1
|
Fantinato C, Gill P, Fonneløp AE. Investigative use of human environmental DNA in forensic genetics. Forensic Sci Int Genet 2024; 70:103021. [PMID: 38335776 DOI: 10.1016/j.fsigen.2024.103021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/19/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024]
Abstract
Individuals leave behind traces of their DNA wherever they go. DNA can be transferred to surfaces and items upon touch, can be released into the air, and may be deposited in indoor dust. The mere presence of individuals in a location is sufficient to facilitate either direct or indirect DNA transfer into the surrounding environment. In this study, we analyzed samples recovered from commonly touched surfaces such as light switches and door handles in an office environment. We evaluated two different methods to isolate DNA and co-extract DNA and RNA from the samples. DNA profiles were compared to the references of the inhabitants of the different locations and were analyzed taking into consideration the type of sampled surface, sampling location and information about the activities in a room during the sampling day. Results from DNA samples collected from surfaces were also compared to those from air and dust samples collected in parallel from the same areas. We characterized the amount and composition of DNA found on various surfaces and showed that surface DNA sampling can be used to detect occupants of a location. The results also indicate that combining information from environmental samples collected from different DNA sources can improve our understanding of DNA transfer events in an indoor setting. This study further demonstrates the potential of human environmental DNA as an investigative tool in forensic genetics.
Collapse
Affiliation(s)
- Chiara Fantinato
- Forensic Genetics Research Group, Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway; Department of Forensic Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Peter Gill
- Forensic Genetics Research Group, Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway; Department of Forensic Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ane Elida Fonneløp
- Forensic Genetics Research Group, Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway; Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
2
|
Wang S, Jiang T, Yuan C, Wu L, Zhen X, Lei Y, Xie B, Tao R, Li C. An mRNA profiling assay incorporating coding region InDels for body fluid identification and the inference of the donor in mixed samples. Forensic Sci Int Genet 2024; 69:102979. [PMID: 38043150 DOI: 10.1016/j.fsigen.2023.102979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/23/2023] [Accepted: 11/23/2023] [Indexed: 12/05/2023]
Abstract
Biological traces discovered at crime scenes hold significant significance in forensic investigations. In cases involving mixed body fluid stains, the evidentiary value of DNA profiles depends on the type of body fluid from which the DNA was obtained. Recently, coding region polymorphism analysis has proved to be a promising method for directly linking specific body fluids to their respective DNA contributors in mixtures, which may help to avoid "association fallacy" between separate DNA and RNA evidence. In this study, we present an update on previously reported coding region Single Nucleotide Polymorphisms (cSNPs) by exploring the potential application of coding region Insertion/Deletion polymorphisms (cInDels). Nine promising cInDels, selected from 70 mRNA markers based on stringent screening criteria, were integrated into an existing mRNA profiling assay. Subsequently, the body fluid specificity of our cInDel assay and the genotyping consistency between complementary DNA (cDNA) and genomic DNA (gDNA) were examined. Our study demonstrates that cInDels can function as important multifunctional genetic markers, as they provide not only the ability to confirm the presence of forensically relevant body fluids, but also the ability to associate/dissociate specific body fluids with particular donors.
Collapse
Affiliation(s)
- Shouyu Wang
- Department of Forensic Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Tingting Jiang
- Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Chunyan Yuan
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, PR China, Shanghai 200063, China
| | - Liming Wu
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, PR China, Shanghai 200063, China
| | - Xiaoyuan Zhen
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, PR China, Shanghai 200063, China
| | - Yinlei Lei
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, PR China, Shanghai 200063, China
| | - Baoyan Xie
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, PR China, Shanghai 200063, China
| | - Ruiyang Tao
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, PR China, Shanghai 200063, China.
| | - Chengtao Li
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, PR China, Shanghai 200063, China; Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
3
|
Gosch A, Bhardwaj A, Courts C. TrACES of time: Transcriptomic analyses for the contextualization of evidential stains - Identification of RNA markers for estimating time-of-day of bloodstain deposition. Forensic Sci Int Genet 2023; 67:102915. [PMID: 37598452 DOI: 10.1016/j.fsigen.2023.102915] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 07/20/2023] [Accepted: 08/01/2023] [Indexed: 08/22/2023]
Abstract
Obtaining forensically relevant information beyond who deposited a biological stain on how and under which circumstances it was deposited is a question of increasing importance in forensic molecular biology. In the past few years, several studies have been produced on the potential of gene expression analysis to deliver relevant contextualizing information, e.g. on nature and condition of a stain as well as aspects of stain deposition timing. However, previous attempts to predict the time-of-day of sample deposition were all based on and thus limited by previously described diurnal oscillators. Herein, we newly approached this goal by applying current sequencing technologies and statistical methods to identify novel candidate markers for forensic time-of-day predictions from whole transcriptome analyses. To this purpose, we collected whole blood samples from ten individuals at eight different time points throughout the day, performed whole transcriptome sequencing and applied biostatistical algorithms to identify 81 mRNA markers with significantly differential expression as candidates to predict the time of day. In addition, we performed qPCR analysis to assess the characteristics of a subset of 13 candidate predictors in dried and aged blood stains. While we demonstrated the general possibility of using the selected candidate markers to predict time-of-day of sample deposition, we also observed notable variation between different donors and storage conditions, highlighting the relevance of employing accurate quantification methods in combination with robust normalization procedures.This study's results are foundational and may be built upon when developing a targeted assay for time-of-day predictions from forensic blood samples in the future.
