1
|
Ferreira MM, Marins-Gonçalves L, De Souza D. An integrative review of analytical techniques used in food authentication: A detailed description for milk and dairy products. Food Chem 2024; 457:140206. [PMID: 38936134 DOI: 10.1016/j.foodchem.2024.140206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/04/2024] [Accepted: 06/22/2024] [Indexed: 06/29/2024]
Abstract
The use of suitable analytical techniques for the detection of adulteration, falsification, deliberate substitution, and mislabeling of foods has great importance in the industrial, scientific, legislative, and public health contexts. This way, this work reports an integrative review with a current analytical approach for food authentication, indicating the main analytical techniques to identify adulteration and perform the traceability of chemical components in processed and non-processed foods, evaluating the authenticity and geographic origin. This work presents results from a systematic search in Science Direct® and Scopus® databases using the keywords "authentication" AND "food", "authentication," AND "beverage", from published papers from 2013 to, 2024. All research and reviews published were employed in the bibliometric analysis, evaluating the advantages and disadvantages of analytical techniques, indicating the perspectives for direct, quick, and simple analysis, guaranteeing the application of quality standards, and ensuring food safety for consumers. Furthermore, this work reports the analysis of natural foods to evaluate the origin (traceability), and industrialized foods to detect adulterations and fraud. A focus on research to detect adulteration in milk and dairy products is presented due to the importance of these products in the nutrition of the world population. All analytical tools discussed have advantages and drawbacks, including sample preparation steps, the need for reference materials, and mathematical treatments. So, the main advances in modern analytical techniques for the identification and quantification of food adulterations, mainly milk and dairy products, were discussed, indicating trends and perspectives on food authentication.
Collapse
Affiliation(s)
- Mariana Martins Ferreira
- Laboratory of Electroanalytical Applied to Biotechnology and Food Engineering (LEABE), Chemistry Institute, Uberlândia Federal University, Major Jerônimo Street, 566, Patos de Minas, MG, 38700-002, Brazil
| | - Lorranne Marins-Gonçalves
- Laboratory of Electroanalytical of Food and Environmental Contaminants (LECAA), Chemistry Institute, Uberlândia Federal University, João Naves de Ávila Street, 2121, 1D block, Santa Mônica, Uberlândia, MG, 38400-902, Brazil
| | - Djenaine De Souza
- Laboratory of Electroanalytical of Food and Environmental Contaminants (LECAA), Chemistry Institute, Uberlândia Federal University, João Naves de Ávila Street, 2121, 1D block, Santa Mônica, Uberlândia, MG, 38400-902, Brazil..
| |
Collapse
|
2
|
Sobral AF, Dinis-Oliveira RJ, Barbosa DJ. CRISPR-Cas technology in forensic investigations: Principles, applications, and ethical considerations. Forensic Sci Int Genet 2024; 74:103163. [PMID: 39437497 DOI: 10.1016/j.fsigen.2024.103163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024]
Abstract
CRISPR-Cas (Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR-associated proteins) systems are adaptive immune systems originally present in bacteria, where they are essential to protect against external genetic elements, including viruses and plasmids. Taking advantage of this system, CRISPR-Cas-based technologies have emerged as incredible tools for precise genome editing, thus significantly advancing several research fields. Forensic sciences represent a multidisciplinary field that explores scientific methods to investigate and resolve legal issues, particularly criminal investigations and subject identification. Consequently, it plays a critical role in the justice system, providing scientific evidence to support judicial investigations. Although less explored, CRISPR-Cas-based methodologies demonstrate strong potential in the field of forensic sciences due to their high accuracy and sensitivity, including DNA profiling and identification, interpretation of crime scene investigations, detection of food contamination or fraud, and other aspects related to environmental forensics. However, using CRISPR-Cas-based methodologies in human samples raises several ethical issues and concerns regarding the potential misuse of individual genetic information. In this manuscript, we provide an overview of potential applications of CRISPR-Cas-based methodologies in several areas of forensic sciences and discuss the legal implications that challenge their routine implementation in this research field.
