1
|
Qin X, Han X, Sun Y. Discovery of small molecule inhibitors of neddylation catalyzing enzymes for anticancer therapy. Biomed Pharmacother 2024; 179:117356. [PMID: 39214012 DOI: 10.1016/j.biopha.2024.117356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/08/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Protein neddylation, a type of post-translational modifications, involves the transfer of the ubiquitin-like protein NEDD8 to the lysine residues of a target substrate, which is catalyzed by the NEDD8 activating enzyme (E1), NEDD8 conjugating enzyme (E2), and NEDD8 ligase (E3). Cullin family proteins, core components of Cullin-RING E3 ubiquitin ligases (CRLs), are the most well-known physiological substrates of neddylation. CRLs, activated upon cullin neddylation, promote the ubiquitination of a variety of key signaling proteins for proteasome degradation, thereby regulating many critical biological functions. Abnormal activation of neddylation enzymes as well as CRLs has been frequently observed in various human cancers and is associated with poor prognosis for cancer patients. Consequently, targeting neddylation has emerged as a promising strategy for the development of novel anticancer therapeutics. This review first briefly introduces the properties of protein neddylation and its role in cancer, and then systematically summarizes all reported chemical inhibitors of the three neddylation enzymes, providing a focused, up to date, and comprehensive resource in the discovery and development of these small molecule inhibitors.
Collapse
Affiliation(s)
- Xiangshuo Qin
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education) of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China; Cancer Center of Zhejiang University, Hangzhou 310029, China
| | - Xin Han
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education) of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China; Cancer Center of Zhejiang University, Hangzhou 310029, China.
| | - Yi Sun
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education) of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China; Cancer Center of Zhejiang University, Hangzhou 310029, China; Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou 310053, China.
| |
Collapse
|
2
|
Tao Y, Dai L, Liang W, Li X, Lyu Y, Li J, Li Z, Shi Z, Liang X, Zhou S, Fu X, Hu W, Wang X. Advancements and perspectives of RBX2 as a molecular hallmark in cancer. Gene 2024; 892:147864. [PMID: 37820940 DOI: 10.1016/j.gene.2023.147864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/18/2023] [Accepted: 09/29/2023] [Indexed: 10/13/2023]
Abstract
Cancer is a challenging issue for human health. One of the key methods to address this issue is by comprehending the molecular causes of tumors and creating medications that target those causes. RBX2 (RING box protein 2), also known as ROC2 (Regulator of Cullins 2), RNF7 (RING Finger Protein 7), or SAG (Sensitive to Apoptosis Gene) is a key component of the Cullin-RING-type E3 ubiquitin ligases (CRLs) and overexpressed in various human cancers. RBX2 is a potential drug target, the expression of which correlates with tumor staging, grading, and prognosis analysis. Through a synergistically biological interaction with Kras mutation in preclinical models, RBX2 accelerated the progression of skin cancer, pancreatic cancer, and lung cancer. In accordance, the aberrant expression of RBX2 will lead to dysregulation of many signaling pathways, which is crucial for tumor initiation and growth. However, the impact of RBX2 on tumors also intriguingly demonstrates a spatial reliance manner. In this review, we summarized the current understanding of RBX2 in multiple cancer types and suggested a significant potential of RBX2 as a therapeutic target.
Collapse
Affiliation(s)
- Yiran Tao
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China; Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan, PR China
| | - Lirui Dai
- Department of Neurosurgery, Pituitary Adenoma Multidisciplinary Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Wulong Liang
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan, PR China
| | - Xiang Li
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China; Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan, PR China
| | - Yuan Lyu
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan, PR China; Medical Research Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China; Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Junqi Li
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan, PR China; Medical Research Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China; Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Zian Li
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China; Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan, PR China
| | - Zimin Shi
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China; Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan, PR China
| | - Xianyin Liang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China; Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan, PR China
| | - Shaolong Zhou
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan, PR China
| | - Xudong Fu
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan, PR China
| | - Weihua Hu
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan, PR China
| | - Xinjun Wang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China; Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan, PR China.
| |
Collapse
|
3
|
Sun Y, Li H, Tan M, Sun Y. Sag/Rbx2 Partial Inactivation Sensitizes Mice to Radiation and Radiation-Induced Tumorigenesis1. Radiat Res 2023; 199:273-282. [PMID: 36745565 DOI: 10.1667/rade-22-00152.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/13/2023] [Indexed: 02/07/2023]
Abstract
SAG (sensitive to apoptosis gene)/RBX2 (RING box-2), is the second family member of RING component of cullin-RING ligase (CRL) complex required for its enzymatic activity. Using total or conditional Sag knockout mouse models, we previously showed that Sag plays an essential role in embryonic development, apoptosis, vasculogenesis, angiogenesis and tumorigenesis. We also found that Sag-null ES cells are more sensitive to radiation. In this study, we generated the SagΔ/flneo mice with partial Sag inactivation due to deletion in one allele (Δ allele), and disrupted expression in the another (by a neo cassette). Compared to wild-type, SagΔ/fl-neo mice are more sensitive to a lethal dose of radiation with significantly shortened life span, resulting from an increased tissue damage with reduced proliferation and increased apoptosis in the intestines. Similar observations were made when SagΔ/fl-neo mice received a high dose of radiation directly delivered to the abdomen with reduced proliferation and prolonged DNA damage repair. Mechanistically, we found accumulations of Sag substrates, p21 and p27, explaining the proliferation defect. Finally, we found that SagΔ/fl-neo mice are more prone to tumorigenesis induced by a low dose of radiation with shortened life-span and increased incidence of lymphoma. Collectively, our study demonstrates that Sag protects mice from radiation-induced tissue damages and tumorigenesis.
Collapse
Affiliation(s)
- Yi Sun
- Cancer Institute of the 2nd Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China, 310009.,Zhejiang University, Cancer Center, Hangzhou, China.,Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou, Zhejiang, China, 310053
| | - Hua Li
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109
| | - Mingjia Tan
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109
| | - Yilun Sun
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
4
|
Huang T, Li J, Liu X, Shi B, Li S, An HX. An integrative pan-cancer analysis revealing the difference in small ring finger family of SCF E3 ubiquitin ligases. Front Immunol 2022; 13:968777. [PMID: 36059474 PMCID: PMC9434121 DOI: 10.3389/fimmu.2022.968777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/01/2022] [Indexed: 11/18/2022] Open
Abstract
Background The SCF (Skp1-cullin-F-box proteins) complex is the largest family of E3 ubiquitin ligases that mediate multiple specific substrate proteins degradation. Two ring-finger family members RBX1/ROC1 and RBX2/RNF7/SAG are small molecular proteins necessary for ubiquitin ligation activity of the multimeric SCF complex. Accumulating evidence indicated the involvement of RBX proteins in the pathogenesis and development of cancers, but no research using pan-cancer analysis for evaluating their difference has been directed previously. Methods We investigated RBX1/2 expression patterns and the association with clinicopathological features, and survivals of cancer patients obtained from the TCGA pan-cancer data. The binding energies of RBX1/2-CUL1 complexes were preliminarily calculated by using molecular dynamics simulations. Meanwhile, we assessed their immune infiltration level across numerous databases, including TISIDB and Timer database. Results High expression levels of RBX1/2 were observed in most cancer types and correlated with poor prognosis of patients analyzed. Nonetheless, exceptions were observed: RBX2 expression in KICH was higher than normal renal tissues and played a detrimental role in KICH. The expression of RBX1 was not associated with the prognostic risk of KICH. Moreover, the combination of RBX1 and CUL1 expression is more stable than that of RBX2 and CUL1. RBX1/2 expression showed their own specific characteristics in tumor pathological stages and grades, copy number variation and immune components. Conclusions These findings not only indicated that the difference of RBX1/2 might result in varying degrees of tumor progression, but also suggested that they might serve as biomarkers for immune infiltration in cancers, shedding new light on therapeutics of cancers.
