1
|
Valdez-Miranda JI, Guitiérrez-López GF, Robles-de la Torre RR, Hernández-Sánchez H, Robles-López MR. Health Benefits of High Voltage Electrostatic Field Processing of Fruits and Vegetables. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 79:260-269. [PMID: 38761282 DOI: 10.1007/s11130-024-01190-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/05/2024] [Indexed: 05/20/2024]
Abstract
High voltage electrostatic field processing (HVEF) is a food preservation procedure frequently used to produce healthy minimally processed fruits and vegetables (F&V) as it reduces the growth of microorganisms and activates or inhibits various enzymes, thus retarding their natural ripening while preserving and even enhancing native nutritional quality and sensory characteristics. HVEF is one of the various nonthermal processing technology (NTPT) regarded as abiotic stress that can activate the antioxidant system of F&V and can also inhibith spoilage enzymes as, polyphenol oxidase (PPO), lipoxygenase (LOX), pectin methylesterase (PME), polygalacturonase (PG), cellulase (Cel), β-xylosidase, xyloglucan and endotransglycosylase/hydrolase, bringing positive effect on hardness, firmness, colour attributes, electric conductivity, antioxidant compounds, microstructure and decreasing electrolyte leakage (EL), malondialdehyde (MDA) contents and browning degree. This technique can also increase the contents of fructose, glucose, and sucrose and decrease the production of CO2 and H2O2. Additionally, it has been reported that HVEF could be used with other treatments, such as modified atmosphere packaging (MAP) and acidic electrolyzed water (AEW) treatment, to enhance its effects. Future works should deepen on elucidating the activation of the antioxidant systems by applying HVEF of critical enzymes related to the synthesis pathways of phenolic compounds (PC) and carotenoids (Car). Holistic approaches to the effects of HVEF on metabolism based on systems biology also need to be studied by considering the overall biochemical, physical, and process engineering related aspects of this technique.
Collapse
Affiliation(s)
- Jose Irving Valdez-Miranda
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Carpio y Plan de Ayala S/N Santo Tomás 11340, Ciudad de México, México
| | - Gustavo Fidel Guitiérrez-López
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Carpio y Plan de Ayala S/N Santo Tomás 11340, Ciudad de México, México.
| | - Raúl René Robles-de la Torre
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada, Ex- Hacienda de San Juan Molino, Km 1.5 de la Carretera Estatal Santa Inés, Tecuexcomac- Tepetitla, Tepetitla, Tlaxcala, CP, 90700, México
| | - Humberto Hernández-Sánchez
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Carpio y Plan de Ayala S/N Santo Tomás 11340, Ciudad de México, México
| | - María Reyna Robles-López
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada, Ex- Hacienda de San Juan Molino, Km 1.5 de la Carretera Estatal Santa Inés, Tecuexcomac- Tepetitla, Tepetitla, Tlaxcala, CP, 90700, México
| |
Collapse
|
2
|
Venkatachalam K, Lekjing S, Noonim P, Charoenphun N. Extension of Quality and Shelf Life of Tomatoes Using Chitosan Coating Incorporated with Cinnamon Oil. Foods 2024; 13:1000. [PMID: 38611306 PMCID: PMC11011822 DOI: 10.3390/foods13071000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
This study examined the effects of 2% chitosan (CS) coatings incorporated with varying concentrations of cinnamon oil (CO) (0%, 0.5%, 1.0%, and 1.5%) on the extension of the quality and shelf-life of tomatoes stored under ambient conditions. Control samples were untreated and coated with distilled water. All samples were stored for 14 days at 25 ± 1 °C, with quality assessments conducted every two days. The application of CS-CO treatments was notably effective in controlling weight loss (3.91-5.26%) and firmness loss (10.81-16.51 N), sustaining the color index score (11.98-16.78), and stabilizing the total soluble solids (4.64-4.71 brix), titratable acidity (0.374-0.383%), total phenolic content (75.89-81.54 mg/100 g), ascorbic acid concentration (21.64-33.69 mg/100 g), total antioxidant capacity (85.89-91.54%) and pigment levels, particularly chlorophyll (52.80-63.18 mg/100 g), compared to control samples (p < 0.05). Higher CO concentrations (1.0% and 1.5%) in the CS coating maintained a significant level of phytochemicals in the samples compared to the control group, while CS-CO at 0.5% performed similarly in preserving the other physicochemical qualities. Both CS and CS-CO treatments extended the shelf life of the tomatoes up to 14 days (<6.78 log10 CFU/mL), whereas control samples were only viable for storage for 6 days due to higher microbial growth (>7.8 log10 CFU/mL) (p < 0.05). Overall, CS-CO-treated tomatoes demonstrated superior quality preservation and shelf-life enhancement, with a notable improvement in overall qualities as compared to the CS and control samples.