Collapse
Affiliation(s)
- Ana Filipa Sobral
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, Gandra 4585-116, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Toxicologic Pathology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Gandra 4585-116, Portugal.
| | - Ricardo Jorge Dinis-Oliveira
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, Gandra 4585-116, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Gandra 4585-116, Portugal; Department of Public Health and Forensic Sciences and Medical Education, Faculty of Medicine, University of Porto, Porto 4200-319, Portugal; FOREN - Forensic Science Experts, Dr. Mário Moutinho Avenue, No. 33-A, Lisbon 1400-136, Portugal.
| | - Daniel José Barbosa
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, Gandra 4585-116, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Gandra 4585-116, Portugal.
| |
Collapse
|
3
|
Cinà G, Massaro M, Cavallaro G, Lazzara G, Sánchez-Espejo R, Viseras Iborra C, D'Abrosca B, Fiorentino A, Messina GML, Riela S. Development of alginate film filled with halloysite-carbon dots for active food packaging. Int J Biol Macromol 2024; 277:134375. [PMID: 39094878 DOI: 10.1016/j.ijbiomac.2024.134375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/23/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
The development of functional bionanocomposites for active food packaging is of current interest to replace non-biodegradable plastic coatings. In the present work, we report the synthesis of an alginate-based nanocomposite filled with modified halloysite nanotubes (HNTs) to develop coatings with improved barrier properties for food packaging. Firstly, HNTs were chemically modified by the introduction of carbon dots units (CDs) onto their external surface (HNTs-CDs) obtaining a nanomaterial where CDs are uniformly present onto the tubes as verified by morphological investigations, with good UV absorption and antioxidant properties. Afterwards, these were dispersed in the alginate matrix to obtain the alginate/HNTs-CDs nanocomposite (Alg/HNTs-CDs) whose morphology was imaged by AFM measurements. The UV and water barrier properties (in terms of moisture content and water vapor permeability) were investigated, and the antioxidant properties were evaluated as well. To confer some antimicrobial properties to the final nanocomposite, the synthetized filler was loaded with a natural extract (E) from M. cisplatensis. Finally, the extract kinetic release both from the filler and from the nanocomposite was studied in a medium mimicking a food simulant and preliminary studies on the effect of Alg/HNTs-CDs/E on coated and uncoated fruits, specifically apples and bananas were also carried out.
Collapse
Affiliation(s)
- Giuseppe Cinà
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Viale delle Scienze, Parco d'Orleans II, Ed. 17, 90128 Palermo, Italy
| | - Marina Massaro
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Viale delle Scienze, Parco d'Orleans II, Ed. 17, 90128 Palermo, Italy
| | - Giuseppe Cavallaro
- Dipartimento di Fisica e Chimica E. Segrè (DiFC), Università di Palermo, Viale delle Scienze, Parco d'Orleans II, Ed. 17, 90128 Palermo, Italy; Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), I-50121 Firenze, Italy
| | - Giuseppe Lazzara
- Dipartimento di Fisica e Chimica E. Segrè (DiFC), Università di Palermo, Viale delle Scienze, Parco d'Orleans II, Ed. 17, 90128 Palermo, Italy; Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), I-50121 Firenze, Italy.
| | - Rita Sánchez-Espejo
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus Universitario de Cartuja, 18071 Granada, Spain
| | - César Viseras Iborra
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus Universitario de Cartuja, 18071 Granada, Spain; Andalusian Institute of Earth Sciences, CSIC-UGR, 18100 Armilla, Granada, Spain
| | - Brigida D'Abrosca
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, DiSTABiF University of Campania Luigi Vanvitelli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Antonio Fiorentino
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, DiSTABiF University of Campania Luigi Vanvitelli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Grazia M L Messina
- Dipartimento di Scienze Chimiche (DSC), Università di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Serena Riela
- Dipartimento di Scienze Chimiche (DSC), Università di Catania, Viale Andrea Doria 6, 95125 Catania, Italy.
| |
Collapse
|
4
|
Thiruvengadam M, Kim JT, Kim WR, Kim JY, Jung BS, Choi HJ, Chi HY, Govindasamy R, Kim SH. Safeguarding Public Health: Advanced Detection of Food Adulteration Using Nanoparticle-Based Sensors. Crit Rev Anal Chem 2024:1-21. [PMID: 39269682 DOI: 10.1080/10408347.2024.2399202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Food adulteration, whether intentional or accidental, poses a significant public health risk. Traditional detection methods often lack the precision required to detect subtle adulterants that can be harmful. Although chromatographic and spectrometric techniques are effective, their high cost and complexity have limited their widespread use. To explore and validate the application of nanoparticle-based sensors for enhancing the detection of food adulteration, focusing on their specificity, sensitivity, and practical utility in the development of resilient food safety systems. This study integrates forensic principles with advanced nanomaterials to create a robust detection framework. Techniques include the development of nanoparticle-based assays designed to improve the detection specificity and sensitivity. In addition, sensor-based technologies, including electronic noses and tongues, have been assessed for their capacity to mimic and enhance human sensory detection, offering objective and reliable results. The use of nanomaterials, including functionalized nanoparticles, has significantly improved the detection of trace amounts of adulterants. Nanoparticle-based sensors demonstrate superior performance in terms of speed, sensitivity, and selectivity compared with traditional methods. Moreover, the integration of these sensors into food safety protocols shows promise for real-time and onsite detection of adulteration. Nanoparticle-based sensors represent a cutting-edge approach for detecting food adulteration, and offer enhanced sensitivity, specificity, and scalability. By integrating forensic principles and nanotechnology, this framework advances the development of more resilient food-safety systems. Future research should focus on optimizing these technologies for widespread application and adapting them to address emerging adulteration threats.