Collapse
Affiliation(s)
- Tingting Huang
- Department of Medical Oncology, Xiang’an Hospital of Xiamen University, Xiamen, China
- Department of Medical Oncology, Xiamen Key Laboratory of Endocrine-Related Cancer Precision Medicine, Xiamen, China
| | - Jiwei Li
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang’an Hospital of Xiamen University, Xiamen, China
| | - Xinli Liu
- Department of Medical Oncology, Xiang’an Hospital of Xiamen University, Xiamen, China
| | - Bingbing Shi
- Department of Critical Care Medicine, The Affiliated Hospital of Putian University, Putian, China
| | - Shiqin Li
- Department of Gastroenterology, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China
| | - Han-Xiang An
- Department of Medical Oncology, Xiang’an Hospital of Xiamen University, Xiamen, China
- *Correspondence: Hanxiang An,
| |
Collapse
|
5
|
Zhou Q, Zheng Y, Sun Y. Neddylation regulation of mitochondrial structure and functions. Cell Biosci 2021; 11:55. [PMID: 33731189 PMCID: PMC7968265 DOI: 10.1186/s13578-021-00569-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/06/2021] [Indexed: 12/11/2022] Open
Abstract
Mitochondria are the powerhouse of a cell. The structure and function of mitochondria are precisely regulated by multiple signaling pathways. Neddylation, a post-translational modification, plays a crucial role in various cellular processes including cellular metabolism via modulating the activity, function and subcellular localization of its substrates. Recently, accumulated data demonstrated that neddylation is involved in regulation of morphology, trafficking and function of mitochondria. Mechanistic elucidation of how mitochondria is modulated by neddylation would further our understanding of mitochondrial regulation to a new level. In this review, we first briefly introduce mitochondria, then neddylation cascade, and known protein substrates subjected to neddylation modification. Next, we summarize current available data of how neddylation enzymes, its substrates (including cullins/Cullin-RING E3 ligases and non-cullins) and its inhibitor MLN4924 regulate the structure and function of mitochondria. Finally, we propose the future perspectives on this emerging and exciting field of mitochondrial research.
Collapse
Affiliation(s)
- Qiyin Zhou
- Cancer Institute, The Second Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, Zhejiang, China.,Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, China
| | - Yawen Zheng
- Cancer Institute, The Second Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, Zhejiang, China
| | - Yi Sun
- Cancer Institute, The Second Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, Zhejiang, China.
| |
Collapse
|
6
|
Zheng S, Tao W. Targeting Cullin-RING E3 Ligases for Radiosensitization: From NEDDylation Inhibition to PROTACs. Front Oncol 2020; 10:1517. [PMID: 32983997 PMCID: PMC7475704 DOI: 10.3389/fonc.2020.01517] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 07/15/2020] [Indexed: 12/24/2022] Open
Abstract
As a dynamic regulator for short-lived protein degradation and turnover, the ubiquitin-proteasome system (UPS) plays important roles in various biological processes, including response to cellular stress, regulation of cell cycle progression, and carcinogenesis. Over the past decade, research on targeting the cullin-RING (really interesting new gene) E3 ligases (CRLs) in the UPS has gained great momentum with the entry of late-phase clinical trials of its novel inhibitors MLN4924 (pevonedistat) and TAS4464. Several preclinical studies have demonstrated the efficacy of MLN4924 as a radiosensitizer, mainly due to its unique cytotoxic properties, including induction of DNA damage response, cell cycle checkpoints dysregulation, and inhibition of NF-κB and mTOR pathways. Recently, the PROteolysis TArgeting Chimeras (PROTACs) technology was developed to recruit the target proteins for CRL-mediated polyubiquitination, overcoming the resistance that develops inevitably with traditional targeted therapies. First-in-class cell-permeable PROTACs against critical radioresistance conferring proteins, including the epidermal growth factor receptor (EGFR), androgen receptor (AR) and estrogen receptor (ER), cyclin-dependent kinases (CDKs), MAP kinase kinase 1 (MEK1), and MEK2, have emerged in the past 5 years. In this review article, we will summarize the most important research findings of targeting CRLs for radiosensitization.
Collapse
Affiliation(s)
- Shuhua Zheng
- College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Wensi Tao
- Department of Radiation Oncology, University of Miami-Miller School of Medicine, Coral Gables, FL, United States
| |
Collapse
|
7
|
Zhang Q, Wei D, Tan M, Li H, Morgan MA, Sun Y. Transgenic expression of Sag/Rbx2 E3 causes early stage tumor promotion, late stage cytogenesis and acinar loss in the Kras-PDAC model. Neoplasia 2020; 22:242-252. [PMID: 32339950 PMCID: PMC7186265 DOI: 10.1016/j.neo.2020.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/16/2020] [Accepted: 03/23/2020] [Indexed: 11/23/2022]
Abstract
SAG (Sensitive to Apoptosis Gene), also known as RBX2 or ROC2, is a RING component of CRL (Cullin-RING ligase), required for its activity. Our previous studies showed that Sag/Rbx2 co-operated with Kras or Pten loss to promote tumorigenesis in the lung and prostate, respectively, but antagonized Kras to inhibit skin tumorigenesis, suggesting a tissue/context dependent function of Sag. The role of SAG in KRAS-induced pancreatic tumorigenesis is unknown. In this study, we mined a cancer database and found that SAG is overexpressed in pancreatic cancer tissues and correlates with decreased patient survival. Whether Sag overexpression plays a causal role in pancreatic tumorigenesis is unknown. Here, we reported the generation of Sag transgenic mouse model alone (CS), or in combination with KrasG12D, driven by p48-Cre (KCS mice) for pancreatic specific Sag expression. Sag transgenic expression alone has no phenotypical abnormality, but in combination with KrasG12D promotes ADM (acinar-to-ductal metaplasia) conversion in vitro and mPanIN1 formation in vivo at the early stage, and impairs pancreatic functions at the late stage, as evidenced by poor glucose tolerance and significantly reduced α-Amylase activity, and induction of cytogenesis and acinar cell loss, eventually leading to atrophic pancreata and shortened mouse life-span. Mechanistically, Sag transgenic expression altered several key signaling pathways, particularly inactivation of mTORC1 signaling due to Deptor accumulation, and activation of the antioxidant Nrf2-Nqo1 axis. Thus, Sag plays a stage dependent promotion (early) and fate-changing (late) role during Kras-pancreatic tumorigenesis, likely via regulating its key substrates, which control growth-related signal transduction pathways.
