1
|
Zhou HF, Deng WY, Guo HQ, Luo WH, Han ZQ, Cheng Z, Lau WM, Xiao NY, Zhang XQ. Antibacterial activity of polyethylene film by hyperthermal hydrogen induced cross-linking with chitosan quaternary ammonium salt. Int J Biol Macromol 2025; 286:138335. [PMID: 39638192 DOI: 10.1016/j.ijbiomac.2024.138335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
In this study, hyperthermal hydrogen-induced cross-linking (HHIC) technology was applied to construct a dense cross-linking layer of antibacterial chitosan quaternary ammonium salt (HTCC) to PE surface through the selective cleavage of CH bonds and subsequent cross-linking of the resulting carbon radicals. Before HHIC treatment, UV-Ozone was used to activate PE surface to facilitate HTCC adsorption. FT-IR and XPS analyses proved the successful cross-linking between PE and HTCC. From AFM analysis, the prepared PE cross-linked HTCC film (PE-c-HTCC) showed the rougher surface with average roughness (Ra) of 9.16 nm. The water vapor permeability (WVP) and oxygen permeability (OP) values of the film were decreased by about 83 % and 97 %, respectively. Additionally, the film exhibited strong antibacterial properties against E. coli and S. aureus. In terms of these properties, the shelf life of fresh beef could be extended for 2 days after packing with the PE-c-HTCC film.
Collapse
Affiliation(s)
- Hui-Fang Zhou
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Wan-Ying Deng
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Hao-Qi Guo
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Wen-Han Luo
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Food Green Packaging Engineering Center, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Zhi-Qiang Han
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China; Shunde Innovation School, University of Science and Technology Beijing, Foshan 528000, China
| | - Zheng Cheng
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Food Green Packaging Engineering Center, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Woon-Ming Lau
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China; Shunde Innovation School, University of Science and Technology Beijing, Foshan 528000, China
| | - Nai-Yu Xiao
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Food Green Packaging Engineering Center, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| | - Xue-Qin Zhang
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Food Green Packaging Engineering Center, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| |
Collapse
|
2
|
Abarca RL, Vargas F, Medina J, Paredes JC, López BC, Ortiz PA, Vargas-Bello-Pérez E. Development and Characterization of Films with Propolis to Inhibit Mold Contamination in the Dairy Industry. Foods 2023; 12:foods12081633. [PMID: 37107428 PMCID: PMC10138102 DOI: 10.3390/foods12081633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Due to the number of polyphenols with multiple biological activities, propolis has high potential to be used as an active agent in food protective films. Therefore, this study aimed to develop and characterize a sodium alginate film with ethanolic extract of propolis (EEP) for its potential use as protective active packaging against filamentous fungi in ripened cheese. Three different concentrations of EEP were analyzed: 0, 5 and 10% w/v. The films obtained were characterized, assessing thermal and physicochemical properties, as well as the concentration of polyphenols in the EEP and antifungal activity of the active films. The incorporation of EEP in the films generated thermal stability with respect to the loss of mass. Total color values (ΔE) of the films were affected by the incorporation of the different concentrations of EEP, showing a decrease in luminosity (L*) of the films, while the chromatic parameters a* and b* increased in direct proportion to the EEP concentration. Antifungal activity was observed with a fungistatic mode of action, stopping the growth of the fungus in cheeses without development of filamentous molds, thus increasing the shelf life of the ripened cheese under the analytical conditions, over 30 days at room temperature. Overall, EEP can be used to prevent growth and proliferation of spoilage microorganisms in cheese.
