1
|
Bosland MC, Vega K, Horton L, Schlicht MJ. Hormonal and genotoxic estrogen-androgen carcinogenesis in the NBL rat prostate: A role for aromatase. Prostate 2023; 83:823-830. [PMID: 36938936 DOI: 10.1002/pros.24522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/20/2023] [Accepted: 03/02/2023] [Indexed: 03/21/2023]
Abstract
BACKGROUND Androgens are generally thought to cause prostate cancer, but the data from animal studies suggest that they must be aromatized to estrogen and act in concert with genotoxic estrogen metabolites. The objective of this study was to determine whether treatment with testosterone (T) combined with a nonestrogenic estrogen metabolite and a nongenotoxic estrogenic compound would all be necessary and sufficient for the induction of a high incidence of prostate cancer in the susceptible NBL rat strain. METHODS NBL rats were treated with low-dose testosterone via slow-release Silastic implants and with the marginally estrogenic genotoxic catechol estrogen 4-hydroxyestradiol (4OH-E2) and the nongenotoxic estrogen 2-fluoroestradiol (2F-E2) and in one experiment the aromatase inhibitor letrozole via custom-made slow-release pellets. Animals were euthanized 52 weeks after implantation and their pituitaries and prostate complexes weighed and fixed in formalin. Hematoxylin and eosin (H&E)-stained step sections were prepared and examined microscopically for proliferative lesions. RESULTS Animals treated with 2F-E2, with or without the other compounds, had enlarged pituitaries demonstrating its estrogenicity. Animals treated with T, with or without the other compounds, had enlarged prostates consistent with its androgenicity. Rats treated with T plus 2F-E2 and 4OH-E2 developed a high incidence of prostatic cancer (89%), while, surprisingly, rats treated with T plus only 2F-E2 also had a high incidence of prostate cancer (95%) contradicting our initial hypothesis. To test whether the formation of E2 from T by aromatase could lead to estrogen genotoxicity and prostate carcinogenesis we then rats treated with T and 2F-E2 also with letrozole and found that it reduced prostate cancer incidence by about 50%. CONCLUSIONS These findings indicate that long-term treatment with a nongenotoxic estrogen (2F-E2) and T as well as uninhibited prostatic aromatase activity generating genotoxic E2 are all required for induction of a high incidence of prostatic adenocarcinomas in NBL rats. These and previous data indicate that androgen receptor-mediated action, estrogen receptor mediation, and estrogen genotoxicity are all required and sufficient for hormonal carcinogenesis in the NBL rat prostate. Interference with the estrogen genotoxicity is a potential approach to prostate cancer chemoprevention.
Collapse
Affiliation(s)
- Maarten C Bosland
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Katherine Vega
- Department of Environmental Medicine, New York University School of Medicine, New York, New York, USA
| | - Lori Horton
- Department of Environmental Medicine, New York University School of Medicine, New York, New York, USA
| | - Michael J Schlicht
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
2
|
The 3,4-Quinones of Estrone and Estradiol Are the Initiators of Cancer whereas Resveratrol and N-acetylcysteine Are the Preventers. Int J Mol Sci 2021; 22:ijms22158238. [PMID: 34361004 PMCID: PMC8347442 DOI: 10.3390/ijms22158238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/14/2021] [Accepted: 07/21/2021] [Indexed: 11/25/2022] Open
Abstract
This article reviews evidence suggesting that a common mechanism of initiation leads to the development of many prevalent types of cancer. Endogenous estrogens, in the form of catechol estrogen-3,4-quinones, play a central role in this pathway of cancer initiation. The catechol estrogen-3,4-quinones react with specific purine bases in DNA to form depurinating estrogen-DNA adducts that generate apurinic sites. The apurinic sites can then lead to cancer-causing mutations. The process of cancer initiation has been demonstrated using results from test tube reactions, cultured mammalian cells, and human subjects. Increased amounts of estrogen-DNA adducts are found not only in people with several different types of cancer but also in women at high risk for breast cancer, indicating that the formation of adducts is on the pathway to cancer initiation. Two compounds, resveratrol, and N-acetylcysteine, are particularly good at preventing the formation of estrogen-DNA adducts in humans and are, thus, potential cancer-prevention compounds.