Collapse
Affiliation(s)
- Qiang Zhang
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, 4424B MS-1, 1301 Catherine Street, Ann Arbor, MI 48109, USA
| | - Dongping Wei
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, 4424B MS-1, 1301 Catherine Street, Ann Arbor, MI 48109, USA
| | - Mingjia Tan
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, 4424B MS-1, 1301 Catherine Street, Ann Arbor, MI 48109, USA
| | - Haomin Li
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Meredith A Morgan
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, 4424B MS-1, 1301 Catherine Street, Ann Arbor, MI 48109, USA
| | - Yi Sun
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, 4424B MS-1, 1301 Catherine Street, Ann Arbor, MI 48109, USA; Cancer Institute of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
8
|
Zhang S, Sun Y. Cullin RING Ligase 5 (CRL-5): Neddylation Activation and Biological Functions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1217:261-283. [DOI: 10.1007/978-981-15-1025-0_16] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
9
|
Xie J, Jin Y, Wang G. The role of SCF ubiquitin-ligase complex at the beginning of life. Reprod Biol Endocrinol 2019; 17:101. [PMID: 31779633 PMCID: PMC6883547 DOI: 10.1186/s12958-019-0547-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 11/20/2019] [Indexed: 12/22/2022] Open
Abstract
As the largest family of E3 ligases, the Skp1-cullin 1-F-box (SCF) E3 ligase complex is comprised of Cullins, Skp1 and F-box proteins. And the SCF E3 ubiquitin ligases play an important role in regulating critical cellular processes, which promote degradation of many cellular proteins, including signal transducers, cell cycle regulators, and transcription factors. We review the biological roles of the SCF ubiquitin-ligase complex in gametogenesis, oocyte-to-embryo transition, embryo development and the regulation for estrogen and progestin. We find that researches about the SCF ubiquitin-ligase complex at the beginning of life are not comprehensive, thus more in-depth researches will promote its eventual clinical application.
Collapse
Affiliation(s)
- Jiayan Xie
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou, 510632, China
- School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Yimei Jin
- The University of Texas MD Anderson Cancer Center & University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77054, USA
| | - Guang Wang
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
10
|
Xiong X, Mathewson ND, Li H, Tan M, Fujiwara H, Li H, Reddy P, Sun Y. SAG/RBX2 E3 Ubiquitin Ligase Differentially Regulates Inflammatory Responses of Myeloid Cell Subsets. Front Immunol 2018; 9:2882. [PMID: 30574150 PMCID: PMC6291737 DOI: 10.3389/fimmu.2018.02882] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 11/23/2018] [Indexed: 02/03/2023] Open
Abstract
Macrophages form an important component of the innate immune system and serve as first responders against invading pathogens. While pathways critical for initiation of inflammatory responses between macrophages and other LysM+ myeloid cells are largely similar, it remains unknown whether a specific pathway has differential effects on inflammatory responses mediated between these cells. Recent studies demonstrated that depletion of SAG (Sensitive to Apoptosis Gene), an E3 ubiquitin ligase, blocked inflammatory responses generated by macrophages and dendritic cells in response to LPS in cell culture settings. However, the in vivo role of Sag on modulation of macrophages and neutrophil is not known. Here we generated LysM-Cre/Sag fl/fl mice with selective Sag deletion in myeloid lineage, and found that in contrast to in vitro observations, LysM-Cre/Sag fl/fl mice showed increased serum levels of proinflammatory cytokines and enhanced mortality in response to LPS. Interestingly, while Sag -/- macrophages released less proinflammatory cytokines, Sag -/- neutrophils released more. Mechanistically, expression of a list of genes response to LPS was significantly altered in bone marrow cells from LysM-Cre +/Sag fl/fl mice after LPS challenge. Specifically, induction by LPS of myeloperoxidase (Mpo), a key neutrophil enzyme, and Elane, neutrophil expressed elastase, was significantly decreased upon Sag depletion. Collectively, our study revealed that Sag plays a differential role in the activation of macrophages and neutrophils.
Collapse
Affiliation(s)
- Xiufang Xiong
- Institute of Translational Medicine, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, United States
| | - Nathan D Mathewson
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI, United States.,Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Cancer Immunology and Virology, Department of Microbiology and Immunobiology, Department of Neurology, Dana-Farber Cancer Institute, Harvard Medical School, and Brigham and Women's Hospital, Boston, MA, United States
| | - Hua Li
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, United States
| | - Mingjia Tan
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, United States
| | - Hideaki Fujiwara
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI, United States
| | - Haomin Li
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Pavan Reddy
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI, United States
| | - Yi Sun
- Institute of Translational Medicine, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
11
|
Li H, Zhou W, Li L, Wu J, Liu X, Zhao L, Jia L, Sun Y. Inhibition of Neddylation Modification Sensitizes Pancreatic Cancer Cells to Gemcitabine. Neoplasia 2017; 19:509-518. [PMID: 28535453 PMCID: PMC5440286 DOI: 10.1016/j.neo.2017.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/07/2017] [Accepted: 04/08/2017] [Indexed: 11/27/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer death in the USA with a 5-year survival rate less than 3% to 5%. Gemcitabine remains as a standard care for PDAC patients. Although protein neddylation is abnormally activated in many human cancers, whether neddylation dysregulation is involved in PDAC and whether targeting neddylation would sensitize pancreatic cancer cells to gemcitabine remain elusive. Here we report that high expression of neddylation components, NEDD8 and NAE1, are associated with poor survival of PDAC patients. Blockage of neddylation by MLN4924, a small molecule inhibitor targeting this modification, significantly sensitizes pancreatic cancer cells to gemcitabine, as evidenced by reduced growth both in monolayer culture and soft agar, reduced clonogenic survival, decreased invasion capacity, increased apoptosis, G2/M arrest, and senescence. Importantly, combinational treatment of MLN4924-gemcitabine near completely suppressed in vivo growth of pancreatic cancer cells. Mechanistically, accumulation of NOXA, a pro-apoptotic protein and ERBIN, a RAS signal inhibitor, appears to play, at least in part, a causal role in MLN4924 chemo-sensitization. Our study demonstrates that neddylation modification is a valid target for PDAC, and provides the proof-of-concept evidence for future clinical trial of MLN4924-gemcitabine combination for the treatment of pancreatic cancer patients.
Collapse
Affiliation(s)
- Hua Li
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, 4424B MS-1, 1301 Catherine Street, Ann Arbor, MI 48109, USA
| | - Weihua Zhou
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, 4424B MS-1, 1301 Catherine Street, Ann Arbor, MI 48109, USA
| | - Lihui Li
- Cancer Institute, Fudan University Shanghai Cancer Center, Collaborative Innovation Center of Cancer Medicine, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jianfu Wu
- Cancer Institute, Fudan University Shanghai Cancer Center, Collaborative Innovation Center of Cancer Medicine, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xiaoli Liu
- Cancer Institute, Fudan University Shanghai Cancer Center, Collaborative Innovation Center of Cancer Medicine, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Lili Zhao
- Department of Biostatistics, University of Michigan, 4424B MS-1, 1301 Catherine Street, Ann Arbor, MI 48109, USA
| | - Lijun Jia
- Oncology Institute of Traditional Chinese Medicine, Shanghai Research Institute of traditional Chinese Medicine, Shanghai 200032, China; Department of Oncology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yi Sun
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, 4424B MS-1, 1301 Catherine Street, Ann Arbor, MI 48109, USA; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China.