Collapse
Affiliation(s)
- Karthikeyan Venkatachalam
- Faculty of Innovative Agriculture and Fishery Establishment Project, Prince of Songkla University, Surat Thani Campus, Makham Tia, Mueang, Surat Thani 84000, Thailand; (K.V.); (S.L.); (P.N.)
| | - Somwang Lekjing
- Faculty of Innovative Agriculture and Fishery Establishment Project, Prince of Songkla University, Surat Thani Campus, Makham Tia, Mueang, Surat Thani 84000, Thailand; (K.V.); (S.L.); (P.N.)
| | - Paramee Noonim
- Faculty of Innovative Agriculture and Fishery Establishment Project, Prince of Songkla University, Surat Thani Campus, Makham Tia, Mueang, Surat Thani 84000, Thailand; (K.V.); (S.L.); (P.N.)
| | - Narin Charoenphun
- Faculty of Science and Arts, Burapha University Chanthaburi Campus, Khamong, Thamai, Chanthaburi 22170, Thailand
| |
Collapse
|
3
|
Shinde R, Vinokur Y, Fallik E, Rodov V. Effects of Genotype and Modified Atmosphere Packaging on the Quality of Fresh-Cut Melons. Foods 2024; 13:256. [PMID: 38254557 PMCID: PMC10815012 DOI: 10.3390/foods13020256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Marketing melons (Cucumis melo) as convenient fresh-cut products is popular nowadays. However, damage inflicted by fresh-cut processing results in fast quality degradation and food safety risks. The life of fresh-cut produce can be extended by a modified atmosphere (MA), either generated in a package by tissue respiration (a passive MA) or injected by gas flushing (an active MA). This work investigated the effect of passive and active MA formed in packages of different perforation levels on the quality of fresh-cut melons of two genetic groups: C. melo var. cantalupensis, characterized by climacteric fruit behavior, and non-climacteric C. melo inodorus. The best product preservation was achieved in passive MA packages: non-perforated for inodorus melons and micro-perforated for cantalupensis ones. The optimal packages allowed for the preservation of both genotypes for 14 days at 6-8 °C. The major factors limiting the shelf life of fresh-cut melons were microbial spoilage, translucency disorder and hypoxic fermentation associated with cantalupensis melons with enhanced ethyl acetate accumulation. Inodorus melons were found to be preferable for fresh-cut processing since they were less prone to fermented off-flavor development.
Collapse
Affiliation(s)
- Ranjeet Shinde
- Department of Postharvest Science, Agricultural Research Organization (ARO), The Volcani Institute, Rishon LeZion 7505101, Israel; (R.S.); (Y.V.); (E.F.)
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Yakov Vinokur
- Department of Postharvest Science, Agricultural Research Organization (ARO), The Volcani Institute, Rishon LeZion 7505101, Israel; (R.S.); (Y.V.); (E.F.)
| | - Elazar Fallik
- Department of Postharvest Science, Agricultural Research Organization (ARO), The Volcani Institute, Rishon LeZion 7505101, Israel; (R.S.); (Y.V.); (E.F.)
| | - Victor Rodov
- Department of Postharvest Science, Agricultural Research Organization (ARO), The Volcani Institute, Rishon LeZion 7505101, Israel; (R.S.); (Y.V.); (E.F.)
| |
Collapse
|
4
|
Sela A, Shkuri N, Tish N, Vinokur Y, Rodov V, Poverenov E. Carboxymethyl chitosan-quercetin conjugate: A sustainable one-step synthesis and use for food preservation. Carbohydr Polym 2023; 316:121084. [PMID: 37321704 DOI: 10.1016/j.carbpol.2023.121084] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/11/2023] [Accepted: 05/30/2023] [Indexed: 06/17/2023]
Abstract
Bioactive polysaccharide, carboxymethyl chitosan-quercetin (CMCS-q) was prepared by a one-step reaction utilizing Schiff base chemistry. Notably, the presented conjugation method involves neither radical reactions nor auxiliary coupling agents. Physicochemical properties and bioactivity of the modified polymer were studied and compared to those of the pristine carboxymethyl chitosan, CMCS. The modified CMCS-q demonstrated antioxidant activity by TEAC assay and antifungal activity by inhibiting spore germination of plant pathogen Botrytis cynerea. Then, CMCS-q was applied as an active coating on fresh-cut apples. The treatment resulted in enhanced firmness, inhibited browning and improved microbiological quality of the food product. The presented conjugation method allows retaining antimicrobial and antioxidant activity of quercetin moiety in the modified biopolymer. This method can be further used as a platform for binding ketone/aldehyde-containing polyphenols and other natural compounds to form various bioactive polymers.