Collapse
|
3
|
Miyajima T, Melangath G, Zhu S, Deshpande N, Vasanth S, Mondal B, Kumar V, Chen Y, Price MO, Price FW, Rogan EG, Zahid M, Jurkunas UV. Loss of NQO1 generates genotoxic estrogen-DNA adducts in Fuchs Endothelial Corneal Dystrophy. Free Radic Biol Med 2020; 147:69-79. [PMID: 31857234 PMCID: PMC6939626 DOI: 10.1016/j.freeradbiomed.2019.12.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/14/2019] [Accepted: 12/16/2019] [Indexed: 12/13/2022]
Abstract
Fuchs Endothelial Corneal Dystrophy (FECD) is an age-related genetically complex disease characterized by increased oxidative DNA damage and progressive degeneration of corneal endothelial cells (HCEnCs). FECD has a greater incidence and advanced phenotype in women, suggesting a possible role of hormones in the sex-driven differences seen in the disease pathogenesis. In this study, catechol estrogen (4-OHE2), the byproduct of estrogen metabolism, induced genotoxic estrogen-DNA adducts formation, macromolecular DNA damage, and apoptotic cell death in HCEnCs; these findings were potentiated by menadione (MN)-mediated reactive oxygen species (ROS). Expression of NQO1, a key enzyme that neutralizes reactive estrogen metabolites, was downregulated in FECD, indicating HCEnC susceptibility to reactive estrogen metabolism in FECD. NQO1 deficiency in vitro exacerbated the estrogen-DNA adduct formation and loss of cell viability, which was rescued by the supplementation of N-acetylcysteine, a ROS scavenger. Notably, overexpression of NQO1 in HCEnCs treated with MN and 4-OHE2 quenched the ROS formation, thereby reducing the DNA damage and endothelial cell loss. This study signifies a pivotal role for NQO1 in mitigating the macromolecular oxidative DNA damage arising from the interplay between intracellular ROS and impaired endogenous estrogen metabolism in post-mitotic ocular tissue cells. A dysfunctional Nrf2-NQO1 axis in FECD renders HCEnCs susceptible to catechol estrogens and estrogen-DNA adducts formation. This novel study highlights the potential role of NQO1-mediated estrogen metabolite genotoxicity in explaining the higher incidence of FECD in females.
Collapse
Affiliation(s)
- Taiga Miyajima
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA; Department of Ophthalmology, Dokkyo Medical University, Tochigi, 321-0293, Japan
| | - Geetha Melangath
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Shan Zhu
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Neha Deshpande
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Shivakumar Vasanth
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Bodhisattwa Mondal
- Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE, USA
| | - Varun Kumar
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Yuming Chen
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Marianne O Price
- Price Vision Group and Cornea Research Foundation of America, Indianapolis, IN, USA
| | - Francis W Price
- Price Vision Group and Cornea Research Foundation of America, Indianapolis, IN, USA
| | - Eleanor G Rogan
- Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE, USA
| | - Muhammad Zahid
- Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ula V Jurkunas
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Gouveia MJ, Nogueira V, Araújo B, Gärtner F, Vale N. Inhibition of the Formation In Vitro of Putatively Carcinogenic Metabolites Derived from S. haematobium and O. viverrini by Combination of Drugs with Antioxidants. Molecules 2019; 24:E3842. [PMID: 31731402 PMCID: PMC6864706 DOI: 10.3390/molecules24213842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/22/2019] [Accepted: 10/22/2019] [Indexed: 11/24/2022] Open
Abstract
Infections caused by Schistosoma haematobium and Opisthorchis viverrini are classified as carcinogenic. Although carcinogenesis might be a multifactorial process, it has been postulated that these helminth produce/excrete oxysterols and estrogen-like metabolites that might act as initiators of their infection-associated carcinogenesis. Current treatment and control of these infections rely on a single drug, praziquantel, that mainly targets the parasites and not the pathologies related to the infection including cancer. Thus, there is a need to search for novel therapeutic alternatives that might include combinations of drugs and drug repurposing. Based on these concepts, we propose a novel therapeutic strategy that combines drugs with molecule antioxidants. We evaluate the efficacy of a novel therapeutic strategy to prevent the formation of putative carcinogenic metabolites precursors and DNA adducts. Firstly, we used a methodology previously established to synthesize metabolites precursors and DNA adducts in the presence of CYP450. Then, we evaluated the inhibition of their formation induced by drugs and antioxidants alone or in combination. Drugs and resveratrol alone did not show a significant inhibitory effect while N-acetylcysteine inhibited the formation of most metabolite precursors and DNA adducts. Moreover, the combinations of classical drugs with antioxidants were more effective rather than compounds alone. This strategy might be a valuable tool to prevent the initiation of helminth infection-associated carcinogenesis.
Collapse
Affiliation(s)
- Maria João Gouveia
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (M.J.G.); (V.N.); (B.A.)
- Department of Molecular Pathology and Immnunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
- Center for the Study of Animal Science, CECA-ICETA, University of Porto, Praça Gomes Teixeira Apartado 55142, 4051-401 Porto, Portugal
| | - Verónica Nogueira
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (M.J.G.); (V.N.); (B.A.)
- Department of Molecular Pathology and Immnunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
| | - Bruno Araújo
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (M.J.G.); (V.N.); (B.A.)
- Department of Molecular Pathology and Immnunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
| | - Fátima Gärtner
- Department of Molecular Pathology and Immnunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho, 45, 4200-135 Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde, university of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Nuno Vale
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (M.J.G.); (V.N.); (B.A.)
