1
|
Sharma S, Kundu P, Tyagi D, Shanmugam V. Graphene-based nanomaterials applications for agricultural and food sector. Adv Colloid Interface Sci 2024; 336:103377. [PMID: 39662337 DOI: 10.1016/j.cis.2024.103377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 12/01/2024] [Accepted: 12/03/2024] [Indexed: 12/13/2024]
Abstract
In the past decade, graphene-based nanomaterials (GBNs) have been considerably investigated in agriculture due to their exceptionally enriched physicochemical properties. Productivity in the agricultural sector relies significantly on agrochemicals. However, conventional systems suffer from a lack of application efficiency, resulting in environmental pollution and associated problems. Due to high surface area, easy functionalization, high chemical stability, biocompatibility, and ability to adhere to biological structures, GBNs become a promising candidate for agro-delivery carriers. A comprehensive review on developments of GBNs for pesticide delivery, nutrient delivery, food packaging and preservation, and their impacts on plant growth and development are missing in the literature. To address this, here we presented a detailed review on the material design, agrochemicals loading, release or diffusion kinetics, in-vivo applications, and effects of GBNs on plants. The GBNs found to improve the efficacy of existing agrochemicals and food preservatives, aiming to decrease the overall burden of these substances. The incorporation of GBNs in biocompatible and biodegradable polymers is reported to improve their oxygen barrier and mechanical properties for food packaging applications, targeting to reduce the use of petroleum-derived polymers based current food packaging materials, which leads to serious environmental impacts. In the context of plant nanobionics, GBNs has been found to boost the plant growth at low concentrations. Here, recommendations for future research have been deliberated, drawing reference from the relevant area to gain a deeper understanding of the underlying science, and to develop better delivery and packaging applications approaches. Additionally, discussions on recommendations regarding the safe concentration of GBNs for plant nanobionics are presented to facilitate their secure and effective utilization.
Collapse
Affiliation(s)
- Sandeep Sharma
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521, United States.
| | - Priya Kundu
- National Agri-Food Biotechnology Institute, Sector-81, S.A.S Nagar, Mohali 140306, Punjab, India
| | - Deepak Tyagi
- Zang Crop Care (OPC) Pvt. Ltd, Sonipat 131039, Haryana, India
| | | |
Collapse
|
2
|
Wang J, Cheng Y, Li S, Liu B, Yang L, Geng F, Xie S, Qi R, Zhang Y, Liu D, Xia H. Enhanced properties of gelatin films incorporated with TiO 2-loaded reduced graphene oxide aerogel microspheres for active food packaging applications. Int J Biol Macromol 2024; 261:129772. [PMID: 38281539 DOI: 10.1016/j.ijbiomac.2024.129772] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/19/2023] [Accepted: 01/24/2024] [Indexed: 01/30/2024]
Abstract
The synergistic effect of graphene sheets and titanium dioxide nanoparticles (TiO2) hybrid fillers can improve the antibacterial, mechanical, and barrier properties of gelatin (GL), making it more suitable to be used in the food packaging application. However, the uneven dispersion and aggregation of the hybrid fillers restrict its performance for further application. In order to achieve the above superior properties, reduced graphene oxide aerogel microspheres (rGOAMs) loaded with TiO2 (rGOAMs@TiO2) were successfully prepared using one-step hydrothermal process by reducing titanium sulfate into TiO2 on the framework of rGOAMs, followed by effective dispersion in the GL matrix to form nanocomposites (rGOAMs@TiO2/GL) through simultaneous ultrasonication and mechanical stirring, as well as an ultrasonic cell grinder process. Incorporating a mere 0.8 wt% of rGOAMs@TiO2 effectively improved the mechanical, antibacterial, UV light barrier, thermal stability, hydrophobicity, and water vapor barrier properties of the GL. Compared with the composites made of rGOAMs, TiO2, and GL (rGOAMs/TiO2/GL), rGOAMs@TiO2/GL composites showed stronger filler-matrix interactions, better filler dispersion, and lower TiO2 particle aggregation, suggesting superiority compared to rGOAMs/TiO2/GL composites at the same filler content. This innovative method of mixing GL with rGOAMs@TiO2 holds great promise for enhancing the suitability of GL in active food packaging applications.
Collapse
Affiliation(s)
- Jian Wang
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yu Cheng
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Shijiu Li
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Baohua Liu
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Li Yang
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Fang Geng
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Songzhi Xie
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Rui Qi
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yin Zhang
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Dayu Liu
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.