Collapse
Affiliation(s)
- Aviad Sela
- Agro-Nanotechnology and Advanced Materials Center, Department of Food Science, Agricultural Research Organization, The Volcani Institute, Rishon LeZion 7505101, Israel; Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel.
| | - Noa Shkuri
- Agro-Nanotechnology and Advanced Materials Center, Department of Food Science, Agricultural Research Organization, The Volcani Institute, Rishon LeZion 7505101, Israel; Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel.
| | - Nimrod Tish
- Department of Postharvest Science, Agricultural Research Organization, The Volcani Institute, Rishon LeZion 7505101, Israel; The Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel.
| | - Yakov Vinokur
- Department of Postharvest Science, Agricultural Research Organization, The Volcani Institute, Rishon LeZion 7505101, Israel.
| | - Victor Rodov
- Department of Postharvest Science, Agricultural Research Organization, The Volcani Institute, Rishon LeZion 7505101, Israel.
| | - Elena Poverenov
- Agro-Nanotechnology and Advanced Materials Center, Department of Food Science, Agricultural Research Organization, The Volcani Institute, Rishon LeZion 7505101, Israel.
| |
Collapse
|
5
|
Postharvest shelf life simulation for lettuce (Lactuca sativa L.) based on coupling dynamic models of respiration, gas exchange, and Pseudomonas fluorescens growth. Food Packag Shelf Life 2023. [DOI: 10.1016/j.fpsl.2022.101021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
6
|
Teng X, Zhang M, Mujumdar AS. Phototreatment (below 1100 nm) improving quality attributes of fresh-cut fruits and vegetables: A review. Food Res Int 2023; 163:112252. [PMID: 36596164 DOI: 10.1016/j.foodres.2022.112252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/18/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022]
Abstract
The emerging area of phototreatment technology has shown a significant potential to enhance the quality of fresh-cut fruit and vegetable products (FFVP). This review critically evaluates relevant literatures to address the potential for phototreatment technology (Red, blue, green, ultraviolet and pulsed light) applied to FFVP, outline the key to the success of phototreatment processing, and discuss the corresponding problems for phototreatment processing along with research and development needs. Base on photothermal, photophysical and photochemical process, phototreatment displays a great potential to maintain quality attributes of FFVP. The operating parameters of light, the surface properties and matrix components of the targeted material and the equipment design affect the quality of the fresh-cut products. To adapt current phototreatment technology to industrial FFVP processing, it is necessary to offset some limitations, especially control of harmful substances (For example, nitrite and furan) produced by phototreatment, comparison between different phototreatment technologies, and establishment of mathematical models/databases.
Collapse
Affiliation(s)
- Xiuxiu Teng
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China; Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China; China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, 214122 Wuxi, Jiangsu, China.
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
7
|
Zhao X, Sun Y, Ma Y, Xu Y, Guan H, Wang D. Research advances on the contamination of vegetables by Enterohemorrhagic Escherichia coli: pathways, processes and interaction. Crit Rev Food Sci Nutr 2022; 64:4833-4847. [PMID: 36377729 DOI: 10.1080/10408398.2022.2146045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Enterohemorrhagic Escherichia coli is considered one of the primary bacterial pathogens that cause foodborne diseases because it can survive in meat, vegetables and so on. Understanding of the effect of vegetable characteristics on the adhesion and proliferation process of EHEC is necessary to develop control measures. In this review, the amount and methods of adhesion, the internalization pathway and proliferation process of EHEC have been described during the vegetable contamination. Types, cultivars, tissue characteristics, leaf age, and damage degree can affect EHEC adhesion on vegetables. EHEC cells contaminate the root surface of vegetables through soil and further internalize. It can also contaminate the stem scar tissue of vegetables by rain or irrigation water and internalize the vertical axis, as well as the stomata, necrotic lesions and damaged tissues of vegetable leaves. After EHEC adhered to the vegetables, they may further proliferate and form biofilms. Leaf and fruit tissues were more sensitive to biofilm formation, and shedding rate of biofilms on epidermis tissue was faster. Insights into the mechanisms of vegetable contamination by EHEC, including the role of exopolysaccharides and proteins responsible for movement, adhesion and oxidative stress response could reveal the molecular mechanism by which EHEC contaminates vegetables.