- Department of Molecular Pathology and Immnunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho, 45, 4200-135 Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde, university of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| |
Collapse
|
5
|
Cavalieri EL, Rogan EG. Etiology and prevention of prevalent types of cancer. JOURNAL OF RARE DISEASES RESEARCH & TREATMENT 2017; 2:22-29. [PMID: 30854528 PMCID: PMC6404759 DOI: 10.29245/2572-9411/2017/3.1093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Endogenous estrogens become carcinogens when excessive catechol estrogen quinone metabolites are formed. Specifically, the catechol estrogen-3,4-quinones can react with DNA to produce a large amount of specific depurinating estrogen-DNA adducts, formed at the N-3 of Ade and N-7 of Gua. Loss of these adducts leaves apurinic sites in the DNA, which can generate subsequent cancer-initiating mutations. Unbalanced estrogen metabolism yields excessive catechol estrogen-3,4-quinones, increasing formation of the depurinating estrogen-DNA adducts and the risk of initiating cancer. Evidence for this mechanism of cancer initiation comes from studies in vitro, in cell culture, in animal models and in human subjects. High levels of estrogen-DNA adducts have been observed in women with breast, ovarian or thyroid cancer, and in men with prostate cancer or non-Hodgkin lymphoma. Observation of high levels of depurinating estrogen-DNA adducts in high risk women before the presence of breast cancer indicates that adduct formation is a critical factor in breast cancer initiation. Two dietary supplements, N-acetylcysteine and resveratrol, complement each other in reducing formation of catechol estrogen-3,4-quinones and inhibiting formation of estrogen-DNA adducts in cultured human and mouse breast epithelial cells. They also inhibit malignant transformation of these epithelial cells. In addition, formation of adducts was reduced in women who followed a Healthy Breast Protocol that includes N-acetylcysteine and resveratrol. Blocking initiation of cancer prevents promotion, progression and development of the disease. These results suggest that reducing formation of depurinating estrogen-DNA adducts can reduce the risk of developing a variety of types of human cancer.
Collapse
Affiliation(s)
- Ercole L. Cavalieri
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-6805, USA
- Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198-4388, USA
| | - Eleanor G. Rogan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-6805, USA
- Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198-4388, USA
| |
Collapse
|
6
|
Cavalieri EL, Rogan EG, Zahid M. Critical depurinating DNA adducts: Estrogen adducts in the etiology and prevention of cancer and dopamine adducts in the etiology and prevention of Parkinson's disease. Int J Cancer 2017; 141:1078-1090. [PMID: 28388839 DOI: 10.1002/ijc.30728] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/23/2017] [Accepted: 03/17/2017] [Indexed: 01/19/2023]
Abstract
Endogenous estrogens become carcinogens when dangerous metabolites, the catechol estrogen quinones, are formed. In particular, the catechol estrogen-3,4-quinones can react with DNA to produce an excess of specific depurinating estrogen-DNA adducts. Loss of these adducts leaves apurinic sites in the DNA, generating subsequent cancer-initiating mutations. Unbalanced estrogen metabolism yields excessive catechol estrogen-3,4-quinones, increasing formation of depurinating estrogen-DNA adducts and the risk of initiating cancer. Evidence for this mechanism of cancer initiation comes from various types of studies. High levels of depurinating estrogen-DNA adducts have been observed in women with breast, ovarian or thyroid cancer, as well as in men with prostate cancer or non-Hodgkin lymphoma. Observation of high levels of depurinating estrogen-DNA adducts in high risk women before the presence of breast cancer indicates that adduct formation is a critical factor in breast cancer initiation. Formation of analogous depurinating dopamine-DNA adducts is hypothesized to initiate Parkinson's disease by affecting dopaminergic neurons. Two dietary supplements, N-acetylcysteine and resveratrol complement each other in reducing formation of catechol estrogen-3,4-quinones and inhibiting formation of estrogen-DNA adducts in cultured human and mouse breast epithelial cells. They also inhibit malignant transformation of these cells. In addition, formation of adducts was reduced in women who followed a Healthy Breast Protocol that includes N-acetylcysteine and resveratrol. When initiation of cancer is blocked, promotion, progression and development of the disease cannot occur. These results suggest that reducing formation of depurinating estrogen-DNA adducts can reduce the risk of developing a variety of types of human cancer.