| |
Collapse
|
12
|
Xiao Y, Jiang Y, Song H, Liang T, Li Y, Yan D, Fu Q, Li Z. RNF7 knockdown inhibits prostate cancer tumorigenesis by inactivation of ERK1/2 pathway. Sci Rep 2017; 7:43683. [PMID: 28252001 PMCID: PMC5333079 DOI: 10.1038/srep43683] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 01/30/2017] [Indexed: 02/07/2023] Open
Abstract
Development of castration resistance is a key contributor to mortality in patients with prostate cancer. High expression of RING finger protein 7 (RNF7) in cancer cells is known to play a key role in tumor progression. However, the role of RNF7 in prostate cancer progression is not well elucidated. In this study, we silenced RNF7 by shRNA interference in two castration resistant prostate cancer (CRPC) cell lines, DU145 and PC3. RNF7 knockdown attenuated proliferation and enhanced sensitivity of prostate cancer cells to cisplatin treatment. Invasive property of DU145 and PC3 cells was also attenuated by RNF7 silencing. The underlying mechanisms appear to be associated with accumulation of tumor suppressive proteins p21, p27 and NOXA, while inactivation of ERK1/2 by RNF7 knockdown. We demonstrated that RNF7 knockdown induced growth suppression of prostate cancer cells and inactivated ERK1/2 pathway, which suggested RNF7 might be a potential novel therapeutic target for CRPC.
Collapse
Affiliation(s)
- Yangjiong Xiao
- Shanghai Sixth People's Hospital East, Shanghai University of Medicine &Health Sciences, Shanghai 201306, China.,Joint Research Center for Translational Medicine, East China Normal University and Shanghai Fengxian District Central Hospital, Southern Medical University, Nanfeng Road 6600, Shanghai 201499, China.,Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yan Jiang
- Shanghai Sixth People's Hospital East, Shanghai University of Medicine &Health Sciences, Shanghai 201306, China.,Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Hongmei Song
- Shanghai Sixth People's Hospital East, Shanghai University of Medicine &Health Sciences, Shanghai 201306, China
| | - Tao Liang
- Shanghai Sixth People's Hospital East, Shanghai University of Medicine &Health Sciences, Shanghai 201306, China
| | - Yonghui Li
- Shanghai Sixth People's Hospital East, Shanghai University of Medicine &Health Sciences, Shanghai 201306, China
| | - Dongliang Yan
- Shanghai Sixth People's Hospital East, Shanghai University of Medicine &Health Sciences, Shanghai 201306, China
| | - Qiang Fu
- Shanghai Sixth People's Hospital East, Shanghai University of Medicine &Health Sciences, Shanghai 201306, China
| | - Zuowei Li
- Shanghai Sixth People's Hospital East, Shanghai University of Medicine &Health Sciences, Shanghai 201306, China
| |
Collapse
|
13
|
Tan M, Xu J, Siddiqui J, Feng F, Sun Y. Depletion of SAG/RBX2 E3 ubiquitin ligase suppresses prostate tumorigenesis via inactivation of the PI3K/AKT/mTOR axis. Mol Cancer 2016; 15:81. [PMID: 27955654 PMCID: PMC5153812 DOI: 10.1186/s12943-016-0567-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 12/06/2016] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND SAG (Sensitive to Apoptosis Gene), also known as RBX2, ROC2 or RNF7, is a RING component of CRL (Cullin-RING ligase), required for its activity. Our recent study showed that SAG/RBX2 co-operated with Kras to promote lung tumorigenesis, but antagonized Kras to inhibit skin tumorigenesis, suggesting a tissue/context dependent function of Sag. However, it is totally unknown whether and how Sag would play in prostate tumorigenesis, triggered by Pten loss. METHODS Sag and Pten double conditional knockout mice were generated and prostate specific deletion of Sag and Pten was achieved by PB4-Cre, and their effect on prostate tumorigenesis was evaluated by H&E staining. The methods of immunohistochemistry (IHC) staining and Western blotting were utilized to examine expression of various proteins in prostate cancer tissues or cell lines. The effect of SAG knockdown in proliferation, survival and migration was evaluated in two prostate cancer cell lines. The poly-ubiquitylation of PHLPP1 and DEPTOR was evaluated by both in vivo and in vitro ubiquitylation assays. RESULTS SAG is overexpressed progressively from early-to-late stage of human prostate cancer with the highest expression seen in metastatic lesion. Sag deletion inhibits prostate tumorigenesis triggered by Pten loss in a mouse model as a result of suppressed proliferation. SAG knockdown in human prostate cancer cells inhibits a) proliferation in monolayer and soft agar, b) clonogenic survival, and c) migration. SAG is an E3 ligase that promotes ubiquitylation and degradation of PHLPP1 and DEPTOR, leading to activation of the PI3K/AKT/mTOR axis, whereas SAG knockdown caused their accumulation. Importantly, growth suppression triggered by SAG knockdown was partially rescued by simultaneous knockdown of PHLPP1 or DEPTOR, suggesting their causal role. Accumulation of Phlpp1 and Deptor with corresponding inactivation of Akt/mTOR was also detected in Sag-null prostate cancer tissues. CONCLUSIONS Sag is an oncogenic cooperator of Pten-loss for prostate tumorigenesis. Targeting SAG E3 ligase may, therefore, have therapeutic value for the treatment of prostate cancer associated with Pten loss.
Collapse
Affiliation(s)
- Mingjia Tan
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, 4424B MS-1, 1301 Catherine Street, Ann Arbor, 48109, MI, USA
| | - Jie Xu
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, 4424B MS-1, 1301 Catherine Street, Ann Arbor, 48109, MI, USA
| | - Javed Siddiqui
- Department of Pathology, University of Michigan, 4424B MS-1, 1301 Catherine Street, Ann Arbor, 48109, MI, USA
| | - Felix Feng
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, 4424B MS-1, 1301 Catherine Street, Ann Arbor, 48109, MI, USA.,Department of Radiation Oncology, University of San Francisco, San Francisco, CA, USA
| | - Yi Sun
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, 4424B MS-1, 1301 Catherine Street, Ann Arbor, 48109, MI, USA. .,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China. .,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, People's Republic of China.
| |
Collapse
|
14
|
Kuang P, Tan M, Zhou W, Zhang Q, Sun Y. SAG/RBX2 E3 ligase complexes with UBCH10 and UBE2S E2s to ubiquitylate β-TrCP1 via K11-linkage for degradation. Sci Rep 2016; 6:37441. [PMID: 27910872 PMCID: PMC5133542 DOI: 10.1038/srep37441] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 10/24/2016] [Indexed: 12/27/2022] Open
Abstract
SAG/RBX2 and RBX1 are two family members of RING components of Cullin-RING ligases (CRLs), required for their enzymatic activity. Previous studies showed that SAG prefers to bind with CUL5, as well as CUL1, whereas RBX1 binds exclusively to CULs1–4. Detailed biochemical difference between SAG and RBX1, and whether SAG mediates cross-talk between CRL5 and CRL1 are previously unknown. Here we report that the levels of SAG and β-TrCP1 are inversely correlated, and SAG-CUL5-βTrCP1 forms a complex under physiological condition. SAG-CUL5, but not RBX1-CUL1, negatively modulates β-TrCP1 levels by shortening its protein half-life through promoting its ubiquitylation via atypical K11-linkage. Consistently, chemical inducers of SAG reduced β-TrCP1 level. Furthermore, SAG mainly binds to E2s UBCH10 and UBE2S known to mediate K11 linkage of ubiquitin, whereas RBX1 exclusively binds to E2s CDC34 and UBCH5C, known to mediate K48 linkage of ubiquitin. Finally, silencing of either UBCH10 or UBE2S, but not UBCH5C, caused accumulation of endogenous β-TrCP1, suggesting that β-TrCP1 is a physiological substrate of SAG-UBCH10C/UBE2S. Our study, for the first time, differentiates SAG and RBX1 biochemically via their respective binding to different E2s; and shows a negative cross-talk between CRL5 and CRL1 through SAG mediated ubiquitylation of β-TrCP1.
