture. Hence, there is no literature support for the use of thrombosis as a marker for AHT.
Collapse
Affiliation(s)
| | - Julie A. Mack
- Penn State Hershey Medical Center Department of Radiology Hershey PA USA
| | | | - Waney Squier
- Formerly Department of Neuropathology John Radcliffe Hospital Oxford UK
| | - Knut Wester
- Department of Clinical Medicine K1 University of Bergen Bergen Norway
| |
Collapse
|
4
|
Stray-Pedersen A, Strisland F, Rognum TO, Schiks LAH, Loeve AJ. Violent Infant Surrogate Shaking: Continuous High-Magnitude Centripetal Force and Abrupt Shift in Tangential Acceleration May Explain High Risk of Subdural Hemorrhage. Neurotrauma Rep 2021; 2:224-231. [PMID: 34223553 PMCID: PMC8240836 DOI: 10.1089/neur.2021.0013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Violent shaking is believed to be a common mechanism of injury in pediatric abusive head trauma. Typical intracranial injuries include subdural and retinal hemorrhages. Using a laboratory surrogate model we conducted experiments evaluating the head motion patterns that may occur in violent shaking. An anthropomorphic test device (ATD; Q0 dummy) matching an infant of 3.5 kg was assembled. The head interior was equipped with accelerometers enabling assessment of three-axial accelerations. Fifteen volunteers were asked to shake the surrogate vigorously holding a firm grip around the torso. We observed the volunteers performing manual shaking of the surrogate at a median duration of 15.5 sec (range 5-54 sec). Typical acceleration/deceleration patterns were produced after 2-3 shakes with a steady-state shaking motion at a pace of 4-6 cycles (back and forth) per second. Mean peak sagittal tangential accelerations at the vertex were 45.7g (range 14.2-105.1g). The acceleration component in the orthogonal direction, the radial acceleration, fluctuated around a negative mean of more than 4g showing that the surrogate head was continuously subjected to centripetal forces caused by rotations. This surrogate experiment showed that violent shaking may induce high peak tangential accelerations and concomitantly a continuous high-magnitude centripetal force. We hypothesize that the latter component may cause increased pressure in the subdural compartment in the cranial roof and may cause constant compression of the brain and possibly increased stretching or shearing of the bridging veins. This may contribute to the mechanism accountable for subdural hematoma in abusive head trauma.
Collapse
Affiliation(s)
- Arne Stray-Pedersen
- Department of Forensic Sciences, Division of Laboratory Medicine, Oslo University Hospital, Nydalen, Oslo, Norway.,Department of Forensic Medicine, Institute of Clinical Medicine, University of Oslo, Blindern, Oslo, Norway
| | | | - Torleiv Ole Rognum
- Department of Forensic Medicine, Institute of Clinical Medicine, University of Oslo, Blindern, Oslo, Norway
| | - Luuk Antoon Hubertus Schiks
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, The Netherlands
| | - Arjo Jozef Loeve
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, The Netherlands.,Co van Ledden Hulsebosch Center of Forensic Science and Medicine, Amsterdam, The Netherlands
| |
Collapse
|