1
|
Fehér L, Mrówczyński D, Pidl R, Böröcz P. Compressive Strength of Corrugated Paperboard Packages with Low and High Cutout Rates: Numerical Modelling and Experimental Validation. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2360. [PMID: 36984240 PMCID: PMC10054506 DOI: 10.3390/ma16062360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
The finite element method is a widely used numerical method to analyze structures in virtual space. This method can be used in the packaging industry to determine the mechanical properties of corrugated boxes. This study aims to create and validate a numerical model to predict the compression force of corrugated cardboard boxes by considering the influence of different cutout configurations of sidewalls. The types of investigated boxes are the following: the width and height of the boxes are 300 mm in each case and the length dimension of the boxes varied from 200 mm to 600 mm with a 100 mm increment. The cutout rates were 0%, 4%, 16%, 36%, and 64% with respect to the total surface area of sidewalls of the boxes. For the finite element analysis, a homogenized linear elastic orthotropic material model with Hill plasticity was used. The results of linear regressions show very good estimations to the numerical and experimental box compression test (BCT) values in each tested box group. Therefore, the numerical model can give a good prediction for the BCT force values from 0% cutout to 64% cutout rates. The accuracy of the numerical model decreases a little when the cutout rates are high. Based on the results, this paper presents a numerical model that can be used in the packaging design to estimate the compression strength of corrugated cardboard boxes.
Collapse
Affiliation(s)
- Lajos Fehér
- Department of Applied Mechanics, Széchenyi István University, Egyetem tér 1, 9026 Győr, Hungary
| | - Damian Mrówczyński
- Research and Development Department, Femat Sp. z o.o., Wagrowska 2, 61-369 Poznań, Poland
| | - Renáta Pidl
- Department of Applied Mechanics, Széchenyi István University, Egyetem tér 1, 9026 Győr, Hungary
| | - Péter Böröcz
- Department of Logistics and Forwarding, Széchenyi István University, Egyetem tér 1, 9026 Győr, Hungary
| |
Collapse
|
2
|
Lin M, Fawole OA, Saeys W, Wu D, Wang J, Opara UL, Nicolai B, Chen K. Mechanical damages and packaging methods along the fresh fruit supply chain: A review. Crit Rev Food Sci Nutr 2022; 63:10283-10302. [PMID: 35647708 DOI: 10.1080/10408398.2022.2078783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Mechanical damage of fresh fruit occurs throughout the postharvest supply chain leading to poor consumer acceptance and marketability. In this review, the mechanisms of damage development are discussed first. Mathematical modeling provides advanced ways to describe and predict the deformation of fruit with arbitrary geometry, which is important to understand their mechanical responses to external forces. Also, the effects of damage at the cellular and molecular levels are discussed as this provides insight into fruit physiological responses to damage. Next, direct measurement methods for damage including manual evaluation, optical detection, magnetic resonance imaging, and X-ray computed tomography are examined, as well as indirect methods based on physiochemical indexes. Also, methods to measure fruit susceptibility to mechanical damage based on the bruise threshold and the amount of damage per unit of impact energy are reviewed. Further, commonly used external and interior packaging and their applications in reducing damage are summarized, and a recent biomimetic approach for designing novel lightweight packaging inspired by the fruit pericarp. Finally, future research directions are provided.HIGHLIGHTSMathematical modeling has been increasingly used to calculate damage to fruit.Cell and molecular mechanisms response to fruit damage is an under-explored area.Susceptibility measurement of different mechanical forces has received attention.Customized design of reusable and biodegradable packaging is a hot topic of research.
Collapse
Affiliation(s)
- Menghua Lin
- College of Agriculture & Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, P. R. China
| | - Olaniyi Amos Fawole
- Postharvest Research Laboratory, Department of Botany and Plant Biotechnology, University of Johannesburg, Johannesburg, South Africa
| | - Wouter Saeys
- BIOSYST-MeBioS, KU Leuven-University of Leuven, Leuven, Belgium
| | - Di Wu
- College of Agriculture & Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, P. R. China
- Zhejiang University Zhongyuan Institute, Zhengzhou, P. R. China
| | - Jun Wang
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Department of Packaging Engineering, Jiangnan University, Wuxi, P. R. China
| | - Umezuruike Linus Opara
- SARChI Postharvest Technology Research Laboratory, Africa Institute for Postharvest Technology, Faculty of AgriSciences, Stellenbosch University, Stellenbosch, South Africa
- UNESCO International Centre for Biotechnology, Nsukka, Enugu State, Nigeria
| | - Bart Nicolai
- BIOSYST-MeBioS, KU Leuven-University of Leuven, Leuven, Belgium
- Flanders Centre of Postharvest Technology, Leuven, Belgium
| | - Kunsong Chen
- College of Agriculture & Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, P. R. China
| |
Collapse
|