1
|
Díaz-Mula HM, López JP, Serrano M, Pretel MT. A New Ready-to-Eat Product Based on Enzymatically Peeled 'Hernandina' Clementine Segments and Citrus Syrup. Foods 2023; 12:3977. [PMID: 37959096 PMCID: PMC10647611 DOI: 10.3390/foods12213977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/23/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023] Open
Abstract
Ready-to-eat fresh fruit have an increasing presence in international markets due to their convenience and health benefits. However, these products are highly perishable and efficient technologies to increase their shelf life are needed. In the present research, different citrus fruit species and cultivars from organic farming were assessed to obtain enzymatically peeled citrus segments. The best results in terms of segment quality were observed for 'Hernandina' clementine, which was chosen to make a new ready-to-eat product based on peeled citrus segments that were packaged in glass jars with a light syrup made of citrus juice and organic sugar cane. Different citrus juice mixtures were assayed and the most appreciated syrup, based on the sensory scores given by panellists, was that containing 50-50 (v/v) of 'Fino' lemon and 'Hernandina' clementine juices. In addition, different pasteurization treatments were assessed for their effects on conserving the safety, nutritional quality and sensory properties of the product during cold storage. The results show that pasteurization treatment at 50 °C for 45 min was sufficient to prevent microbial contamination with mesophilic and psychrophilic aerobic bacteria or yeast and mould and to maintain sensory properties until five weeks of storage at 4 °C. In addition, only a 10% reduction in vitamin C concentrations was observed in fresh-segments or syrup until the end of the storage period, showing that a high bioactive compound content and health benefits were conserved in the new ready-to-eat product after pasteurization and prolonged cold storage.
Collapse
Affiliation(s)
- Huertas M. Díaz-Mula
- Department of Biología Aplicada, Escuela Politécnica Superior de Orihuela (EPSO), Universidad Miguel Hernández, Carretera Beniel-Orihuela, Km 3.2, 03312 Orihuela, Alicante, Spain; (H.M.D.-M.); (J.P.L.); (M.S.)
- Instituto Universitario de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO), Universidad Miguel Hernández, Carretera Beniel-Orihuela, Km 3.2, 03312 Orihuela, Alicante, Spain
| | - Juan P. López
- Department of Biología Aplicada, Escuela Politécnica Superior de Orihuela (EPSO), Universidad Miguel Hernández, Carretera Beniel-Orihuela, Km 3.2, 03312 Orihuela, Alicante, Spain; (H.M.D.-M.); (J.P.L.); (M.S.)
| | - María Serrano
- Department of Biología Aplicada, Escuela Politécnica Superior de Orihuela (EPSO), Universidad Miguel Hernández, Carretera Beniel-Orihuela, Km 3.2, 03312 Orihuela, Alicante, Spain; (H.M.D.-M.); (J.P.L.); (M.S.)
- Instituto Universitario de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO), Universidad Miguel Hernández, Carretera Beniel-Orihuela, Km 3.2, 03312 Orihuela, Alicante, Spain
| | - María T. Pretel
- Department of Biología Aplicada, Escuela Politécnica Superior de Orihuela (EPSO), Universidad Miguel Hernández, Carretera Beniel-Orihuela, Km 3.2, 03312 Orihuela, Alicante, Spain; (H.M.D.-M.); (J.P.L.); (M.S.)
| |
Collapse
|
2
|
Ranjha MMAN, Shafique B, Aadil RM, Manzoor MF, Cheng JH. Modification in cellulose films through ascent cold plasma treatment and polymerization for food products packaging. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
3
|
Li J, Li Z, Ma Q, Zhou Y. Enhancement of anthocyanins extraction from haskap by cold plasma pretreatment. INNOV FOOD SCI EMERG 2023. [DOI: 10.1016/j.ifset.2023.103294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
4
|
Kim SS, Kim HJ, Park KJ, Kang SB, Park Y, Han SG, Kim M, Song YH, Kim DS. Metabolomic Profiling of Citrus unshiu during Different Stages of Fruit Development. PLANTS 2022; 11:plants11070967. [PMID: 35406947 PMCID: PMC9002680 DOI: 10.3390/plants11070967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 12/22/2022]
Abstract
Citrus fruits undergo significant metabolic profile changes during their development process. However, limited information is available on the changes in the metabolites of Citrus unshiu during fruit development. Here, we analyzed the total phenolic content (TPC), total carotenoid content (TCC), antioxidant activity, and metabolite profiles in C. unshiu fruit flesh during different stages of fruit development and evaluated their correlations. The TPC and antioxidant activity significantly decreased during fruit development, whereas the TCC increased. The metabolite profiles, including sugars, acidic compounds, amino acids, flavonoids, limonoids, carotenoids, and volatile compounds (mono- and sesquiterpenes), in C. unshiu fruit flesh also changed significantly, and a citrus metabolomic pathway related to fruit development was proposed. Based on the data, C. unshiu fruit development was classified into three groups: Group 1 (Aug. 1), Group 2 (Aug. 31 and Sep. 14), and Group 3 (Oct. 15 and Nov. 16). Although citrus peel was not analyzed and the sensory and functional qualities during fruit development were not investigated, the results of this study will help in our understanding of the changes in chemical profile during citrus fruit development. This can provide vital information for various applications in the C. unshiu industry.