Collapse
Affiliation(s)
- Xiaoyan Zhao
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yeting Sun
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yue Ma
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yujia Xu
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Hongyang Guan
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Dan Wang
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
8
|
Effects of O2/CO2 transmission rate of BOPA/LDPE or PE film on shelf life and quality attributes of fresh-cut cherry radish. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Yang TD, Chen YL, Zeng FK, Ye MQ, Wang L, Luo Z, Qi YW, Chen FP. Effects of modified atmosphere packaging on the postharvest quality of mulberry leaf vegetable. Sci Rep 2022; 12:10893. [PMID: 35764785 PMCID: PMC9239990 DOI: 10.1038/s41598-022-15257-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/21/2022] [Indexed: 11/21/2022] Open
Abstract
Fresh mulberry leaf vegetable is nutritive and becoming popular. However, available preservation technologies are deficient. In present work, the effects of two kinds of modified atmosphere packaging on postharvest quality of fresh mulberry leaf vegetable stored at 4 °C were evaluated. The respiration rate of samples in the modified polyethylene packages (MP20) was 12.88-22.65% lower than that in normal polyethylene packaging (CK). The content of total soluble solids, soluble protein, and total polyphenol in MP20 was less changed than that in CK, and the vitamin C retention was higher as well. Moreover, the lignin content in MP20 was lower than that in CK during storage (19.79% vs 13.38% at day 8), and that was significantly positively related to the polyphenol oxidase and peroxidase activities inhibition. Taken together, a packaging with moderate gas permeability (MP20) is suitable for nutrition maintenance and lignification inhibition of fresh mulberry leaf vegetable during cold storage.
Collapse
Affiliation(s)
- Teng-da Yang
- Sericultural and Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, 510610, People's Republic of China
- College of Food Science of Southwestern University, Chongqing, 4007151, People's Republic of China
| | - Yu-Long Chen
- Sericultural and Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, 510610, People's Republic of China
| | - Fan-Kun Zeng
- College of Food Science of Southwestern University, Chongqing, 4007151, People's Republic of China
| | - Ming-Qiang Ye
- Sericultural and Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, 510610, People's Republic of China
| | - Ling Wang
- Sericultural and Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, 510610, People's Republic of China
| | - Zheng Luo
- Sericultural and Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, 510610, People's Republic of China
| | - Ying-Wei Qi
- Sericultural and Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, 510610, People's Republic of China
| | - Fei-Ping Chen
- Sericultural and Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, 510610, People's Republic of China.
| |
Collapse
|
10
|
Vieira TM, Alves VD, Moldão Martins M. Application of an Eco-Friendly Antifungal Active Package to Extend the Shelf Life of Fresh Red Raspberry ( Rubus idaeus L. cv. 'Kweli'). Foods 2022; 11:1805. [PMID: 35742002 PMCID: PMC9222906 DOI: 10.3390/foods11121805] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 12/07/2022] Open
Abstract
The main objective of this study was to extend the shelf life of fresh red raspberry (Rubus idaeus. L. cv. 'Kweli') by using active film-pads inside commercial compostable packages. The pads were produced with chitosan (Ch) with the incorporation of green tea (GTE) and rosemary (RSME) ethanolic extracts as natural antifungal agents. Pads were placed on the bottom of commercial fruit trays underneath the fruits, and the trays were heat-sealed with a polyacid lactic (PLA) film. Preservation studies were carried out over 14 days of storage at refrigeration temperature (4 °C). Raspberry samples were periodically analyzed throughout storage, in terms of quality attributes (fungal decay, weight loss, firmness, surface color, pH, total soluble solids), total phenolic content and antioxidant activity. Gas composition inside the packages was also analyzed over time. From the packaging systems tested, the ones with active film-pads Ch + GTE and Ch + RSME were highly effective in reducing fungal growth and decay of raspberry during storage, showing only around 13% and 5% of spoiled fruits after 14 days, respectively, in contrast with the packages without pads (around 80% of spoiled fruits detected). In addition, fruits preserved using packages with Ch + RSME active film-pads showed lower mass loss (5.6%), decreased firmness (3.7%) and reduced antioxidant activity (around 9% and 15% for DPPH and FRAP methods, respectively). This sustainable packaging presents a potential strategy for the preservation of raspberries and other highly perishable small fruits.
Collapse
Affiliation(s)
| | - Vítor D. Alves
- LEAF—Linking Landscape, Environment, Agriculture and Food, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal; (T.M.V.); (M.M.M.)