Collapse
Affiliation(s)
- Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Jung-Tae Kim
- Planning and Coordination Division, National Institute of Crop Science, Rural Development Administration (RDA), Jellabuk-do, Republic of Korea
| | - Won-Ryeol Kim
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Ji-Ye Kim
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Bum-Su Jung
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Hee-Jin Choi
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Hee-Youn Chi
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Rajakumar Govindasamy
- Department of Orthodontics, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Saveetha University, Chennai, India
| | - Seung-Hyun Kim
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Sundaresan S, Vijaikanth V. Recent advances in electrochemical detection of common azo dyes. Forensic Toxicol 2024:10.1007/s11419-024-00696-y. [PMID: 39093537 DOI: 10.1007/s11419-024-00696-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 07/20/2024] [Indexed: 08/04/2024]
Abstract
PURPOSE Food forensics is an emerging field and the initial part of this review showcases the toxic effects and the instrumental methods applied for the detection of the most commonly used azo dyes. Electrochemical detection has a lot of advantages and hence the significance of the most important techniques used in the electrochemical detection is discussed. The major part of this review highlights the surface modified electrodes, utilized for the detection of the most important azo dyes to achieve low detection limit (LOD). METHODS A thorough literature study was conducted using scopus, science direct and other scientific databases using specific keywords such as toxic azo dyes, electrochemical detection, modified electrodes, LOD etc. The recent references in this field have been included. RESULTS From the published literature, it is observed that with the growing interests in the field of electrochemical techniques, a lot of importance have been given in the area of modifying the working electrodes. The results unambiguously show that the modified electrodes outperform bare electrodes and offer a lower LOD value. CONCLUSION According to the literature reports it can be concluded that, compared to other detection methods, electrochemical techniques are much dependable and reproducible. The fabrication of the electrode material with the appropriate modifications is the main factor that influences the sensitivity. Electrochemical sensors can be designed to be more sensitive, more reliable, and less expensive. These sensors can be effectively used by toxicologists to detect trace amounts of harmful dyes in food samples.
Collapse
Affiliation(s)
- Sumi Sundaresan
- Department of Physical Sciences, Karunya Institute of Technology and Sciences, Coimbatore, 641114, Tamil Nadu, India
| | - Vijendran Vijaikanth
- Department of Physical Sciences, Karunya Institute of Technology and Sciences, Coimbatore, 641114, Tamil Nadu, India.
| |
Collapse
|
6
|
Li MX, Shi YB, Zhang JB, Wan X, Fang J, Wu Y, Fu R, Li Y, Li L, Su LL, Ji D, Lu TL, Bian ZH. Rapid evaluation of Ziziphi Spinosae Semen and its adulterants based on the combination of FT-NIR and multivariate algorithms. Food Chem X 2023; 20:101022. [PMID: 38144802 PMCID: PMC10740088 DOI: 10.1016/j.fochx.2023.101022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/09/2023] [Accepted: 11/19/2023] [Indexed: 12/26/2023] Open
Abstract
Ziziphi Spinosae Semen (ZSS) is a valued seed renowned for its sedative and sleep-enhancing properties. However, the price increase has been accompanied by adulteration. In this study, chromaticity analysis and Fourier transform near-infrared (FT-NIR) combined with multivariate algorithms were employed to identify the adulteration and quantitatively predict the adulteration ratio. The findings suggested that the utilization of chromaticity extractor was insufficient for identification of adulteration ratio. The raw spectrum of ZMS and HAS adulterants extracted by FT-NIR was processed by SNV + CARS and 1d + SG + ICO respectively, the average accuracy of machine learning classification model was improved from 77.06 % to 97.58 %. Furthermore, the R2 values of the calibration and prediction set of the two quantitative prediction regression models of adulteration ratio are greater than 0.99, demonstrating excellent linearity and predictive accuracy. Overall, this study demonstrated that FT-NIR combined with multivariate algorithms provided a significant approach to addressing the growing issue of ZSS adulteration.