Collapse
Affiliation(s)
- A Gosch
- Institute of Legal Medicine, Medical Faculty, University Hospital Cologne, Cologne, Germany
| | - A Bhardwaj
- Institute of Clinical Molecular Biology, University of Kiel, Kiel, Germany
| | - C Courts
- Institute of Legal Medicine, Medical Faculty, University Hospital Cologne, Cologne, Germany.
| |
Collapse
|
4
|
Butler JM. Recent advances in forensic biology and forensic DNA typing: INTERPOL review 2019-2022. Forensic Sci Int Synerg 2022; 6:100311. [PMID: 36618991 PMCID: PMC9813539 DOI: 10.1016/j.fsisyn.2022.100311] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This review paper covers the forensic-relevant literature in biological sciences from 2019 to 2022 as a part of the 20th INTERPOL International Forensic Science Managers Symposium. Topics reviewed include rapid DNA testing, using law enforcement DNA databases plus investigative genetic genealogy DNA databases along with privacy/ethical issues, forensic biology and body fluid identification, DNA extraction and typing methods, mixture interpretation involving probabilistic genotyping software (PGS), DNA transfer and activity-level evaluations, next-generation sequencing (NGS), DNA phenotyping, lineage markers (Y-chromosome, mitochondrial DNA, X-chromosome), new markers and approaches (microhaplotypes, proteomics, and microbial DNA), kinship analysis and human identification with disaster victim identification (DVI), and non-human DNA testing including wildlife forensics. Available books and review articles are summarized as well as 70 guidance documents to assist in quality control that were published in the past three years by various groups within the United States and around the world.
Collapse
Affiliation(s)
- John M. Butler
- National Institute of Standards and Technology, Special Programs Office, 100 Bureau Drive, Mail Stop 4701, Gaithersburg, MD, USA
| |
Collapse
|
5
|
He Z, Liu C, Li Z, Chu Z, Chen X, Chen X, Guo Y. Advances in the use of nanomaterials for nucleic acid detection in point-of-care testing devices: A review. Front Bioeng Biotechnol 2022; 10:1020444. [DOI: 10.3389/fbioe.2022.1020444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/23/2022] [Indexed: 01/03/2023] Open
Abstract
The outbreak of the coronavirus (COVID-19) has heightened awareness of the importance of quick and easy testing. The convenience, speed, and timely results from point-of-care testing (POCT) in all vitro diagnostic devices has drawn the strong interest of researchers. However, there are still many challenges in the development of POCT devices, such as the pretreatment of samples, detection sensitivity, specificity, and so on. It is anticipated that the unique properties of nanomaterials, e.g., their magnetic, optical, thermal, and electrically conductive features, will address the deficiencies that currently exist in POCT devices. In this review, we mainly analyze the work processes of POCT devices, especially in nucleic acid detection, and summarize how novel nanomaterials used in various aspects of POCT products can improve performance, with the ultimate aims of offering new ideas for the application of nanomaterials and the overall development of POCT devices.