| | - Hesheng Xia
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
3
|
Rahman S, Gogoi J, Dubey S, Chowdhury D. Animal derived biopolymers for food packaging applications: A review. Int J Biol Macromol 2024; 255:128197. [PMID: 37979757 DOI: 10.1016/j.ijbiomac.2023.128197] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/11/2023] [Accepted: 11/15/2023] [Indexed: 11/20/2023]
Abstract
It is essential to use environment-friendly, non-toxic, biodegradable and sustainable materials for various applications. Biopolymers are derived from renewable sources like plants, microorganisms, and agricultural wastes. Unlike conventional polymers, biopolymer has a lower carbon footprint and contributes less to greenhouse gas emission. All biopolymers are biodegradable, meaning natural processes can break them down into harmless products such as water and biomass. This property is of utmost importance for various sustainable applications. This review discusses different classifications of biopolymers based on origin, including plant-based, animal-based and micro-organism-based biopolymers. The review also discusses the desirable properties that are required in materials for their use as packaging material. It also discusses the different processes used in modifying the biopolymer to improve its properties. Finally, this review shows the recent developments taking place in using specifically animal origin-based biopolymer and its use in packaging material. It was observed that animal-origin-based biopolymers, although they possess unique properties however, are less explored than plant-origin biopolymers. The animal-origin-based biopolymers covered in this review are chitosan, gelatin, collagen, keratin, casein, whey, hyaluronic acid and silk fibroin. This review will help in renewing research interest in animal-origin biopolymers. In summary, biopolymer offers a sustainable and environment-friendly alternative to conventional polymers. Their versatility, biocompatibility will help create a more sustainable future.
Collapse
Affiliation(s)
- Sazzadur Rahman
- Material Nanochemistry Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati 781035, India; Department of Chemistry, Gauhati University, G. B. Nagar, Guwahati 781014, Assam, India
| | - Jahnabi Gogoi
- Material Nanochemistry Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati 781035, India
| | - Sonali Dubey
- Material Nanochemistry Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati 781035, India
| | - Devasish Chowdhury
- Material Nanochemistry Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati 781035, India; Department of Chemistry, Gauhati University, G. B. Nagar, Guwahati 781014, Assam, India.
| |
Collapse
|
4
|
Purcea Lopes PM, Moldovan D, Fechete R, Mare L, Barbu-Tudoran L, Sechel N, Popescu V. Characterization of a Graphene Oxide-Reinforced Whey Hydrogel as an Eco-Friendly Absorbent for Food Packaging. Gels 2023; 9:gels9040298. [PMID: 37102911 PMCID: PMC10138084 DOI: 10.3390/gels9040298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
This study presents a structural analysis of a whey and gelatin-based hydrogel reinforced with graphene oxide (GO) by ultraviolet and visible (UV-VIS) spectroscopy, Fourier transform infrared spectroscopy (FT-IR), and X-ray diffraction (XRD). The results revealed barrier properties in the UV range for the reference sample (containing no graphene oxide) and the samples with minimal GO content of 0.66×10−3% and 3.33×10−3%, respectively, in the UV-VIS and near-IR range; for the samples with higher GO content, this was 6.67×10−3% and 33.33×10−3% as an effect of the introduction of GO into the hydrogel composite. The changes in the position of diffraction angles 2θ from the X-ray diffraction patterns of GO-reinforced hydrogels indicated a decrease in the distances between the turns of the protein helix structure due to the GO cross-linking effect. Transmission electron spectroscopy (TEM) was used for GO, whilst scanning electron microscopy (SEM) was used for the composite characterization. A novel technique for investigating the swelling rate was presented by performing electrical conductivity measurements, the results of which led to the identification of a potential hydrogel with sensor properties.
Collapse
Affiliation(s)
- Pompilia Mioara Purcea Lopes
- Physics and Chemistry Department, Technical University of Cluj-Napoca, 28 Memorandumului Str., 400114 Cluj-Napoca, Romania
| | - Dumitrita Moldovan
- Physics and Chemistry Department, Technical University of Cluj-Napoca, 28 Memorandumului Str., 400114 Cluj-Napoca, Romania
| | - Radu Fechete
- Physics and Chemistry Department, Technical University of Cluj-Napoca, 28 Memorandumului Str., 400114 Cluj-Napoca, Romania
| | - Liviu Mare
- Physics and Chemistry Department, Technical University of Cluj-Napoca, 28 Memorandumului Str., 400114 Cluj-Napoca, Romania
| | - Lucian Barbu-Tudoran
- Electron Microscopy Center, Faculty of Biology and Geology, Babes-Bolyai University of Cluj-Napoca, 1 M. Kogalniceanu Street, 400347 Cluj-Napoca, Romania
| | - Niculina Sechel
- Materials Science and Engineering Department, Technical University of Cluj-Napoca, 103-105 Muncii Avenue, 400641 Cluj-Napoca, Romania
| | - Violeta Popescu
- Physics and Chemistry Department, Technical University of Cluj-Napoca, 28 Memorandumului Str., 400114 Cluj-Napoca, Romania
| |
Collapse
|
5
|
Maryam Adilah Z, Han Lyn F, Nabilah B, Jamilah B, Gun Hean C, Nur Hanani Z. Enhancing the physicochemical and functional properties of gelatin/graphene oxide/cinnamon bark oil nanocomposite packaging films using ferulic acid. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
6
|
Xia Y, Meng F, Wang S, Li P, Geng C, Zhang X, Zhou Z, Kong F. Tough, antibacterial fish scale gelatin/chitosan film with excellent water vapor and UV-blocking performance comprising liquefied chitin and silica sol. Int J Biol Macromol 2022; 222:3250-3260. [DOI: 10.1016/j.ijbiomac.2022.10.097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/02/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022]