Collapse
Affiliation(s)
- Ercole L Cavalieri
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE.,Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE
| | - Eleanor G Rogan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE.,Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE
| | - Muhammad Zahid
- Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE
| |
Collapse
|
7
|
Cavalieri EL, Rogan EG. Depurinating estrogen-DNA adducts, generators of cancer initiation: their minimization leads to cancer prevention. Clin Transl Med 2016; 5:12. [PMID: 26979321 PMCID: PMC4792821 DOI: 10.1186/s40169-016-0088-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 02/28/2016] [Indexed: 02/15/2023] Open
Abstract
Estrogens can initiate cancer by reacting with DNA. Specific metabolites of endogenous estrogens, the catechol estrogen-3,4-quinones, react with DNA to form depurinating estrogen-DNA adducts. Loss of these adducts leaves apurinic sites in the DNA, generating mutations that can lead to the initiation of cancer. A variety of endogenous and exogenous factors can disrupt estrogen homeostasis, which is the normal balance between estrogen activating and protective enzymes. In fact, if estrogen metabolism becomes unbalanced and generates excessive catechol estrogen 3,4-quinones, formation of depurinating estrogen-DNA adducts increases and the risk of initiating cancer is greater. The levels of depurinating estrogen-DNA adducts are high in women diagnosed with breast cancer and those at high risk for the disease. High levels of depurinating estrogen-DNA adducts before the presence of breast cancer indicates that adduct formation is a critical factor in breast cancer initiation. Women with thyroid or ovarian cancer also have high levels of estrogen-DNA adducts, as do men with prostate cancer or non-Hodgkin lymphoma. Depurinating estrogen-DNA adducts are initiators of many prevalent types of human cancer. These findings and other discoveries led to the recognition that reducing the levels of estrogen-DNA adducts could prevent the initiation of human cancer. The dietary supplements N-acetylcysteine and resveratrol inhibit formation of estrogen-DNA adducts in cultured human breast cells and in women. These results suggest that the two supplements offer an approach to reducing the risk of developing various prevalent types of human cancer. Graphical abstract Major metabolic pathway in cancer initiation by estrogens.
Collapse
Affiliation(s)
- Ercole L. Cavalieri
- />Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE USA
- />Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE USA
| | - Eleanor G. Rogan
- />Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE USA
- />Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE USA
| |
Collapse
|
8
|
Castro GD, Castro JA. Alcohol drinking and mammary cancer: Pathogenesis and potential dietary preventive alternatives. World J Clin Oncol 2014; 5:713-29. [PMID: 25300769 PMCID: PMC4129535 DOI: 10.5306/wjco.v5.i4.713] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 01/21/2014] [Accepted: 04/03/2014] [Indexed: 02/06/2023] Open
Abstract
Alcohol consumption is associated with an increased risk of breast cancer, increasing linearly even with a moderate consumption and irrespectively of the type of alcoholic beverage. It shows no dependency from other risk factors like menopausal status, oral contraceptives, hormone replacement therapy, or genetic history of breast cancer. The precise mechanism for the effect of drinking alcohol in mammary cancer promotion is still far from being established. Studies by our laboratory suggest that acetaldehyde produced in situ and accumulated in mammary tissue because of poor detoxicating mechanisms might play a role in mutational and promotional events. Additional studies indicated the production of reactive oxygen species accompanied of decreases in vitamin E and GSH contents and of glutathione transferase activity. The resulting oxidative stress might also play a relevant role in several stages of the carcinogenic process. There are reported in literature studies showing that plasmatic levels of estrogens significantly increased after alcohol drinking and that the breast cancer risk is higher in receptor ER-positive individuals. Estrogens are known that they may produce breast cancer by actions on ER and also as chemical carcinogens, as a consequence of their oxidation leading to reactive metabolites. In this review we introduce our working hypothesis integrating the acetaldehyde and the oxidative stress effects with those involving increased estrogen levels. We also analyze potential preventive actions that might be accessible. There remains the fact that alcohol drinking is just one of the avoidable causes of breast cancer and that, at present, the suggested acceptable dose for prevention of this risk is of one drink per day.