Collapse
Affiliation(s)
- Peng Kuang
- Department of Internal Medicine, Beijing University School of Medicine, 38 Xueyuan Road, Beijing, 100191, China.,Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, 4424B MS-1, 1301 Catherine Street, Ann Arbor, MI 48109, USA
| | - Mingjia Tan
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, 4424B MS-1, 1301 Catherine Street, Ann Arbor, MI 48109, USA
| | - Weihua Zhou
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, 4424B MS-1, 1301 Catherine Street, Ann Arbor, MI 48109, USA
| | - Qiang Zhang
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, 4424B MS-1, 1301 Catherine Street, Ann Arbor, MI 48109, USA
| | - Yi Sun
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, 4424B MS-1, 1301 Catherine Street, Ann Arbor, MI 48109, USA.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, P. R. China
| |
Collapse
|
15
|
Mathewson ND, Fujiwara H, Wu SR, Toubai T, Oravecz-Wilson K, Sun Y, Rossi C, Zajac C, Sun Y, Reddy P. SAG/Rbx2-Dependent Neddylation Regulates T-Cell Responses. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2679-91. [PMID: 27543965 DOI: 10.1016/j.ajpath.2016.06.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 06/03/2016] [Accepted: 06/10/2016] [Indexed: 11/25/2022]
Abstract
Neddylation is a crucial post-translational modification that depends on the E3 cullin ring ligase (CRL). The E2-adapter component of the CRL, sensitive to apoptosis gene (SAG), is critical for the function of CRL-mediated ubiquitination; thus, the deletion of SAG regulates neddylation. We examined the role of SAG-dependent neddylation in T-cell-mediated immunity using multiple approaches: a novel T-cell-specific, SAG genetic knockout (KO) and chemical inhibition with small-molecule MLN4924. The KO animals were viable and showed phenotypically normal mature T-cell development. However, in vitro stimulation of KO T cells revealed significantly decreased activation, proliferation, and T-effector cytokine release, compared with WT. Using in vivo clinically relevant models of allogeneic bone marrow transplantation also demonstrated reduced proliferation and effector cytokine secretion associated with markedly reduced graft-versus-host disease. Similar in vitro and in vivo results were observed with the small-molecule inhibitor of neddylation, MLN4924. Mechanistic studies demonstrated that SAG-mediated effects in T cells were concomitant with an increase in suppressor of cytokine signaling, but not NF-κB translocation. Our studies suggest that SAG is a novel molecular target that regulates T-cell responses and that inhibiting neddylation with the clinically available small-molecule MLN4924 may represent a novel strategy to mitigate T-cell-mediated immunopathologies, such as graft-versus-host disease.
Collapse
Affiliation(s)
- Nathan D Mathewson
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan; Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Hideaki Fujiwara
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan
| | - Shin-Rong Wu
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan; Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Tomomi Toubai
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan
| | - Katherine Oravecz-Wilson
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan
| | - Yaping Sun
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan
| | - Corinne Rossi
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan
| | - Cynthia Zajac
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan
| | - Yi Sun
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China
| | - Pavan Reddy
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan.
| |
Collapse
|
16
|
Tan M, Li H, Sun Y. Inactivation of Sag/Rbx2/Roc2 e3 ubiquitin ligase triggers senescence and inhibits kras-induced immortalization. Neoplasia 2015; 17:114-23. [PMID: 25622904 PMCID: PMC4309684 DOI: 10.1016/j.neo.2014.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 11/19/2014] [Accepted: 11/26/2014] [Indexed: 01/01/2023] Open
Abstract
Our recent study showed that SAG/RBX2 E3 ubiquitin ligase regulates apoptosis and vasculogenesis by promoting degradation of NOXA and NF1, and co-operates with Kras to promote lung tumorigenesis by activating NFκB and mTOR pathways via targeted degradation of tumor suppressive substrates including IκB, DEPTOR, p21 and p27. Here we investigated the role of Sag/Rbx2 E3 ligase in cellular senescence and immortalization of mouse embryonic fibroblasts (MEFs) and report that Sag is required for proper cell proliferation and KrasG12D-induced immortalization. Sag inactivation by genetic deletion remarkably suppresses cell proliferation by inducing senescence, which is associated with accumulation of p16, but not p53. Mechanistically, Sag deletion caused accumulation of Jun-B, a substrate of Sag-Fbxw7 E3 ligase and a transcription factor that drives p16 transcription. Importantly, senescence triggered by Sag deletion can be largely rescued by simultaneous deletion of Cdkn2a, the p16 encoding gene, indicating its causal role. Furthermore, KrasG12D-induced immortalization can also be abrogated by Sag deletion via senescence induction, which is again rescued by simultaneous deletion of Cdkn2a. Finally, we found that Sag deletion inactivates KrasG12D activity and block the MAPK signaling pathway, together with accumulated p16, to induce senescence. Taken together, our results demonstrated that Sag is a KrasG12D-cooperating oncogene required for KrasG12D-induced immortalization and transformation, and targeting SAG-SCF E3 ligase may, therefore, have therapeutic value for senescence-based cancer treatment.
Collapse
Affiliation(s)
- Mingjia Tan
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, 4424B MS-1, 1301 Catherine Street, Ann Arbor, MI 48109, USA.
| | - Hua Li
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, 4424B MS-1, 1301 Catherine Street, Ann Arbor, MI 48109, USA
| | - Yi Sun
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, 4424B MS-1, 1301 Catherine Street, Ann Arbor, MI 48109, USA; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China.
| |
Collapse
|
17
|
Xie CM, Wei D, Zhao L, Marchetto S, Mei L, Borg JP, Sun Y. Erbin is a novel substrate of the Sag-βTrCP E3 ligase that regulates KrasG12D-induced skin tumorigenesis. J Cell Biol 2015; 209:721-37. [PMID: 26056141 PMCID: PMC4460146 DOI: 10.1083/jcb.201411104] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In contrast to previous results in the lung, skin-specific deletion of the Sag-βTrCP E3 ubiquitin ligase significantly accelerates mutant KrasG12D-induced skin papillomagenesis due to accumulation of Erbin and Nrf2, two novel Sag substrates, which blocks ROS generation and promotes proliferation. SAG/RBX2 is the RING (really interesting new gene) component of Cullin-RING ligase, which is required for its activity. An organ-specific role of SAG in tumorigenesis is unknown. We recently showed that Sag/Rbx2, upon lung-targeted deletion, suppressed KrasG12D-induced tumorigenesis via inactivating NF-κB and mammalian target of rapamycin pathways. In contrast, we report here that, upon skin-targeted deletion, Sag significantly accelerated KrasG12D-induced papillomagenesis. In KrasG12D-expressing primary keratinocytes, Sag deletion promotes proliferation by inhibiting autophagy and senescence, by inactivating the Ras–Erk pathway, and by blocking reactive oxygen species (ROS) generation. This is achieved by accumulation of Erbin to block Ras activation of Raf and Nrf2 to scavenge ROS and can be rescued by knockdown of Nrf2 or Erbin. Simultaneous one-allele deletion of the Erbin-encoding gene Erbb2ip partially rescued the phenotypes. Finally, we characterized Erbin as a novel substrate of SAG-βTrCP E3 ligase. By degrading Erbin and Nrf2, Sag activates the Ras–Raf pathway and causes ROS accumulation to trigger autophagy and senescence, eventually delaying KrasG12D-induced papillomagenesis and thus acting as a skin-specific tumor suppressor.
