Azizi-Lalabadi M, Rahimzadeh-Sani Z, Feng J, Hosseini H, Jafari SM. The impact of essential oils on the qualitative properties, release profile, and stimuli-responsiveness of active food packaging nanocomposites.
Crit Rev Food Sci Nutr 2021;
63:1822-1845. [PMID:
34486886 DOI:
10.1080/10408398.2021.1971154]
[Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Food industries attempt to introduce a new food packaging by blending essential oils (EOs) into the polymeric matrix as an active packaging, which has great ability to preserve the quality of food and increase its shelf life by releasing active compounds within storage. The main point in designing the active packaging is controlled-release of active substances for their enhanced activity. Biopolymers are functional substances, which suggest structural integrity to sense external stimuli like temperature, pH, or ionic strength. The controlled release of EOs from active packaging and their stimuli-responsive properties can be very important for practical applications of these novel biocomposites. EOs can affect the uniformity of the polymeric matrix and physical and structural characteristics of the composites, such as moisture content, solubility in water, water vapor transmission rate, elongation at break, and tensile strength. To measure the ingredients of EOs and their migration from food packaging, chromatographic methods can be used. A head-space-solid phase micro-extraction coupled to gas chromatography (HS-SPME-GC-MS) technique is as a good process for evaluating the release of Eos. Therefore, the aims of this review were to evaluate the qualitative characteristics, release profile, and stimuli-responsiveness of active and smart food packaging nanocomposites loaded with essential oils and developing such multi-faceted packaging for advanced applications.
Collapse