Collapse
|
9
|
Cavalieri E, Rogan E. The molecular etiology and prevention of estrogen-initiated cancers: Ockham's Razor: Pluralitas non est ponenda sine necessitate. Plurality should not be posited without necessity. Mol Aspects Med 2014; 36:1-55. [PMID: 23994691 PMCID: PMC3938998 DOI: 10.1016/j.mam.2013.08.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 08/05/2013] [Accepted: 08/06/2013] [Indexed: 12/22/2022]
Abstract
Elucidation of estrogen carcinogenesis required a few fundamental discoveries made by studying the mechanism of carcinogenesis of polycyclic aromatic hydrocarbons (PAH). The two major mechanisms of metabolic activation of PAH involve formation of radical cations and diol epoxides as ultimate carcinogenic metabolites. These intermediates react with DNA to yield two types of adducts: stable adducts that remain in DNA unless removed by repair and depurinating adducts that are lost from DNA by cleavage of the glycosyl bond between the purine base and deoxyribose. The potent carcinogenic PAH benzo[a]pyrene, dibenzo[a,l]pyrene, 7,12-dimethylbenz[a]anthracene and 3-methylcholanthrene predominantly form depurinating DNA adducts, leaving apurinic sites in the DNA that generate cancer-initiating mutations. This was discovered by correlation between the depurinating adducts formed in mouse skin by treatment with benzo[a]pyrene, dibenzo[a,l]pyrene or 7,12-dimethylbenz[a]anthracene and the site of mutations in the Harvey-ras oncogene in mouse skin papillomas initiated by one of these PAH. By applying some of these fundamental discoveries in PAH studies to estrogen carcinogenesis, the natural estrogens estrone (E1) and estradiol (E2) were found to be mutagenic and carcinogenic through formation of the depurinating estrogen-DNA adducts 4-OHE1(E2)-1-N3Ade and 4-OHE1(E2)-1-N7Gua. These adducts are generated by reaction of catechol estrogen quinones with DNA, analogously to the DNA adducts obtained from the catechol quinones of benzene, naphthalene, and the synthetic estrogens diethylstilbestrol and hexestrol. This is a weak mechanism of cancer initiation. Normally, estrogen metabolism is balanced and few estrogen-DNA adducts are formed. When estrogen metabolism becomes unbalanced, more catechol estrogen quinones are generated, resulting in higher levels of estrogen-DNA adducts, which can be used as biomarkers of unbalanced estrogen metabolism and, thus, cancer risk. The ratio of estrogen-DNA adducts to estrogen metabolites and conjugates has repeatedly been found to be significantly higher in women at high risk for breast cancer, compared to women at normal risk. These results indicate that formation of estrogen-DNA adducts is a critical factor in the etiology of breast cancer. Significantly higher adduct ratios have been observed in women with breast, thyroid or ovarian cancer. In the women with ovarian cancer, single nucleotide polymorphisms in the genes for two enzymes involved in estrogen metabolism indicate risk for ovarian cancer. When polymorphisms produce high activity cytochrome P450 1B1, an activating enzyme, and low activity catechol-O-methyltransferase, a protective enzyme, in the same woman, she is almost six times more likely to have ovarian cancer. These results indicate that formation of estrogen-DNA adducts is a critical factor in the etiology of ovarian cancer. Significantly higher ratios of estrogen-DNA adducts to estrogen metabolites and conjugates have also been observed in men with prostate cancer or non-Hodgkin lymphoma, compared to healthy men without cancer. These results also support a critical role of estrogen-DNA adducts in the initiation of cancer. Starting from the perspective that unbalanced estrogen metabolism can lead to increased formation of catechol estrogen quinones, their reaction with DNA to form adducts, and generation of cancer-initiating mutations, inhibition of estrogen-DNA adduct formation would be an effective approach to preventing a variety of human cancers. The dietary supplements resveratrol and N-acetylcysteine can act as preventing cancer agents by keeping estrogen metabolism balanced. These two compounds can reduce the formation of catechol estrogen quinones and/or their reaction with DNA. Therefore, resveratrol and N-acetylcysteine provide a widely applicable, inexpensive approach to preventing many of the prevalent types of human cancer.
Collapse
Affiliation(s)
- Ercole Cavalieri
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, USA; Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, 984388 Nebraska Medical Center, Omaha, NE 68198-4388, USA.
| | - Eleanor Rogan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, USA; Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, 984388 Nebraska Medical Center, Omaha, NE 68198-4388, USA.
| |
Collapse
|
10
|
Gouveia MJ, Brindley PJ, Santos LL, da Costa JMC, Gomes P, Vale N. Mass spectrometry techniques in the survey of steroid metabolites as potential disease biomarkers: a review. Metabolism 2013; 62:1206-17. [PMID: 23664145 PMCID: PMC3755027 DOI: 10.1016/j.metabol.2013.04.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 03/13/2013] [Accepted: 04/02/2013] [Indexed: 01/31/2023]
Abstract
Mass spectrometric approaches have been fundamental to the identification of metabolites associated with steroid hormones, yet this topic has not been reviewed in depth in recent years. To this end, and given the increasing relevance of liquid chromatography-mass spectrometry (LC-MS) studies on steroid hormones and their metabolites, the present review addresses this subject. This review provides a timely summary of the use of various mass spectrometry-based analytical techniques during the evaluation of steroidal biomarkers in a range of human disease settings. The sensitivity and specificity of these technologies are clearly providing valuable new insights into breast cancer and cardiovascular disease. We aim to contribute to an enhanced understanding of steroid metabolism and how it can be profiled by LC-MS techniques.