Collapse
Affiliation(s)
- Chuan-Ming Xie
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109
| | - Dongping Wei
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109
| | - Lili Zhao
- Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109
| | - Sylvie Marchetto
- Cancer Research Center of Marseille, Cell Polarity, Cell Signalling and Cancer, Institut National de la Santé et de la Recherche Médicale U1068, 13009 Marseille, France Institut Paoli-Calmettes, 13009 Marseille, France Aix-Marseille Université, 13284 Marseille, France Centre National de la Recherche Scientifique UMR7258, 13009 Marseille, France
| | - Lin Mei
- Department of Neurology, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912 Department of Neuroscience and Regenerative Medicine, Georgia Regents University, Augusta, GA 30912
| | - Jean-Paul Borg
- Cancer Research Center of Marseille, Cell Polarity, Cell Signalling and Cancer, Institut National de la Santé et de la Recherche Médicale U1068, 13009 Marseille, France Institut Paoli-Calmettes, 13009 Marseille, France Aix-Marseille Université, 13284 Marseille, France Centre National de la Recherche Scientifique UMR7258, 13009 Marseille, France
| | - Yi Sun
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109 Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, Zhejiang, China Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310058, Zhejiang, China
| |
Collapse
|
18
|
Zhou W, Xu J, Zhao Y, Sun Y. SAG/RBX2 is a novel substrate of NEDD4-1 E3 ubiquitin ligase and mediates NEDD4-1 induced chemosensitization. Oncotarget 2015; 5:6746-55. [PMID: 25216516 PMCID: PMC4196160 DOI: 10.18632/oncotarget.2246] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Sensitive to apoptosis gene (SAG), also known as RBX2, ROC2, or RNF7, is a RING component of SCF E3 ubiquitin ligases, which regulates cellular functions through ubiquitylation and degradation of many protein substrates. Although our previous studies showed that SAG is transcriptionally induced by redox, mitogen and hypoxia via AP-1 and HIF-1, it is completely unknown whether and how SAG is ubiquitylated and degraded. Here we report that NEDD4-1, a HECT domain-containing E3 ubiquitin ligase, binds via its HECT domain directly with SAG's C-terminal RING domain and ubiquitylates SAG for proteasome-mediated degradation. Consistently, SAG protein half-life is shortened or extended by NEDD4-1 overexpression or silencing, respectively. We also found that SAG bridges NEDD4-1 via its C-terminus and CUL-5 via its N-terminus to form a NEDD4-1/SAG/CUL-5 tri-complex. Biologically, NEDD4-1 overexpression sensitizes cancer cells to etoposide-induced apoptosis by reducing SAG levels through targeted degradation. Thus, SAG is added to a growing list of NEDD4-1 substrates and mediates its biological function.
Collapse
Affiliation(s)
- Weihua Zhou
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, Ann Arbor, MI
| | - Jie Xu
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, Ann Arbor, MI
| | - Yongchao Zhao
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, Ann Arbor, MI
| | - Yi Sun
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, Ann Arbor, MI. Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| |
Collapse
|
19
|
Zhou MJ, Chen FZ, Chen HC. Ubiquitination involved enzymes and cancer. Med Oncol 2014; 31:93. [PMID: 25023052 DOI: 10.1007/s12032-014-0093-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Accepted: 06/21/2014] [Indexed: 12/21/2022]
Abstract
Ubiquitination is a post-translational modification process that regulates multiple cell functions. It also plays important roles in the development of cancer. Mechanistically, ubiquitination is a complex process that is comprised of a series of events involving ubiquitin-activating enzymes, ubiquitin-conjugating enzymes and ubiquitin ligases. In general, covalent attachment of ubiquitin to the target proteins marks them for degradation. Dysregulation of the ubiquitination process may cause carcinogenesis. In this review, we summarize recent developments in understanding the relationship between ubiquitination enzymes and carcinogenesis.
Collapse
Affiliation(s)
- Mei-juan Zhou
- Department of Biochemistry, School of Life Sciences, Central South University, Changsha, 410013, Hunan, China,
| | | | | |
Collapse
|
20
|
Sohn EJ, Shin MJ, Kim DW, Ahn EH, Jo HS, Kim DS, Cho SW, Han KH, Park J, Eum WS, Hwang HS, Choi SY. Tat-fused recombinant human SAG prevents dopaminergic neurodegeneration in a MPTP-induced Parkinson's disease model. Mol Cells 2014; 37:226-33. [PMID: 24625574 PMCID: PMC3969043 DOI: 10.14348/molcells.2014.2314] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 01/18/2014] [Accepted: 01/27/2014] [Indexed: 02/03/2023] Open
Abstract
Excessive reactive oxygen species (ROS) generated from abnormal cellular process lead to various human diseases such as inflammation, ischemia, and Parkinson's disease (PD). Sensitive to apoptosis gene (SAG), a RING-FINGER protein, has anti-apoptotic activity and anti-oxidant activity. In this study, we investigate whether Tat-SAG, fused with a Tat domain, could protect SH-SY5Y neuroblastoma cells against 1-methyl-4-phenylpyridinium (MPP(+)) and dopaminergic (DA) neurons in the substantia nigra (SN) against 1-methyl-4-phenyl-1,2,3,6-tetra-hydropyridine (MPTP) toxicity. Western blot and immunohistochemical analysis showed that, unlike SAG, Tat-SAG transduced efficiently into SH-SY5Y cells and into the brain, respectively. Tat-SAG remarkably suppressed ROS generation, DNA damage, and the progression of apoptosis, caused by MPP(+) in SH-SY5Y cells. Also, immunohistochemical data using a tyrosine hydroxylase antibody and cresyl violet staining demonstrated that Tat-SAG obviously protected DA neurons in the SN against MPTP toxicity in a PD mouse model. Tat-SAG-treated mice showed significant enhanced motor activities, compared to SAG- or Tat-treated mice. Therefore, our results suggest that Tat-SAG has potential as a therapeutic agent against ROS-related diseases such as PD.