|
7
|
Bio-Nanocomposite Based on Edible Gelatin Film as Active Packaging from Clarias gariepinus Fish Skin with the Addition of Cellulose Nanocrystalline and Nanopropolis. Polymers (Basel) 2022; 14:polym14183738. [PMID: 36145881 PMCID: PMC9506570 DOI: 10.3390/polym14183738] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/23/2022] [Accepted: 09/01/2022] [Indexed: 11/22/2022] Open
Abstract
This study develops bio-nano composite gelatin-based edible film (NEF) by combining nanogelatin, cellulose nanocrystal (CNC), and nanopropolis (NP) fillers to improve the resulting film characteristics. The NEF was characterized in terms of thickness, swelling, pH, water content, solubility, vapor and oxygen permeability, mechanical properties, heat resistance, morphology, transparency, and color. The results showed that the thickness and swelling increased significantly, whilst the pH did not significantly differ in each treatment. The water content and the water solubility also showed no significant changes with loadings of both fillers. At the same time, vapor and oxygen permeability decreased with addition of the fillers but were not significantly affected by the loading amounts. The heat resistance properties increased with the filler addition. Tensile strength and Young’s modulus increased for the films loaded with >3% CNC. The elongation at break showed a significant difference together with transparency and color change. The greater the CNC concentration and NP loading were, the darker the resulting transparency and the color of the NEF. Overall results show a considerable improvement in the properties of the resulting NEFs with the incorporation of CNC and NP fillers.
Collapse
|
8
|
Khalid MY, Arif ZU. Novel biopolymer-based sustainable composites for food packaging applications: A narrative review. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Jafarzadeh S, Forough M, Amjadi S, Javan Kouzegaran V, Almasi H, Garavand F, Zargar M. Plant protein-based nanocomposite films: A review on the used nanomaterials, characteristics, and food packaging applications. Crit Rev Food Sci Nutr 2022; 63:9667-9693. [PMID: 35522084 DOI: 10.1080/10408398.2022.2070721] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Consumer demands to utilize environmentally friendly packaging have led researchers to develop packaging materials from naturally derived resources. In recent years, plant protein-based films as a replacement for synthetic plastics have attracted the attention of the global food packaging industry due to their biodegradability and unique properties. Biopolymer-based films need a filler to show improved packaging properties. One of the latest strategies introduced to food packaging technology is the production of nanocomposite films which are multiphase materials containing a filler with at least one dimension less than 100 nm. This review provides the recent findings on plant-based protein films as biodegradable materials that can be combined with nanoparticles that are applicable to food packaging. Moreover, it investigates the characterization of nanocomposite plant-based protein films/edible coatings. It also briefly describes the application of plant-based protein nanocomposite films/coating on fruits/vegetables, meat and seafood products, and some other foods. The results indicate that the functional performance, barrier, mechanical, optical, thermal and antimicrobial properties of plant protein-based materials can be extended by incorporating nanomaterials. Recent reports provide a better understanding of how incorporating nanomaterials into plant protein-based biopolymers leads to an increase in the shelf life of food products during storage time.
Collapse
Affiliation(s)
- Shima Jafarzadeh
- School of Engineering, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Mehrdad Forough
- Department of Chemistry, Middle East Technical University, Ankara, Turkey
| | - Sajed Amjadi
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | | | - Hadi Almasi
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Farhad Garavand
- Department of Food Chemistry and Technology, Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
| | - Masoumeh Zargar
- School of Engineering, Edith Cowan University, Joondalup, Western Australia, Australia
| |
Collapse
|
10
|
Lionetto F, Esposito Corcione C. Recent Applications of Biopolymers Derived from Fish Industry Waste in Food Packaging. Polymers (Basel) 2021; 13:2337. [PMID: 34301094 PMCID: PMC8309529 DOI: 10.3390/polym13142337] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 02/07/2023] Open
Abstract
Fish waste is attracting growing interest as a new raw material for biopolymer production in different application fields, mainly in food packaging, with significant economic and environmental advantages. This review paper summarizes the recent advances in the valorization of fish waste for the preparation of biopolymers for food packaging applications. The issues related to fishery industry waste and fish by-catch and the potential for re-using these by-products in a circular economy approach have been presented in detail. Then, all the biopolymer typologies derived from fish waste with potential applications in food packaging, such as muscle proteins, collagen, gelatin, chitin/chitosan, have been described. For each of them, the recent applications in food packaging, in the last five years, have been overviewed with an emphasis on smart packaging applications. Despite the huge industrial potential of fish industry by-products, most of the reviewed applications are still at lab-scale. Therefore, the technological challenges for a reliable exploitation and recovery of several potentially valuable molecules and the strategies to improve the barrier, mechanical and thermal performance of each kind of biopolymer have been analyzed.
Collapse
Affiliation(s)
- Francesca Lionetto
- Department of Engineering for Innovation, University of Salento, Via Arnesano, 73100 Lecce, Italy;
| | | |
Collapse
|