| | | |
Collapse
|
11
|
Zhong Z, Zhou L, Yu K, Jiang F, Xu J, Zou L, Du L, Liu W. Effects of Microporous Packaging Combined with Chitosan Coating on the Quality and Physiological Metabolism of Passion Fruit after Harvest. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02845-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Augusto A, Miranda A, Costa L, Pinheiro J, Campos MJ, Raimundo D, Pedrosa R, Mitchell G, Niranjan K, Silva SF. A pilot plant scale testing of the application of seaweed‐based natural coating and modified atmosphere packaging for shelf‐life extension of fresh‐cut apple. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Ana Augusto
- MARE ‐ Centro de Ciências do Mar e do Ambiente, ESTM, Politécnico de Leiria, 2520‐641 Peniche Portugal
- Department of Food and Nutritional Sciences University of Reading Reading United Kingdom
- Centre for Rapid and Sustainable Product Development (CDRsp), Politécnico de Leiria, 2430‐028 Marinha Grande
| | - Andreia Miranda
- MARE ‐ Centro de Ciências do Mar e do Ambiente, ESTM, Politécnico de Leiria, 2520‐641 Peniche Portugal
| | - Leonor Costa
- iBET – Instituto de Biologia Experimental e Tecnológica, 2781‐901 Oeiras Portugal
| | - Joaquina Pinheiro
- MARE ‐ Centro de Ciências do Mar e do Ambiente, ESTM, Politécnico de Leiria, 2520‐641 Peniche Portugal
| | - Maria J. Campos
- MARE ‐ Centro de Ciências do Mar e do Ambiente, ESTM, Politécnico de Leiria, 2520‐641 Peniche Portugal
| | | | - Rui Pedrosa
- MARE ‐ Centro de Ciências do Mar e do Ambiente, ESTM, Politécnico de Leiria, 2520‐641 Peniche Portugal
| | - Geoffrey Mitchell
- Centre for Rapid and Sustainable Product Development (CDRsp), Politécnico de Leiria, 2430‐028 Marinha Grande
| | - Keshavan Niranjan
- Department of Food and Nutritional Sciences University of Reading Reading United Kingdom
| | - Susana F.J. Silva
- MARE ‐ Centro de Ciências do Mar e do Ambiente, ESTM, Politécnico de Leiria, 2520‐641 Peniche Portugal
| |
Collapse
|
13
|
On the Mechanism of Electron Beam Radiation-Induced Modification of Poly(lactic acid) for Applications in Biodegradable Food Packaging. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12041819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Poly(lactic acid) (PLA) is a biodegradable polymer used for food packaging. The effects of electron beam radiation on the chemical and physical properties of amorphous PLA were studied. In this study, amorphous, racemic PLA was irradiated at doses of 5, 10, 15, and 20 kGy in the absence of oxygen. Utilizing electron paramagnetic resonance spectrometry, it was found that alkoxyl radicals are initially formed as a result of C-O-C bond scissions on the backbone of the PLA. The dominant radiation mechanism was determined to be H-abstraction by alkoxyl radicals to form C-centered radicals. The C-centered radicals undergo a subsequent peroxidation reaction with oxygen. The gel permeation chromatography (GPC) results indicate reduction in polymer molecular mass. The differential scanning calorimetry and X-ray diffraction results showed a subtle increase in crystallinity of the irradiated PLA. Water vapor transmission rates were unaffected by irradiation. In conclusion, these results support that irradiated PLA is a suitable material for applications in irradiation of food packaging, including food sterilization and biodegradation.
Collapse
|
14
|
Manikantan M, Pandiselvam R, Arumuganathan T, Varadharaju N, Sruthi NU, Mousavi Khaneghah A. Development of linear low‐density polyethylene nanocomposite films for storage of sugarcane juice. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.13988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- M.R. Manikantan
- Physiology, Biochemistry, and Post‐Harvest Technology Division ICAR –Central Plantation Crops Research Institute Kasaragod Kerala India
| | - R. Pandiselvam
- Physiology, Biochemistry, and Post‐Harvest Technology Division ICAR –Central Plantation Crops Research Institute Kasaragod Kerala India
| | - T. Arumuganathan
- Division of Crop Production ICAR‐Sugarcane Breeding Institute Coimbatore Tamil Nadu India
| | - N. Varadharaju
- Post‐Harvest Technology Centre Tamil Nadu Agricultural University Coimbatore India
| | - N. U. Sruthi
- Agricultural and Food Engineering Department Indian Institute of Technology Kharagpur Kharagpur West Bengal India
| | - Amin Mousavi Khaneghah
- Department of Food Science and Nutrition, Faculty of Food Engineering University of Campinas (UNICAMP) Campinas São Paulo Brazil
| |
Collapse
|
15
|
Augusto A, Miranda A, Crespo D, Campos MJ, Raimundo D, Pedrosa R, Mitchell G, Niranjan K, Silva SF. Preservation of fresh-cut Rocha Pear using Codium tomentosum extract. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Supapvanich S, Techavuthiporn C. Efficiency of pre‐process anoxia treatment on quality of fresh‐cut pineapples cv. ‘Phulae’ during storage. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Suriyan Supapvanich
- Department of Agricultural Education School of Industrial Education and Technology King Mongkut’s Institute of Technology Ladkrabang Bangkok Thailand
| | - Chairat Techavuthiporn
- Department of Agricultural Education School of Industrial Education and Technology King Mongkut’s Institute of Technology Ladkrabang Bangkok Thailand
| |
Collapse
|
17
|
Fan K, Wu J, Chen L. Ultrasound and its combined application in the improvement of microbial and physicochemical quality of fruits and vegetables: A review. ULTRASONICS SONOCHEMISTRY 2021; 80:105838. [PMID: 34801817 PMCID: PMC8605411 DOI: 10.1016/j.ultsonch.2021.105838] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 05/24/2023]
Abstract
The eating safety and high quality of fruits and vegetables have always been concerned by consumers, so require a safe, non-toxic, environment-friendly technology for their preservation. The application of ultrasound is a potential technology in the preservation of fruits and vegetables. This paper describes the ultrasound mechanism for inactivating microorganisms, with the cavitation phenomena of ultrasound being considered as a main effect. Effect of ultrasound on microorganisms of fruits and vegetables was discussed. Ultrasound alone and its combined treatments can be an effective method to inactivate the spoilage and pathogenic microorganisms on the surface of fruit and vegetables. Effect of ultrasound on physicochemical quality of fruits and vegetables was reviewed. Ultrasound and its combined treatments reduced mass loss, decreased color change, maintained firmness, enhanced and inhibited enzyme activity as well as preserving nutritional components such as total phenolic, total flavonoids, anthocyanin, and ascorbic acid.