Collapse
Affiliation(s)
- Ming-xuan Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ya-bo Shi
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jiu-ba Zhang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xin Wan
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jun Fang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yi Wu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Rao Fu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yu Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lin Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lian-lin Su
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - De Ji
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Tu-lin Lu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhen-hua Bian
- Department of Pharmacy, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, 214071, China
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, 214071, China
| |
Collapse
|
7
|
Hassoun A, Jagtap S, Garcia-Garcia G, Trollman H, Pateiro M, Lorenzo JM, Trif M, Rusu AV, Aadil RM, Šimat V, Cropotova J, Câmara JS. Food quality 4.0: From traditional approaches to digitalized automated analysis. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2022.111216] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
8
|
Gajek M, Pawlaczyk A, Maćkiewicz E, Albińska J, Wysocki P, Jóźwik K, Szynkowska-Jóźwik MI. Assessment of the Authenticity of Whisky Samples Based on the Multi-Elemental and Multivariate Analysis. Foods 2022; 11:foods11182810. [PMID: 36140938 PMCID: PMC9498178 DOI: 10.3390/foods11182810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Two hundred and five samples of whisky, including 170 authentic and 35 fake products, were analyzed in terms of their elemental profiles in order to distinguish them according to the parameter of their authenticity. The study of 31 elements (Ag, Al, B, Ba, Be, Bi, Cd, Co, Cr, Cu, Li, Mn, Mo, Ni, Pb, Sb, Sn, Sr, Te, Tl, U, V, Ca, Fe, K, Mg, P, S, Ti and Zn) was performed using the Inductively Coupled Plasma Mass Spectrometry (ICP-MS), Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) and Cold Vapor-Atomic Absorption (CVAAS) techniques. Additionally, the pH values of all samples were determined by pH-meter, and their isotopic ratios of 88Sr/86Sr, 84Sr/86Sr, 87Sr/86Sr and 63Cu/65Cu were assessed, based on the number of counts by ICP-MS. As a result of conducted research, elements, such as Mn, K, P and S, were identified as markers of whisky adulteration related to the age of alcohol. The concentrations of manganese, potassium and phosphorus were significantly lower in the fake samples (which were not aged, or the aging period was much shorter than legally required), compared to the original samples (in all cases subjected to the aging process). The observed differences were related to the migration of these elements from wooden barrels to the alcohol contained in them. On the other hand, the sulfur concentration in the processed samples was much higher in the counterfeit samples than in the authentic ones. The total sulfur content, such as that of alkyl sulfides, decreases in alcohol with aging in the barrels. Furthermore, counterfeit samples can be of variable origin and composition, so they cannot be characterized as one group with identical or comparable features. Repeatedly, the element of randomness dominates in the production of these kinds of alcohols. However, as indicated in this work, the extensive elemental analysis supported by statistical tools can be helpful, especially in the context of detecting age-related adulteration of whisky. The results presented in this paper are the final part of a comprehensive study on the influence of selected factors on the elemental composition of whisky.