Collapse
Affiliation(s)
- Romina L Abarca
- Departamento de Ciencias Animales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Macul, Santiago 7820436, Chile
| | - Francisco Vargas
- Instituto de Ciencia y Tecnología de los Alimentos, Facultad de Ciencias Agrarias, Universidad Austral, Avda. Julio Sarrazín s/n, Isla Teja, Valdivia 5090000, Chile
| | - Javiera Medina
- Instituto de Ciencia y Tecnología de los Alimentos, Facultad de Ciencias Agrarias, Universidad Austral, Avda. Julio Sarrazín s/n, Isla Teja, Valdivia 5090000, Chile
| | - Juan Carlos Paredes
- Instituto de Química, Facultad de Ciencia, Universidad Austral de Chile, Isla Teja, Valdivia 5090000, Chile
| | - Bernardo Carrillo López
- Instituto de Ciencia y Tecnología de los Alimentos, Facultad de Ciencias Agrarias, Universidad Austral, Avda. Julio Sarrazín s/n, Isla Teja, Valdivia 5090000, Chile
| | - Pablo A Ortiz
- Núcleo de Química y Bioquímica, Facultad de Estudios Interdisciplinarios, Universidad Mayor, Santiago 8580745, Chile
| | - Einar Vargas-Bello-Pérez
- Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, P.O. Box 237, Earley Gate, Reading RG6 6EU, UK
- Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Periférico R. Aldama Km 1, Chihuahua 31031, Mexico
| |
Collapse
|
3
|
Zhang B, Du H, Yang S, Wu X, Liu W, Guo J, Xiao Y, Peng F. Physiological and Transcriptomic Analyses of the Effects of Exogenous Lauric Acid on Drought Resistance in Peach ( Prunus persica (L.) Batsch). PLANTS (BASEL, SWITZERLAND) 2023; 12:1492. [PMID: 37050118 PMCID: PMC10097042 DOI: 10.3390/plants12071492] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Peach (Prunus persica (L.) Batsch) is a fruit tree of economic and nutritional importance, but it is very sensitive to drought stress, which affects its growth to a great extent. Lauric acid (LA) is a fatty acid produced in plants and associated with the response to abiotic stress, but the underlying mechanism remains unclear. In this study, physiological analysis showed that 50 ppm LA pretreatment under drought stress could alleviate the growth of peach seedlings. LA inhibits the degradation of photosynthetic pigments and the closing of pores under drought stress, increasing the photosynthetic rate. LA also reduces the content of O2-, H2O2, and MDA under drought stress; our results were confirmed by Evans Blue, nitroblue tetrazolium (NBT), and DAB(3,3-diaminobenzidine) staining experiments. It may be that, by directly removing reactive oxygen species (ROS) and improving enzyme activity, i.e., catalase (CAT) activity, peroxidase (POD) activity, superoxide dismutase (SOD) activity, and ascorbate peroxidase (APX) activity, the damage caused by reactive oxygen species to peach seedlings is reduced. Peach seedlings treated with LA showed a significant increase in osmoregulatory substances compared with those subjected to drought stress, thereby regulating osmoregulatory balance and reducing damage. RNA-Seq analysis identified 1876 DEGs (differentially expressed genes) in untreated and LA-pretreated plants under drought stress. In-depth analysis of these DEGs showed that, under drought stress, LA regulates the expression of genes related to plant-pathogen interaction, phenylpropanoid biosynthesis, the MAPK signaling pathway, cyanoamino acid metabolism, and sesquiterpenoid and triterpenoid biosynthesis. In addition, LA may activate the Ca2+ signaling pathway by increasing the expressions of CNGC, CAM/CML, and CPDK family genes, thereby improving the drought resistance of peaches. In summary, via physiological and transcriptome analyses, the mechanism of action of LA in drought resistance has been revealed. Our research results provide new insights into the molecular regulatory mechanism of the LA-mediated drought resistance of peach trees.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yuansong Xiao
- Correspondence: (Y.X.); (F.P.); Tel.: +86-151-6387-3786 (Y.X.); +86-135-6382-1651 (F.P.)
| | - Futian Peng
- Correspondence: (Y.X.); (F.P.); Tel.: +86-151-6387-3786 (Y.X.); +86-135-6382-1651 (F.P.)
| |
Collapse
|
4
|
Ren N, Petchsuk A, Opaprakasit M, Sreearunothai P, Opaprakasit P. Surface modifications of low-density polyethylene films with hydrophobic and antibacterial properties by chitosan-based materials. POLYM-PLAST TECH MAT 2022. [DOI: 10.1080/25740881.2022.2075275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Narath Ren
- Engineering and Technology, Sirindhorn International Institute of Technology (SIIT), Thammasat UniversitySchool of Bio-chemical, Pathum Thani, Thailand
| | - Atitsa Petchsuk
- National Metal and Materials Technology Center, National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Mantana Opaprakasit
- Department of Materials Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Paiboon Sreearunothai
- Engineering and Technology, Sirindhorn International Institute of Technology (SIIT), Thammasat UniversitySchool of Bio-chemical, Pathum Thani, Thailand
| | - Pakorn Opaprakasit
- Engineering and Technology, Sirindhorn International Institute of Technology (SIIT), Thammasat UniversitySchool of Bio-chemical, Pathum Thani, Thailand
| |
Collapse
|
5
|
Srisa A, Promhuad K, San H, Laorenza Y, Wongphan P, Wadaugsorn K, Sodsai J, Kaewpetch T, Tansin K, Harnkarnsujarit N. Antibacterial, Antifungal and Antiviral Polymeric Food Packaging in Post-COVID-19 Era. Polymers (Basel) 2022; 14:4042. [PMID: 36235988 PMCID: PMC9573034 DOI: 10.3390/polym14194042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 12/22/2022] Open
Abstract