Collapse
Affiliation(s)
- Kai Fan
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, China.
| | - Jiaxin Wu
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, China
| | - Libing Chen
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, China
| |
Collapse
|
18
|
Rico-Londoño JF, Buitrago-Patiño DJ, Agudelo-Laverde LM. Combination of methods as alternative to maintain the physical-chemical properties and microbiological content of hass avocado pulp during storage. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Alves MJDS, Nobias MC, Soares LS, Coelho DS, Maraschin M, Basso A, Moreira RDFPM, José HJ, Monteiro AR. Physiological changes in green and red cherry tomatoes after photocatalytic ethylene degradation using continuous air flux. FOOD SCI TECHNOL INT 2021; 29:3-12. [PMID: 34726544 DOI: 10.1177/10820132211056112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In this work photocatalytic ethylene degradation (TiO2-UV) was applied in green cherry tomatoes with the aim to control biochemical and physiological changes during ripening. Photocatalytic process was performed at 18 °C ± 2 °C and 85% HR for 10 days using continuous air flux. Ethylene, O2 and CO2 concentration from cherry tomatoes under TiO2-UV and control (c) fruits, were measured by GC-MS for 10 days. After that, the tomatoes were stored for 20 days. During the photocatalysis process, ethylene was completely degraded and control fruits, the ethylene was 28.73 nL g-1. Respiration rate was lower for fruits under TiO2-UV than control. During storage period, cherry tomatoes treated by TiO2-UV, showed lower ethylene concentration, respiration rate, total soluble solid, lycopene, sugar and organic acid content than control showing that the fruits treated with photocatalysis did not reach the full maturity. In addition, all the cherry tomatoes showed different maturity stages. Fungal incidence was higher in control fruits than fruits treated with photocatalysis. This research showed for the first time that photocatalytic technology preserved the physiological quality of cherry tomatoes for 30 days of storage, being a promised technology to preserve cherries tomatoes.
Collapse
Affiliation(s)
- Maria Jaízia Dos Santos Alves
- Laboratory of physical properties of foods, Department of Chemical and Food Engineering, Federal University of Santa Catarina, UFSC
| | - Marielle Correia Nobias
- Laboratory of physical properties of foods, Department of Chemical and Food Engineering, Federal University of Santa Catarina, UFSC
| | - Lenilton Santos Soares
- Laboratory of physical properties of foods, Department of Chemical and Food Engineering, Federal University of Santa Catarina, UFSC
| | - Daniela Sousa Coelho
- Laboratory of Morphogenesis and Plant Biochemistry, Department of Phytotechnics, Federal University of Santa Catarina, UFSC
| | - Marcelo Maraschin
- Laboratory of Morphogenesis and Plant Biochemistry, Department of Phytotechnics, Federal University of Santa Catarina, UFSC
| | - Alex Basso
- Laboratory of Environment and Energy, Department of Chemical and Food Engineering, 28117UFSC
| | | | - Humberto Jorge José
- Laboratory of Environment and Energy, Department of Chemical and Food Engineering, 28117UFSC
| | - Alcilene Rodrigues Monteiro
- Laboratory of physical properties of foods, Department of Chemical and Food Engineering, Federal University of Santa Catarina, UFSC
| |
Collapse
|
20
|
HS-GC-IMS with PCA to analyze volatile flavor compounds of honey peach packaged with different preservation methods during storage. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111963] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
21
|
Fan K, Zhang M, Guo C, Dan W, Devahastin S. Laser-Induced Microporous Modified Atmosphere Packaging and Chitosan Carbon-Dot Coating as a Novel Combined Preservation Method for Fresh-Cut Cucumber. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02617-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
22
|
Han JW, Zuo M, Zhu WY, Zuo JH, Lü EL, Yang XT. A comprehensive review of cold chain logistics for fresh agricultural products: Current status, challenges, and future trends. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.066] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
23
|
Bio-Packaging Material Impact on Blueberries Quality Attributes under Transport and Marketing Conditions. Polymers (Basel) 2021; 13:polym13040481. [PMID: 33546309 PMCID: PMC7913482 DOI: 10.3390/polym13040481] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 12/19/2022] Open
Abstract