Collapse
Affiliation(s)
- Magdalena Gajek
- Faculty of Chemistry, Institute of General and Ecological Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
- Correspondence: ; Tel.: +48-42-631-30-95
| | - Aleksandra Pawlaczyk
- Faculty of Chemistry, Institute of General and Ecological Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Elżbieta Maćkiewicz
- Faculty of Chemistry, Institute of General and Ecological Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Jadwiga Albińska
- Faculty of Chemistry, Institute of General and Ecological Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Piotr Wysocki
- Faculty of Chemistry, Institute of General and Ecological Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Krzysztof Jóźwik
- Faculty of Mechanical Engineering, Institute of Turbomachinery, Lodz University of Technology, Wolczanska 219/223, 90-924 Lodz, Poland
| | - Małgorzata Iwona Szynkowska-Jóźwik
- Faculty of Chemistry, Institute of General and Ecological Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| |
Collapse
|
9
|
Câmara JS, Martins C, Pereira JAM, Perestrelo R, Rocha SM. Chromatographic-Based Platforms as New Avenues for Scientific Progress and Sustainability. Molecules 2022; 27:5267. [PMID: 36014506 PMCID: PMC9412595 DOI: 10.3390/molecules27165267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/29/2022] [Accepted: 08/15/2022] [Indexed: 11/29/2022] Open
Abstract
Chromatography was born approximately one century ago and has undergone outstanding technological improvements in innovation, research, and development since then that has made it fundamental to advances in knowledge at different levels, with a relevant impact on the well-being and health of individuals. Chromatography boosted a comprehensive and deeper understanding of the complexity and diversity of human-environment interactions and systems, how these interactions affect our life, and the several societal challenges we are currently facing, namely those related to the sustainability of our planet and the future generations. From the life sciences, which allowed us to identify endogenous metabolites relevant to disease mechanisms, to the OMICS field, nanotechnology, clinical and forensic analysis, drug discovery, environment, and "foodprint", among others, the wide range of applications of today's chromatographic techniques is impressive. This is fueled by a great variability of powerful chromatographic instruments currently available, with very high sensitivity, resolution, and identification capacity, that provide a strong basis for an analytical platform able to support the challenging demands of the postgenomic and post COVID-19 eras. Within this context, this review aims to address the great utility of chromatography in helping to cope with several societal-based challenges, such as the characterization of disease and/or physiological status, and the response to current agri-food industry challenges of food safety and sustainability, or the monitoring of environmental contamination. These are increasingly important challenges considering the climate changes, the tons of food waste produced every day, and the exponential growth of the human population. In this context, the principles governing the separation mechanisms in chromatography as well the different types and chromatographic techniques will be described. In addition, the major achievements and the most important technological advances will be also highlighted. Finally, a set of studies was selected in order to evince the importance of different chromatographic analyses to understand processes or create fundamental information in the response to current societal challenges.
Collapse
Affiliation(s)
- José S. Câmara
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
- Departamento de Química, Faculdade de Ciências Exatas e Engenharia, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Cátia Martins
- Departamento de Química & LAQV-REQUIMTE, Universidade de Aveiro, Campus Universitário Santiago, 3810-193 Aveiro, Portugal
| | - Jorge A. M. Pereira
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Rosa Perestrelo
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Sílvia M. Rocha
- Departamento de Química & LAQV-REQUIMTE, Universidade de Aveiro, Campus Universitário Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
10
|
Hoffman LC, Ni D, Dayananda B, Abdul Ghafar N, Cozzolino D. Unscrambling the Provenance of Eggs by Combining Chemometrics and Near-Infrared Reflectance Spectroscopy. SENSORS 2022; 22:s22134988. [PMID: 35808484 PMCID: PMC9269732 DOI: 10.3390/s22134988] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022]
Abstract
Issues related to food authenticity, traceability, and fraud have increased in recent decades as a consequence of the deliberate and intentional substitution, addition, tampering, or misrepresentation of food ingredients, where false or misleading statements are made about a product for economic gains. This study aimed to evaluate the ability of a portable NIR instrument to classify egg samples sourced from different provenances or production systems (e.g., cage and free-range) in Australia. Whole egg samples (n: 100) were purchased from local supermarkets where the label in each of the packages was used as identification of the layers’ feeding system as per the Australian legislation and standards. The spectra of the albumin and yolk were collected using a portable NIR spectrophotometer (950–1600 nm). Principal component analysis (PCA) and linear discriminant analysis (LDA) were used to analyze the NIR data. The results obtained in this study showed how the combination of chemometrics and NIR spectroscopy allowed for the classification of egg albumin and yolk samples according to the system of production (cage and free range). The proposed method is simple, fast, environmentally friendly and avoids laborious sample pre-treatment, and is expected to become an alternative to commonly used techniques for egg quality assessment.
Collapse
Affiliation(s)
- Louwrens Christiaan Hoffman
- Queensland Alliance for Agriculture and Food Innovation, Centre for Nutrition and Food Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (L.C.H.); (D.N.)
| | - Dongdong Ni
- Queensland Alliance for Agriculture and Food Innovation, Centre for Nutrition and Food Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (L.C.H.); (D.N.)
| | - Buddhi Dayananda
- School of Agriculture and Food Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (B.D.); (N.A.G.)
| | - N Abdul Ghafar
- School of Agriculture and Food Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (B.D.); (N.A.G.)
| | - Daniel Cozzolino
- Queensland Alliance for Agriculture and Food Innovation, Centre for Nutrition and Food Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (L.C.H.); (D.N.)
- Correspondence:
| |
Collapse
|