Consumers are now more concerned about food safety and hygiene following the COVID-19 pandemic. Antimicrobial packaging has attracted increased interest by reducing contamination of food surfaces to deliver quality and safe food while maintaining shelf life. Active packaging materials to reduce contamination or inhibit viral activity in packaged foods and on packaging surfaces are mostly prepared using solvent casting, but very few materials demonstrate antiviral activity on foods of animal origin, which are important in the human diet. Incorporation of silver nanoparticles, essential oils and natural plant extracts as antimicrobial agents in/on polymeric matrices provides improved antifungal, antibacterial and antiviral properties. This paper reviews recent developments in antifungal, antibacterial and antiviral packaging incorporating natural or synthetic compounds using preparation methods including extrusion, solvent casting and surface modification treatment for surface coating and their applications in several foods (i.e., bakery products, fruits and vegetables, meat and meat products, fish and seafood and milk and dairy foods). Findings showed that antimicrobial material as films, coated films, coating and pouches exhibited efficient antimicrobial activity in vitro but lower activity in real food systems. Antimicrobial activity depends on (i) polar or non-polar food components, (ii) interactions between antimicrobial compounds and the polymer materials and (iii) interactions between environmental conditions and active films (i.e., relative humidity, oxygen and water vapor permeability and temperature) that impact the migration or diffusion of active compounds in foods. Knowledge gained from the plethora of existing studies on antimicrobial polymers can be effectively utilized to develop multifunctional antimicrobial materials that can protect food products and packaging surfaces from SARS-CoV-2 contamination.
Collapse
Affiliation(s)
- Atcharawan Srisa
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Khwanchat Promhuad
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Horman San
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Yeyen Laorenza
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Phanwipa Wongphan
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Kiattichai Wadaugsorn
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Janenutch Sodsai
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Thitiporn Kaewpetch
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Kittichai Tansin
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Nathdanai Harnkarnsujarit
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
- Center for Advanced Studies for Agriculture and Food, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| |
Collapse
|
6
|
Zhang XF, Li QY, Wang M, Ma SQ, Zheng YF, Li YQ, Zhao DL, Zhang CS. 2 E,4 E-Decadienoic Acid, a Novel Anti-Oomycete Agent from Coculture of Bacillus subtilis and Trichoderma asperellum. Microbiol Spectr 2022; 10:e0154222. [PMID: 35943267 PMCID: PMC9430527 DOI: 10.1128/spectrum.01542-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/22/2022] [Indexed: 11/20/2022] Open
Abstract
Phytophthora nicotianae is an oomycete pathogen of global significance threatening many important crops. It is mainly controlled by chemosynthetic fungicides, which endangers ecosystem and human health; thus, there is an urgent need to explore alternatives for these fungicides. In this study, a new anti-oomycete aliphatic compound, 2E,4E-decadienoic acid (DDA), was obtained through coculture of Bacillus subtilis Tpb55 and Trichoderma asperellum HG1. Both in vitro and in vivo tests showed that DDA had a strong inhibitory effect against P. nicotianae. In addition, rhizosphere microbiome analysis showed that DDA reduced the relative abundance of Oomycota in rhizosphere soil. Transcriptome sequencing (RNA-Seq) analysis revealed that treatment of P. nicotianae with DDA resulted in significant downregulation of antioxidant activity and energy metabolism, including antioxidant enzymes and ATP generation, and upregulation of membrane-destabilizing activity, such as phospholipid synthesis and degradation. The metabolomic analysis results implied that the pathways influenced by DDA were mainly related to carbohydrate metabolism, energy metabolism, and the cell membrane. The biophysical tests further indicated that DDA produced oxidative stress on P. nicotianae, inhibited antioxidant enzyme and ATPase activity, and increased cell membrane permeability. Overall, DDA exerts inhibitory activity by acting on multiple targets in P. nicotianae, especially on the cell membrane and mitochondria, and can therefore serve as a novel environment-friendly agent for controlling crop oomycete disease. IMPORTANCE P. nicotianae is an oomycete pathogen that is destructive to crops. Although some oomycete inhibitors have been used during crop production, most are harmful to the ecology and lead to pathogen resistance. Alternatively, medium-chain fatty acids have been reported to exhibit antimicrobial activity in the medical field in previous studies; however, their potential as biocontrol agents has rarely been evaluated. Our in vivo and in vitro analyses revealed that the medium-chain fatty acid 2E,4E-decadienoic acid (DDA) displayed specific inhibitory activity against oomycetes. Further analysis indicated that DDA may acted on multiple targets in P. nicotianae, especially on the cell membrane and mitochondria. Our findings highlight the potential of DDA in controlling oomycete diseases. In conclusion, these results provide insights regarding the future use of green and environment-friendly anti-oomycete natural products for the prevention and control of crop oomycete diseases.