Blueberries are highly appreciated for their high antioxidant content but are also particularly susceptible to fungal deterioration. In this work, corn starch and chitosan, byproducts of the fishing industry, as well as active compounds obtained from citrus processing waste were used to obtain active biodegradable film packaging. Blueberries were packed in corn starch–chitosan (CS:CH) films and in active films containing lemon essential oil (LEO) or grapefruit seed extract (GSE). The effects of film packaging on the quality parameters of berries and the fungal incidence of disease during storage were studied and compared to benchmark materials. A conservation assay simulating transport and commercialization conditions was conducted. Blueberries packed in CS:CH films showed antioxidant capacity values closer to those packed in commercial PET containers (Clamshells), preserving 84.8% of the initial antioxidants content. Fruit packed in LEO films exhibited the greatest weight loss and rot incidence, and poor surface color. CS:CH and GSE films controlled the fruit respiration rate and weight loss, therefore they are materials with adequate barrier properties for blueberries conservation. Bags formulated with GSE showed adequate barrier properties to maintain fruit quality attributes without the incidence of rottenness, being an interesting option for blueberries exportation.
Collapse
|
24
|
Torales AC, Gutiérrez DR, Rodríguez SDC. Influence of passive and active modified atmosphere packaging on yellowing and chlorophyll degrading enzymes activity in fresh-cut rocket leaves. Food Packag Shelf Life 2020. [DOI: 10.1016/j.fpsl.2020.100569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
25
|
Pinto L, Palma A, Cefola M, Pace B, D'Aquino S, Carboni C, Baruzzi F. Effect of modified atmosphere packaging (MAP) and gaseous ozone pre-packaging treatment on the physico-chemical, microbiological and sensory quality of small berry fruit. Food Packag Shelf Life 2020. [DOI: 10.1016/j.fpsl.2020.100573] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
26
|
Guo J, Wei X, Lü E, Wang Y, Deng Z. Ripening behavior and quality of 1-MCP treated d'Anjou pears during controlled atmosphere storage. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107364] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
27
|
Wei Y, Zheng Y, Ma Y, Tong J, Zhang J, Zhang Y, Liang H, Zhao X. Microbiological and Physiological Attributes of Fresh-Cut Cucumbers in Controlled Atmosphere Storage. J Food Prot 2020; 83:1718-1725. [PMID: 32421793 DOI: 10.4315/jfp-19-618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 05/16/2020] [Indexed: 11/11/2022]
Abstract
ABSTRACT Fresh-cut cucumbers are popular worldwide, but they are prone to spoilage due to tissue damage caused by processing. The effects of controlled atmosphere storage (CAS) at 3% O2 and 7% CO2 or 8% O2 and 2% CO2 on microorganisms and the quality of fresh-cut cucumbers (Cucumis sativus L. cv. Chinese Long) at 4°C and 90% relative humidity were investigated in this study. The results showed that compared with the control group, both controlled atmosphere treatments maintained chlorophyll concentration, appearance, and color of fresh-cut cucumbers effectively; inhibited respiration rate and polyphenoloxidase (PPO) and peroxidase (POD) activity; delayed the decrease in firmness and the increase in relative electrolyte leakage; and inhibited the growth of microorganisms on cucumbers during storage. On day 10, the chlorophyll concentration and firmness of cucumbers stored at 3% O2 and 7% CO2 was 1.15 and 1.04 times that of cucumbers stored at 8% O2 and 2% CO2, respectively. Respiration rate, relative electrolyte leakage, polyphenoloxidase activity, peroxidase activity, and levels of total bacteria, coliforms, and Pseudomonas spp. at 3% O2 and 7% CO2 were 19.79, 6.01, 5.45, 88.50, 18.07, 16.14, and 19.76% lower than at 8% O2 and 2% CO2, respectively. In conclusion, storage at 3% O2 and 7% CO2 was effective in inhibiting microorganisms and maintaining the quality of stored fresh-cut cucumbers. HIGHLIGHTS
Collapse
Affiliation(s)
- Yabo Wei
- College of Food Science, Shihezi University, Shihezi, Xinjiang 832000, People's Republic of China (ORCID: https://orcid.org/0000-0002-2543-9285 [J.T.]).,Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences; Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, 50 Zhanghua Road, Haidian District, 100097, Beijing, People's Republic of China
| | - Yanyan Zheng
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences; Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, 50 Zhanghua Road, Haidian District, 100097, Beijing, People's Republic of China
| | - Yue Ma
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences; Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, 50 Zhanghua Road, Haidian District, 100097, Beijing, People's Republic of China
| | - Junmao Tong
- College of Food Science, Shihezi University, Shihezi, Xinjiang 832000, People's Republic of China (ORCID: https://orcid.org/0000-0002-2543-9285 [J.T.])