Collapse
Affiliation(s)
- Maria João Gouveia
- Center for the Study of Animal Science, ICETA, University of Porto
- INSA, Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
| | - Paul J. Brindley
- George Washington University School of Medicine & Health Sciences – Department of Microbiology, Immunology and Tropical Medicine, Ross Hali, 20037 Washington, DC, USA
| | - Lúcio Lara Santos
- Experimental Therapeutics and Pathology Research Group - IPO-Porto, Portuguese Institute of Oncology Francisco Gentil, Rua Dr António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - José Manuel Correia da Costa
- Center for the Study of Animal Science, ICETA, University of Porto
- INSA, Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
| | - Paula Gomes
- CIQUP, Chemistry and Biochemistry Department, Faculty of Sciences, University of Porto, Rua Campo Alegre, 687, 4169-007 Porto, Portugal
| | - Nuno Vale
- CIQUP, Chemistry and Biochemistry Department, Faculty of Sciences, University of Porto, Rua Campo Alegre, 687, 4169-007 Porto, Portugal
- Corresponding author: CIQUP, Chemistry and Biochemistry Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 687, P-4169-007 Porto, Portugal Tel.: +351 220402567; fax: + 351 220402563,
| |
Collapse
|
11
|
C8-linked bulky guanosine DNA adducts: experimental and computational insights into adduct conformational preferences and resulting mutagenicity. Future Med Chem 2012; 4:1981-2007. [PMID: 23088278 DOI: 10.4155/fmc.12.138] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Bulky DNA adducts are formed through the covalent attachment of aryl groups to the DNA nucleobases. Many of these adducts are known to possess conformational heterogeneity, which is responsible for the variety of mutagenic outcomes associated with these lesions. The present contribution reviews several conformational and mutagenic themes that are prevalent among the DNA adducts formed at the C8-site of the guanine nucleobase. The most important conclusions obtained (to date) from experiments are summarized including the anti/syn conformational preference of the adducts, their potential to inflict DNA mutations and mismatch stabilization, and their interactions with DNA polymerases and repair enzymes. Additionally, the unique role that computer calculations can play in understanding the structural properties of these adducts are highlighted.
Collapse
|
12
|
Lee MF, Chan CY, Hung HC, Chou IT, Yee AS, Huang CY. N-acetylcysteine (NAC) inhibits cell growth by mediating the EGFR/Akt/HMG box-containing protein 1 (HBP1) signaling pathway in invasive oral cancer. Oral Oncol 2012; 49:129-35. [PMID: 22944050 DOI: 10.1016/j.oraloncology.2012.08.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 07/31/2012] [Accepted: 08/04/2012] [Indexed: 11/17/2022]
Abstract
OBJECTIVES Overexpression of the epidermal growth factor (EGF) receptor (EGFR) gene in the squamous cell carcinomas of the head and neck (SCCHN) is often associated with inauspicious prognosis and poor survival. N-acetylcysteine (NAC), a compound from some vegetables and allium species, appears anti-tumorigenesis, but the underlying mechanism is unclear. The objective of this study is to investigate the role of NAC in EGFR-overexpressing oral cancer. MATERIALS AND METHODS Both HSC-3 and SCC-4 human tongue squamous carcinoma cell lines and an HSC-3 xenograft mouse model were used to test the anti-growth efficacy of NAC in vitro and in vivo, respectively. RESULTS NAC treatment suppressed cell growth, with concomitantly increased expression of HMG box-containing protein 1 (HBP1), a transcription suppressor, and decreased EGFR/Akt activation, in EGFR-overexpressing HSC-3 oral cancer cells. HBP1 knockdown attenuated the growth arrest and apoptosis induced by NAC. Lastly, NAC and AG1478, an EGFR inhibitor, additively suppressed colony formation in HSC-3 cells. CONCLUSION Taken together, our data indicate that NAC exerts its growth-inhibitory function through modulating EGFR/Akt signaling and HBP1 expression in EGFR-overexpressing oral cancer.
Collapse
Affiliation(s)
- Ming-Fen Lee
- Department of Nutrition and Health Sciences, Chang Jung Christian University, Tainan, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
13
|
McPherson RA, Hardy G. Cysteine: The Fun-Ke Nutraceutical. Nutrition 2012; 28:336-7. [DOI: 10.1016/j.nut.2011.07.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 07/31/2011] [Accepted: 07/31/2011] [Indexed: 01/13/2023]
|
14
|
Cavalieri EL, Rogan EG. The etiology and prevention of breast cancer. DRUG DISCOVERY TODAY. DISEASE MECHANISMS 2012; 9:e55-e69. [PMID: 26246832 PMCID: PMC4522944 DOI: 10.1016/j.ddmec.2013.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Metabolism of estrogens via the catechol estrogen pathway is characterized by a balanced set of activating and protective enzymes (homeostasis). Disruption of homeostasis, with excessive production of catechol estrogen quinones, can lead to reaction of these quinones with DNA to form depurinating estrogen-DNA adducts. Some of the mutations generated by these events can lead to initiation of breast cancer. A wealth of evidence, from studies of metabolism, mutagenicity, cell transformation and carcinogenicity, demonstrates that estrogens are genotoxic. Women at high risk for breast cancer, or diagnosed with the disease, have relatively high levels of depurinating estrogen-DNA adducts compared to normal-risk women. The dietary supplements N-acetylcysteine and resveratrol can inhibit formation of catechol estrogen quinones and their reaction with DNA to form estrogen-DNA adducts, thereby preventing initiation of breast cancer.