Collapse
Affiliation(s)
- Eun Jeong Sohn
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702,
Korea
| | - Min Jea Shin
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702,
Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Kangnung-Wonju National University, Gangneung 210-702,
Korea
| | - Eun Hee Ahn
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702,
Korea
| | - Hyo Sang Jo
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702,
Korea
| | - Duk-Soo Kim
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan 330-090,
Korea
| | - Sung-Woo Cho
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 138-736,
Korea
| | - Kyu Hyung Han
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702,
Korea
| | - Jinseu Park
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702,
Korea
| | - Won Sik Eum
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702,
Korea
| | - Hyun Sook Hwang
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702,
Korea
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702,
Korea
| |
Collapse
|
21
|
Li H, Tan M, Jia L, Wei D, Zhao Y, Chen G, Xu J, Zhao L, Thomas D, Beer DG, Sun Y. Inactivation of SAG/RBX2 E3 ubiquitin ligase suppresses KrasG12D-driven lung tumorigenesis. J Clin Invest 2014; 124:835-46. [PMID: 24430184 PMCID: PMC3904615 DOI: 10.1172/jci70297] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 11/07/2013] [Indexed: 12/20/2022] Open
Abstract
Cullin-RING ligases (CRLs) are a family of E3 ubiquitin ligase complexes that rely on either RING-box 1 (RBX1) or sensitive to apoptosis gene (SAG), also known as RBX2, for activity. RBX1 and SAG are both overexpressed in human lung cancer; however, their contribution to patient survival and lung tumorigenesis is unknown. Here, we report that overexpression of SAG, but not RBX1, correlates with poor patient prognosis and more advanced disease. We found that SAG is overexpressed in murine KrasG12D-driven lung tumors and that Sag deletion suppressed lung tumorigenesis and extended murine life span. Using cultured lung cancer cells, we showed that SAG knockdown suppressed growth and survival, inactivated both NF-κB and mTOR pathways, and resulted in accumulation of tumor suppressor substrates, including p21, p27, NOXA, and BIM. Importantly, growth suppression by SAG knockdown was partially rescued by simultaneous knockdown of p21 or the mTOR inhibitor DEPTOR. Treatment with MLN4924, a small molecule inhibitor of CRL E3s, also inhibited the formation of KrasG12D-induced lung tumors through a similar mechanism involving inactivation of NF-κB and mTOR and accumulation of tumor suppressor substrates. Together, our results demonstrate that Sag is a Kras-cooperating oncogene that promotes lung tumorigenesis and suggest that targeting SAG-CRL E3 ligases may be an effective therapeutic approach for Kras-driven lung cancers.
Collapse
Affiliation(s)
- Hua Li
- Division of Radiation and Cancer Biology, Department of Radiation Oncology,
Thoracic Surgery, Department of Surgery,
Department of Biostatistics, and
Department of Pathology and Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Mingjia Tan
- Division of Radiation and Cancer Biology, Department of Radiation Oncology,
Thoracic Surgery, Department of Surgery,
Department of Biostatistics, and
Department of Pathology and Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Lijun Jia
- Division of Radiation and Cancer Biology, Department of Radiation Oncology,
Thoracic Surgery, Department of Surgery,
Department of Biostatistics, and
Department of Pathology and Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Dongping Wei
- Division of Radiation and Cancer Biology, Department of Radiation Oncology,
Thoracic Surgery, Department of Surgery,
Department of Biostatistics, and
Department of Pathology and Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Yongchao Zhao
- Division of Radiation and Cancer Biology, Department of Radiation Oncology,
Thoracic Surgery, Department of Surgery,
Department of Biostatistics, and
Department of Pathology and Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Guoan Chen
- Division of Radiation and Cancer Biology, Department of Radiation Oncology,
Thoracic Surgery, Department of Surgery,
Department of Biostatistics, and
Department of Pathology and Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Jie Xu
- Division of Radiation and Cancer Biology, Department of Radiation Oncology,
Thoracic Surgery, Department of Surgery,
Department of Biostatistics, and
Department of Pathology and Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Lili Zhao
- Division of Radiation and Cancer Biology, Department of Radiation Oncology,
Thoracic Surgery, Department of Surgery,
Department of Biostatistics, and
Department of Pathology and Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Dafydd Thomas
- Division of Radiation and Cancer Biology, Department of Radiation Oncology,
Thoracic Surgery, Department of Surgery,
Department of Biostatistics, and
Department of Pathology and Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - David G. Beer
- Division of Radiation and Cancer Biology, Department of Radiation Oncology,
Thoracic Surgery, Department of Surgery,
Department of Biostatistics, and
Department of Pathology and Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Yi Sun
- Division of Radiation and Cancer Biology, Department of Radiation Oncology,
Thoracic Surgery, Department of Surgery,
Department of Biostatistics, and
Department of Pathology and Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
22
|
Endothelial deletion of Sag/Rbx2/Roc2 E3 ubiquitin ligase causes embryonic lethality and blocks tumor angiogenesis. Oncogene 2013; 33:5211-20. [PMID: 24213570 PMCID: PMC4016996 DOI: 10.1038/onc.2013.473] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 09/24/2013] [Accepted: 09/30/2013] [Indexed: 12/12/2022]
Abstract
SAG (Sensitive to Apoptosis Gene), also known as RBX2 or ROC2, is a RING protein required for the activity of Cullin-RING ligase (CRL). Our recent study showed that Sag total knockout caused embryonic lethality at E11.5–12.5 days with associated defects in vasculogenesis. Whether Sag is required for de novo vasculogenesis in embryos and angiogenesis in tumors is totally unknown. Here, we report that Sag endothelial deletion also causes embryonic lethality at E15.5 with poor vasculogenesis. Sag deletion in primary endothelial cells or knockdown in MS-1 endothelial cells inhibits migration, proliferation and tube formation with p27 accumulation being responsible for the suppression of migration and proliferation. Furthermore, Sag deletion significantly inhibits angiogenesis in an in vivo Matrigel plug assay, and tumor angiogenesis and tumorigenesis in a B16F10 melanoma model. Finally, MLN4924, an investigational small molecule inhibitor of NEDD8-activating enzyme (NAE) that inhibits CRL, suppresses in vitro migration, proliferation, and tube formation, as well as in vivo angiogenesis and tumorigenesis. Taken together, our study, using both genetic and pharmaceutical approaches, demonstrates that Sag is essential for embryonic vasculogenesis and tumor angiogenesis, and provides the proof-of-concept evidence that targeting Sag E3 ubiquitin ligase may have clinical value for anti-angiogenesis therapy of human cancer.
Collapse
|
23
|
Zhao Y, Sun Y. Cullin-RING Ligases as attractive anti-cancer targets. Curr Pharm Des 2013; 19:3215-25. [PMID: 23151137 DOI: 10.2174/13816128113199990300] [Citation(s) in RCA: 211] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 11/01/2012] [Indexed: 12/11/2022]
Abstract
The ubiquitin-proteasome system (UPS) promotes the timely degradation of short-lived proteins with key regulatory roles in a vast array of biological processes, such as cell cycle progression, oncogenesis and genome integrity. Thus, abnormal regulation of UPS disrupts the protein homeostasis and causes many human diseases, particularly cancer. Indeed, the FDA approval of bortezomib, the first class of general proteasome inhibitor, for the treatment of multiple myeloma, demonstrated that the UPS can be an attractive anti-cancer target. However, normal cell toxicity associated with bortezomib, resulting from global inhibition of protein degradation, promotes the focus of drug discovery efforts on targeting enzymes upstream of the proteasome for better specificity. E3 ubiquitin ligases, particularly those known to be activated in human cancer, become an attractive choice. Cullin-RING Ligases (CRLs) with multiple components are the largest family of E3 ubiquitin ligases and are responsible for ubiquitination of ~20% of cellular proteins degraded through UPS. Activity of CRLs is dynamically regulated and requires the RING component and cullin neddylation. In this review, we will introduce the UPS and CRL E3s and discuss the biological processes regulated by each of eight CRLs through substrate degradation. We will further discuss how cullin neddylation controls CRL activity, and how CRLs are being validated as the attractive cancer targets by abrogating the RING component through genetic means and by inhibiting cullin neddylation via MLN4924, a small molecule indirect inhibitor of CRLs, currently in several Phase I clinical trials. Finally, we will discuss current efforts and future perspectives on the development of additional inhibitors of CRLs by targeting E2 and/or E3 of cullin neddylation and CRL-mediated ubiquitination as potential anti-cancer agents.