Collapse
Affiliation(s)
- Sang Suk Kim
- Citrus Research Institute, National Institute of Horticultural & Herbal Science, Rural Development Administration, Seogwipo 63607, Korea; (S.S.K.); (K.J.P.); (S.B.K.); (Y.P.); (S.-G.H.); (M.K.)
| | - Hyun-Jin Kim
- Division of Applied Life Sciences (BK21 Four), Gyeongsang National University, Jinju 52828, Korea;
| | - Kyung Jin Park
- Citrus Research Institute, National Institute of Horticultural & Herbal Science, Rural Development Administration, Seogwipo 63607, Korea; (S.S.K.); (K.J.P.); (S.B.K.); (Y.P.); (S.-G.H.); (M.K.)
| | - Seok Beom Kang
- Citrus Research Institute, National Institute of Horticultural & Herbal Science, Rural Development Administration, Seogwipo 63607, Korea; (S.S.K.); (K.J.P.); (S.B.K.); (Y.P.); (S.-G.H.); (M.K.)
| | - YoSup Park
- Citrus Research Institute, National Institute of Horticultural & Herbal Science, Rural Development Administration, Seogwipo 63607, Korea; (S.S.K.); (K.J.P.); (S.B.K.); (Y.P.); (S.-G.H.); (M.K.)
| | - Seong-Gab Han
- Citrus Research Institute, National Institute of Horticultural & Herbal Science, Rural Development Administration, Seogwipo 63607, Korea; (S.S.K.); (K.J.P.); (S.B.K.); (Y.P.); (S.-G.H.); (M.K.)
| | - Misun Kim
- Citrus Research Institute, National Institute of Horticultural & Herbal Science, Rural Development Administration, Seogwipo 63607, Korea; (S.S.K.); (K.J.P.); (S.B.K.); (Y.P.); (S.-G.H.); (M.K.)
| | - Yeong Hun Song
- Department of Agricultural Chemistry, Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju 52828, Korea;
| | - Dong-Shin Kim
- Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Korea
- Correspondence: ; Tel.: +82-55-772-2555
| |
Collapse
|
5
|
Food spoilage, bioactive food fresh-keeping films and functional edible coatings: Research status, existing problems and development trend. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
6
|
Babaei-Ghazvini A, Acharya B, Korber DR. Antimicrobial Biodegradable Food Packaging Based on Chitosan and Metal/Metal-Oxide Bio-Nanocomposites: A Review. Polymers (Basel) 2021; 13:2790. [PMID: 34451327 PMCID: PMC8402091 DOI: 10.3390/polym13162790] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 12/31/2022] Open
Abstract
Finding a practical alternative to decrease the use of conventional polymers in the plastic industry has become an acute concern since industrially-produced plastic waste, mainly conventional food packaging, has become an environmental crisis worldwide. Biodegradable polymers have attracted the attention of researchers as a possible alternative for fossil-based plastics. Chitosan-based packaging materials, in particular, have become a recent focus for the biodegradable food packaging sector due to their biodegradability, non-toxic nature, and antimicrobial properties. Chitosan, obtained from chitin, is the most abundant biopolymer in nature after cellulose. Chitosan is an ideal biomaterial for active packaging as it can be fabricated alone or combined with other polymers as well as metallic antimicrobial particles, either as layers or as coacervates for examination as functional components of active packaging systems. Chitosan-metal/metal oxide bio-nanocomposites have seen growing interest as antimicrobial packaging materials, with several different mechanisms of inhibition speculated to include direct physical interactions or chemical reactions (i.e., the production of reactive oxygen species as well as the increased dissolution of toxic metal cations). The use of chitosan and its metal/metal oxide (i.e., titanium dioxide, zinc oxide, and silver nanoparticles) bio-nanocomposites in packaging applications are the primary focus of discussion in this review.
Collapse
Affiliation(s)
- Amin Babaei-Ghazvini
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada;
| | - Bishnu Acharya
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada;
| | - Darren R. Korber
- Department of Food and Bioproduct Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada;
| |
Collapse
|