Collapse
Affiliation(s)
- Ercole L. Cavalieri
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE, USA
| | - Eleanor G. Rogan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
15
|
Zahid M, Saeed M, Yang L, Beseler C, Rogan E, Cavalieri EL. Formation of dopamine quinone-DNA adducts and their potential role in the etiology of Parkinson's disease. IUBMB Life 2011; 63:1087-93. [PMID: 22045657 PMCID: PMC4418631 DOI: 10.1002/iub.538] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 06/13/2011] [Indexed: 11/09/2022]
Abstract
The neurotransmitter dopamine is oxidized to its quinone (DA-Q), which at neutral pH undergoes intramolecular cyclization by 1,4-Michael addition, followed by oxidation to form leukochrome, then aminochrome, and finally neuromelanin. At lower pH, the amino group of DA is partially protonated, allowing the competitive intermolecular 1,4-Michael addition with nucleophiles in DNA to form the depurinating adducts, DA-6-N3Ade and DA-6-N7Gua. Catechol estrogen-3,4-quinones react by 1,4-Michael addition to form the depurinating 4-hydroxyestrone(estradiol)-1-N3Ade [4-OHE1(E2)-1-N3Ade] and 4-OHE1(E2)-1-N7Gua adducts, which are implicated in the initiation of breast and other human cancers. The effect of pH was studied by reacting tyrosinase-activated DA with DNA and measuring the formation of depurinating adducts. The most adducts were formed at pH 4, 5, and 6, and their level was nominal at pH 7 and 8. The N3Ade adduct depurinated instantaneously, but N7Gua had a half-life of 3 H. The slow loss of the N7Gua adduct is analogous to that observed in previous studies of natural and synthetic estrogens. The antioxidants N-acetylcysteine and resveratrol efficiently blocked formation of the DA-DNA adducts. Thus, slightly acidic conditions render competitive the reaction of DA-Q with DNA to form depurinating adducts. We hypothesize that formation of these adducts could lead to mutations that initiate Parkinson's disease. If so, use of N-acetylcysteine and resveratrol as dietary supplements may prevent initiation of this disease.
Collapse
Affiliation(s)
- Muhammad Zahid
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE
| | - Muhammad Saeed
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE
| | - Li Yang
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE
- Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha NE
| | - Cheryl Beseler
- Department of Psychology, Colorado State University, Fort Collins, CO
| | - Eleanor Rogan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE
- Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha NE
| | - Ercole L. Cavalieri
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE
- Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha NE
| |
Collapse
|
16
|
Hinrichs B, Zahid M, Saeed M, Ali MF, Cavalieri EL, Rogan EG. Formation of diethylstilbestrol-DNA adducts in human breast epithelial cells and inhibition by resveratrol. J Steroid Biochem Mol Biol 2011; 127:276-81. [PMID: 21896331 PMCID: PMC4422071 DOI: 10.1016/j.jsbmb.2011.08.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 08/18/2011] [Indexed: 10/17/2022]
Abstract
Extensive evidence exists that the reaction of estrogen metabolites with DNA produces depurinating adducts that, in turn, induce mutations and cellular transformation. While it is clear that these estrogen metabolites result in a neoplastic phenotype in vitro, further evidence supporting the link between estrogen-DNA adduct formation and its role in neoplasia induction in vivo would strengthen the evidence for a genotoxic mechanism. Diethylstilbestrol (DES), an estrogen analogue known to increase the risk of breast cancer in women exposed in utero, is hypothesized to induce neoplasia through a similar genotoxic mechanism. Cultured MCF-10F human breast epithelial cells were treated with DES at varying concentrations and for various times to determine whether the addition of DES to MCF-10F cells resulted in the formation of depurinating adducts. This is the first demonstration of the formation of DES-DNA adducts in human breast cells. A dose-dependent increase in DES-DNA adducts was observed. Demonstrating that treatment of MCF-10F cells with DES, a known human carcinogen, yields depurinating adducts provides further support for the involvement of these adducts in the induction of breast neoplasia. Previous studies have demonstrated the ability of antioxidants such as resveratrol to prevent the formation of estrogen-DNA adducts, thus preventing a key carcinogenic event. In this study, when MCF-10F cells were treated with a combination of resveratrol and DES, a dose-dependent reduction in the level of DES-DNA adducts was also observed.