Collapse
Affiliation(s)
- Xi-Fen Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, People’s Republic of China
| | - Qing-Yu Li
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, People’s Republic of China
| | - Mei Wang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, People’s Republic of China
| | - Si-Qi Ma
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, People’s Republic of China
| | - Yan-Fen Zheng
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, People’s Republic of China
| | - Yi-Qiang Li
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, People’s Republic of China
| | - Dong-Lin Zhao
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, People’s Republic of China
| | - Cheng-Sheng Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, People’s Republic of China
| |
Collapse
|
7
|
Wang Q, Cao Y, Li J, Li J, Shang W, Peng N, Chen T, Liao Q, Wen Y. Construction of Hydrophobic Lauric Acid Film on Aluminum Alloy and Its Corrosion Resistance Mechanism. SURF INTERFACE ANAL 2022. [DOI: 10.1002/sia.7126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Qi Wang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering Guilin University of Technology Guilin China
| | - Yijun Cao
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering Guilin University of Technology Guilin China
| | - Jiaojiao Li
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering Guilin University of Technology Guilin China
| | - Jiaping Li
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering Guilin University of Technology Guilin China
| | - Wei Shang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering Guilin University of Technology Guilin China
| | - Ning Peng
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering Guilin University of Technology Guilin China
| | - Tianfeng Chen
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering Guilin University of Technology Guilin China
| | - Qun Liao
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering Guilin University of Technology Guilin China
| | - Yuqing Wen
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering Guilin University of Technology Guilin China
| |
Collapse
|
8
|
Liu Y, Ma Y, Liu Y, Zhang J, Hossen MA, Sameen DE, Dai J, Li S, Qin W. Fabrication and characterization of pH-responsive intelligent films based on carboxymethyl cellulose and gelatin/curcumin/chitosan hybrid microcapsules for pork quality monitoring. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107224] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
9
|
Mishra B, Mishra AK, Kumar S, Mandal SK, NSV L, Kumar V, Baek KH, Mohanta YK. Antifungal Metabolites as Food Bio-Preservative: Innovation, Outlook, and Challenges. Metabolites 2021; 12:12. [PMID: 35050134 PMCID: PMC8778586 DOI: 10.3390/metabo12010012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 12/18/2022] Open
Abstract
Perishable food spoilage caused by fungi is a major cause of discomfort for food producers. Food sensory abnormalities range from aesthetic degeneration to significant aroma, color, or consistency alterations due to this spoilage. Bio-preservation is the use of natural or controlled bacteria or antimicrobials to enhance the quality and safety of food. It has the ability to harmonize and rationalize the required safety requirements with conventional preservation methods and food production safety and quality demands. Even though synthetic preservatives could fix such issues, there is indeed a significant social need for "clean label" foods. As a result, consumers are now seeking foods that are healthier, less processed, and safer. The implementation of antifungal compounds has gotten a lot of attention in recent decades. As a result, the identification and characterization of such antifungal agents has made promising advances. The present state of information on antifungal molecules, their modes of activity, connections with specific target fungi varieties, and uses in food production systems are summarized in this review.
Collapse
Affiliation(s)
- Bishwambhar Mishra
- Department of Biotechnology, Chaitanya Bharathi Institute of Technology, Hyderabad 500075, India; (B.M.); (S.K.M.); (L.N.)
| | - Awdhesh Kumar Mishra
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongsangbuk-do, Korea; (A.K.M.); (V.K.)
| | - Sanjay Kumar
- Department of Biotechnology, National Institute of Technology, Tadepalligudem, Andhra Pradesh 534101, India;
| | - Sanjeeb Kumar Mandal
- Department of Biotechnology, Chaitanya Bharathi Institute of Technology, Hyderabad 500075, India; (B.M.); (S.K.M.); (L.N.)
| | - Lakshmayya NSV
- Department of Biotechnology, Chaitanya Bharathi Institute of Technology, Hyderabad 500075, India; (B.M.); (S.K.M.); (L.N.)
| | - Vijay Kumar
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongsangbuk-do, Korea; (A.K.M.); (V.K.)
- Department of Orthopedics Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongsangbuk-do, Korea; (A.K.M.); (V.K.)
| | - Yugal Kishore Mohanta
- Department of Applied Biology, University of Science and Technology Meghalaya, Ri-Bhoi 793101, India
| |
Collapse
|