| | - Jian Zhang
- College of Food Science, Shihezi University, Shihezi, Xinjiang 832000, People's Republic of China (ORCID: https://orcid.org/0000-0002-2543-9285 [J.T.])
| | - Yan Zhang
- Longda Food Group Co. Ltd, Shandong 265231, People's Republic of China
| | - Hao Liang
- Longda Food Group Co. Ltd, Shandong 265231, People's Republic of China
| | - Xiaoyan Zhao
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences; Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, 50 Zhanghua Road, Haidian District, 100097, Beijing, People's Republic of China
| |
Collapse
|
28
|
Llerena W, Samaniego I, Navarro M, Ortíz J, Angós I, Carrillo W. Effect of modified atmosphere packaging (MAP) in the antioxidant capacity of arazá (
Eugenia stipitata
McVaugh), naranjilla (
Solanum quitoense
Lam.), and tree tomato (
Solanum betaceum
Cav.) fruits from Ecuador. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14757] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Wilma Llerena
- Facultad de Ciencia e Ingeniería en Alimentos y Biotecnología Universidad Técnica de Ambato (UTA) Ambato Ecuador
- Facultad de Ciencias Pecuarias Ingeniería en Alimentos Universidad Técnica Estatal de Quevedo Los Ríos Ecuador
| | - Iván Samaniego
- Instituto Nacional de Investigaciones Agropecuarias (INIAP)Estación Experimental Santa Catalina Quito Ecuador
| | - Montserrat Navarro
- Departamento de Agronomía, Biotecnología y Alimentación Universidad Pública de Navarra (UPNA) Pamplona España
| | - Jacqueline Ortíz
- Facultad de Ciencia e Ingeniería en Alimentos y Biotecnología Universidad Técnica de Ambato (UTA) Ambato Ecuador
| | - Ignacio Angós
- Facultad de Ciencia e Ingeniería en Alimentos y Biotecnología Universidad Técnica de Ambato (UTA) Ambato Ecuador
- Departamento de Agronomía, Biotecnología y Alimentación Universidad Pública de Navarra (UPNA) Pamplona España
| | - Wilman Carrillo
- Facultad de Ciencia e Ingeniería en Alimentos y Biotecnología Universidad Técnica de Ambato (UTA) Ambato Ecuador
| |
Collapse
|
29
|
Adiletta G, Magri A, Albanese D, Liguori L, Sodo M, Di Matteo M, Petriccione M. Overall quality and oxidative damage in packaged freshly shelled walnut kernels during cold storage. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00589-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
30
|
Extending the shelf life and maintaining quality of minimally-processed pomegranate arils using ascorbic acid coating and modified atmosphere packaging. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00591-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
31
|
Gantner M, Król K, Kopczyńska K. Application of MAP and ethylene–vinyl alcohol copolymer (EVOH) to extend the shelf-life of green and white asparagus (Asparagus officinalis L.) spears. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00449-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
AbstractIn this study, ethylene vinyl alcohol copolymer (EVOH) and polypropylene/polyethylene (PP/PE) films combined with MAP packaging were developed to enhance the shelf-life of green and white asparagus spears. The scope of the research included measurements of weight loss, pH, acidity, color, texture, and sensory analysis as indicators of green and white asparagus spear quality for up to 17 days of storage at 2 and 10 °C. The application of modified atmosphere packaging combined with EVOH-based packaging material and refrigeration at 2 °C promoted a reduction in asparagus weight loss, preventing changes in color and texture as well as sensory quality, thereby extending the shelf-life of the asparagus. According to the obtained results, it was possible to maintain good quality of green and white asparagus for up to 17 and 10 days, respectively, when packed in MAP using EVOH-based packaging stored at 2 °C. Asparagus stored in packaging with PP/PE film showed lower quality during storage at 2 and 10 °C. These results suggest that EVOH films are potential candidates for advanced packaging materials for the asparagus packaging application.
Collapse
|