Collapse
Affiliation(s)
- Benjamin Hinrichs
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, United States
| | - Muhammad Zahid
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, United States
| | - Muhammad Saeed
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, United States
| | - Mohammed F. Ali
- Department of Biochemistry, College of Medicine, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE 68198-5870, United States
| | - Ercole L. Cavalieri
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, United States
- Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, 984388 Nebraska Medical Center, Omaha, NE 68198-4388, United States
| | - Eleanor G. Rogan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, United States
- Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, 984388 Nebraska Medical Center, Omaha, NE 68198-4388, United States
- Corresponding author at: Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, 984388 Nebraska Medical Center, Omaha, NE 68198-4388, United States. Tel.: +1 402 559 4095; fax: +1 402 559 7259. (E.G. Rogan)
| |
Collapse
|
17
|
Cavalieri EL, Rogan EG. Unbalanced metabolism of endogenous estrogens in the etiology and prevention of human cancer. J Steroid Biochem Mol Biol 2011; 125:169-80. [PMID: 21397019 PMCID: PMC4423478 DOI: 10.1016/j.jsbmb.2011.03.008] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 02/16/2011] [Accepted: 03/04/2011] [Indexed: 12/11/2022]
Abstract
Among the numerous small molecules in the body, the very few aromatic ones include the estrogens and dopamine. In relation to cancer initiation, the estrogens should be considered as chemicals, not as hormones. Metabolism of estrogens is characterized by two major pathways. One is hydroxylation to form the 2- and 4-catechol estrogens, and the second is hydroxylation at the 16α position. In the catechol pathway, the metabolism involves further oxidation to semiquinones and quinones, including formation of the catechol estrogen-3,4-quinones, the major carcinogenic metabolites of estrogens. These electrophilic compounds react with DNA to form the depurinating adducts 4-OHE(1)(E(2))-1-N3Ade and 4-OHE(1)(E(2))-1-N7Gua. The apurinic sites obtained by this reaction generate the mutations that may lead to the initiation of cancer. Oxidation of catechol estrogens to their quinones is normally in homeostasis, which minimizes formation of the quinones and their reaction with DNA. When the homeostasis is disrupted, excessive amounts of catechol estrogen quinones are formed and the resulting increase in depurinating DNA adducts can lead to initiation of cancer. Substantial evidence demonstrates the mutagenicity of the estrogen metabolites and their ability to induce transformation of mouse and human breast epithelial cells, and tumors in laboratory animals. Furthermore, women at high risk for breast cancer or diagnosed with the disease, men with prostate cancer, and men with non-Hodgkin lymphoma all have relatively high levels of estrogen-DNA adducts, compared to matched control subjects. Specific antioxidants, such as N-acetylcysteine and resveratrol, can block the oxidation of catechol estrogens to their quinones and their reaction with DNA. As a result, the initiation of cancer can be prevented.
Collapse
Affiliation(s)
- Ercole L Cavalieri
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, United States.
| | | |
Collapse
|
18
|
Zahid M, Saeed M, Beseler C, Rogan EG, Cavalieri EL. Resveratrol and N-acetylcysteine block the cancer-initiating step in MCF-10F cells. Free Radic Biol Med 2011; 50:78-85. [PMID: 20934508 PMCID: PMC4425208 DOI: 10.1016/j.freeradbiomed.2010.10.662] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 09/14/2010] [Accepted: 10/01/2010] [Indexed: 11/19/2022]
Abstract
Substantial evidence suggests that catechol estrogen-3,4-quinones react with DNA to form predominantly the depurinating adducts 4-hydroxyestrone (estradiol)-1-N3Ade [4-OHE(1)(E(2))-1-N3Ade] and 4-OHE(1)(E(2))-1-N7Gua. Apurinic sites resulting from these adducts generate critical mutations that can initiate cancer. The paradigm of cancer initiation is based on an imbalance in estrogen metabolism between activating pathways that lead to estrogen-DNA adducts and deactivating pathways that lead to estrogen metabolites and conjugates. This imbalance can be improved to minimize formation of adducts by using antioxidants, such as resveratrol (Resv) and N-acetylcysteine (NAcCys). To compare the ability of Resv and NAcCys to block formation of estrogen-DNA adducts, we used the human breast epithelial cell line MCF-10F treated with 4-OHE(2). Resv and NAcCys directed the metabolism of 4-OHE(2) toward protective pathways. NAcCys reacted with the quinones and reduced the semiquinones to catechols. This pathway was also carried out by Resv. In addition, Resv induced the protective enzyme quinone reductase, which reduces E(1)(E(2))-3,4-quinones to 4-OHE(1)(E(2)). Resv was more effective at increasing the amount of 4-OCH(3)E(1)(E(2)) than NAcCys. Inhibition of estrogen-DNA adduct formation was similar at lower doses, but at higher doses Resv was about 50% more effective than NAcCys. Their combined effects were additive. Therefore, these two antioxidants provide an excellent combination to protect catechol estrogens from oxidation to catechol quinones.
Collapse
Affiliation(s)
- Muhammad Zahid
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Muhammad Saeed
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Cheryl Beseler
- Colorado Injury Control Research Center, Colorado State University, Fort Collins, CO 80523, USA
| | - Eleanor G. Rogan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ercole L. Cavalieri
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Corresponding author. Fax: +1 402 559 8068. (E.L. Cavalieri)
| |
Collapse
|