Collapse
|
6
|
Gill P, Bleka Ø, Fonneløp AE. Limitations of qPCR to estimate DNA quantity: An RFU method to facilitate inter-laboratory comparisons for activity level, and general applicability. Forensic Sci Int Genet 2022; 61:102777. [DOI: 10.1016/j.fsigen.2022.102777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/08/2022] [Accepted: 09/16/2022] [Indexed: 11/25/2022]
|
7
|
Johannessen H, Gill P, Shanthan G, Fonneløp AE. Transfer, persistence and recovery of DNA and mRNA vaginal mucosa markers after intimate and social contact with Bayesian network analysis for activity level reporting. Forensic Sci Int Genet 2022; 60:102750. [PMID: 35914368 DOI: 10.1016/j.fsigen.2022.102750] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 01/25/2023]
Abstract
In sexual assault cases, it can be challenging to identify the type of body fluids/ cell types present in a crime scene sample, especially the origin of epithelial cells. Therefore, more labs are applying mRNA body fluid analysis for saliva, skin and vaginal mucosa markers. To address activity level propositions, it is necessary to assign probabilities of transfer, persistence, prevalence and recovery of DNA and mRNA markers. In this study we analysed 158 samples (fingernail swabs, penile swabs and boxershorts) from 12 couples collected at different time points post intimate contact and after non-intimate contact in order to detect DNA from the person of interest (POI) and mRNA vaginal mucosa markers. Samples were DNA and RNA co-extracted and analysed with PowerPlex®Fusion 6C System and 19-plex mRNA primer mix respectively, using Endpoint PCR and the CE platform. Vaginal mucosa was detected up to 36 h post intimate contact, but also detected in one non-intimate contact sample. In 94% of intimate contact and 50 % of non-intimate contact samples the DNA results support the proposition that POI is the donor (LR ≥ 10,000). There was a strong association between the detection of vaginal mucosa and the average RFU value of the POI. The data were used to instantiate a comprehensive Bayesian network to evaluate the evidence at activity level, given alternate propositions conditioned upon indirect or direct transfer events. It is shown that the value of the evidence is mainly affected by the high DNA quantity (measured as mean RFU) that is recovered from the POI. The detection of vaginal mucosa had low impact upon the resultant likelihood ratio.
Collapse
Affiliation(s)
| | - Peter Gill
- Department of Forensic Medicine, University of Oslo, Norway; Department of Forensic Sciences, Oslo University Hospital, Norway
| | | | | |
Collapse
|
8
|
Evaluation of the Effects of Different Sample Collection Strategies on DNA/RNA Co-Analysis of Forensic Stains. Genes (Basel) 2022; 13:genes13060983. [PMID: 35741745 PMCID: PMC9222428 DOI: 10.3390/genes13060983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/18/2022] [Accepted: 05/27/2022] [Indexed: 02/04/2023] Open
Abstract
The aim of this study was to evaluate the impact of different moistening agents (RNase-free water, absolute anhydrous ethanol, RNAlater®) applied to collection swabs on DNA/RNA retrieval and integrity for capillary electrophoresis applications (STR typing, cell type identification by mRNA profiling). Analyses were conducted on whole blood, luminol-treated diluted blood, saliva, semen, and mock skin stains. The effects of swab storage temperature and the time interval between sample collection and DNA/RNA extraction were also investigated. Water provided significantly higher DNA yields than ethanol in whole blood and semen samples, while ethanol and RNAlater® significantly outperformed water in skin samples, with full STR profiles obtained from over 98% of the skin samples collected with either ethanol or RNAlater®, compared to 71% of those collected with water. A significant difference in mRNA profiling success rates was observed in whole blood samples between swabs treated with either ethanol or RNAlater® (100%) and water (37.5%). Longer swab storage times before processing significantly affected mRNA profiling in saliva stains, with the success rate decreasing from 91.7% after 1 day of storage to 25% after 7 days. These results may contribute to the future development of optimal procedures for the collection of different types of biological traces.
Collapse
|
9
|
Development of a combined differential DNA/RNA co-extraction protocol and its application in forensic casework. FORENSIC SCIENCE INTERNATIONAL: REPORTS 2022. [DOI: 10.1016/j.fsir.2022.100261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
10
|
Sijen T, Harbison S. On the Identification of Body Fluids and Tissues: A Crucial Link in the Investigation and Solution of Crime. Genes (Basel) 2021; 12:1728. [PMID: 34828334 PMCID: PMC8617621 DOI: 10.3390/genes12111728] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 12/13/2022] Open
Abstract
Body fluid and body tissue identification are important in forensic science as they can provide key evidence in a criminal investigation and may assist the court in reaching conclusions. Establishing a link between identifying the fluid or tissue and the DNA profile adds further weight to this evidence. Many forensic laboratories retain techniques for the identification of biological fluids that have been widely used for some time. More recently, many different biomarkers and technologies have been proposed for identification of body fluids and tissues of forensic relevance some of which are now used in forensic casework. Here, we summarize the role of body fluid/ tissue identification in the evaluation of forensic evidence, describe how such evidence is detected at the crime scene and in the laboratory, elaborate different technologies available to do this, and reflect real life experiences. We explain how, by including this information, crucial links can be made to aid in the investigation and solution of crime.
Collapse
Affiliation(s)
- Titia Sijen
- Division Human Biological Traces, Netherlands Forensic Institute, Laan van Ypenburg 6, 2497 GB The Hague, The Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - SallyAnn Harbison
- Institute of Environmental Science and Research Limited, Private Bag 92021, Auckland 1142, New Zealand;
- Department of Statistics, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|