Collapse
Affiliation(s)
- Yongchao Zhao
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, 4424B MS-1, 1301 Catherine Street, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
24
|
Zhou W, Wei W, Sun Y. Genetically engineered mouse models for functional studies of SKP1-CUL1-F-box-protein (SCF) E3 ubiquitin ligases. Cell Res 2013; 23:599-619. [PMID: 23528706 PMCID: PMC3641602 DOI: 10.1038/cr.2013.44] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The SCF (SKP1 (S-phase-kinase-associated protein 1), Cullin-1, F-box protein) E3 ubiquitin ligases, the founding member of Cullin-RING ligases (CRLs), are the largest family of E3 ubiquitin ligases in mammals. Each individual SCF E3 ligase consists of one adaptor protein SKP1, one scaffold protein cullin-1 (the first family member of the eight cullins), one F-box protein out of 69 family members, and one out of two RING (Really Interesting New Gene) family proteins RBX1/ROC1 or RBX2/ROC2/SAG/RNF7. Various combinations of these four components construct a large number of SCF E3s that promote the degradation of many key regulatory proteins in cell-context, temporally, and spatially dependent manners, thus controlling precisely numerous important cellular processes, including cell cycle progression, apoptosis, gene transcription, signal transduction, DNA replication, maintenance of genome integrity, and tumorigenesis. To understand how the SCF E3 ligases regulate these cellular processes and embryonic development under in vivo physiological conditions, a number of mouse models with transgenic (Tg) expression or targeted deletion of components of SCF have been established and characterized. In this review, we will provide a brief introduction to the ubiquitin-proteasome system (UPS) and the SCF E3 ubiquitin ligases, followed by a comprehensive overview on the existing Tg and knockout (KO) mouse models of the SCF E3s, and discuss the role of each component in mouse embryogenesis, cell proliferation, apoptosis, carcinogenesis, as well as other pathogenic processes associated with human diseases. We will end with a brief discussion on the future directions of this research area and the potential applications of the knowledge gained to more effective therapeutic interventions of human diseases.
Collapse
Affiliation(s)
- Weihua Zhou
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
25
|
Xie CM, Wei W, Sun Y. Role of SKP1-CUL1-F-box-protein (SCF) E3 ubiquitin ligases in skin cancer. J Genet Genomics 2013; 40:97-106. [PMID: 23522382 PMCID: PMC3861240 DOI: 10.1016/j.jgg.2013.02.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 01/30/2013] [Accepted: 02/04/2013] [Indexed: 11/25/2022]
Abstract
Many biological processes such as cell proliferation, differentiation, and cell death depend precisely on the timely synthesis and degradation of key regulatory proteins. While protein synthesis can be regulated at multiple levels, protein degradation is mainly controlled by the ubiquitin-proteasome system (UPS), which consists of two distinct steps: (1) ubiquitylation of targeted protein by E1 ubiquitin-activating enzyme, E2 ubiquitin-conjugating enzyme and E3 ubiquitin ligase, and (2) subsequent degradation by the 26S proteasome. Among all E3 ubiquitin ligases, the SCF (SKP1-CUL1-F-box protein) E3 ligases are the largest family and are responsible for the turnover of many key regulatory proteins. Aberrant regulation of SCF E3 ligases is associated with various human diseases, such as cancers, including skin cancer. In this review, we provide a comprehensive overview of all currently published data to define a promoting role of SCF E3 ligases in the development of skin cancer. The future directions in this area of research are also discussed with an ultimate goal to develop small molecule inhibitors of SCF E3 ligases as a novel approach for the treatment of human skin cancer. Furthermore, altered components or substrates of SCF E3 ligases may also be developed as the biomarkers for early diagnosis or predicting prognosis.
Collapse
Affiliation(s)
- Chuan-Ming Xie
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Yi Sun
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, MI 48109, USA
| |
Collapse
|
26
|
Sun Y, Li H. Functional characterization of SAG/RBX2/ROC2/RNF7, an antioxidant protein and an E3 ubiquitin ligase. Protein Cell 2012; 4:103-16. [PMID: 23136067 DOI: 10.1007/s13238-012-2105-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Accepted: 10/09/2012] [Indexed: 01/28/2023] Open
Abstract
SAG (Sensitive to Apoptosis Gene), also known as RBX2 (RING box protein 2), ROC2 (Regulator of Cullins 2), or RNF7 (RING Finger Protein 7), was originally cloned in our laboratory as a redox inducible antioxidant protein and later characterized as the second member of the RBX/ROC RING component of the SCF (SKP1-CUL-F-box Proteins) E3 ubiquitin ligase. When acting alone, SAG scavenges oxygen radicals by forming inter- and intra-molecular disulfide bonds, whereas by forming a complex with other components of the SCF E3 ligase, SAG promotes ubiquitination and degradation of a number of protein substrates, including c-JUN, DEPTOR, HIF-1α, IκBα, NF1, NOXA, p27, and procaspase-3, thus regulating various signaling pathways and biological processes. Specifically, SAG protects cells from apoptosis, confers radioresistance, and plays an essential and non-redundant role in mouse embryogenesis and vasculogenesis. Furthermore, stress-inducible SAG is overexpressed in a number of human cancers and SAG overexpression correlates with poor patient prognosis. Finally, SAG transgenic expression in epidermis causes an early stage inhibition, but later stage promotion, of skin tumorigenesis triggered by DMBA/TPA. Given its major role in promoting targeted degradation of tumor suppressive proteins, leading to apoptosis suppression and accelerated tumorigenesis, SAG E3 ligase appears to be an attractive anticancer target.
Collapse
Affiliation(s)
- Yi Sun
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, 4424B Medical Science-I, 1301 Catherine Street, Ann Arbor, MI 48109, USA.
| | | |
Collapse
|
27
|
Wei D, Morgan MA, Sun Y. Radiosensitization of Cancer Cells by Inactivation of Cullin-RING E3 Ubiquitin Ligases. Transl Oncol 2012; 5:305-12. [PMID: 23066438 PMCID: PMC3468921 DOI: 10.1593/tlo.12229] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 07/06/2012] [Accepted: 08/06/2012] [Indexed: 01/15/2023] Open
Abstract
Although radiotherapy represents one of the most effective treatment modalities for patients with cancer, inherent and/or acquired resistance of cancer cells to radiotherapy is often an impediment to effective treatment. Diverse strategies have been developed to improve the efficacy of radiotherapy. The ubiquitin-proteasome system (UPS) operates in numerous vital biologic processes by controlling the protein turnover in cells. Ubiquitination is central to the UPS pathway, and it relies on the E3 ubiquitin ligases to catalyze the covalent attachment of ubiquitin to its protein substrates. Cullin-based RING ligases (CRLs) are the largest family of E3 ligases that are responsible for the ubiquitination and destruction of numerous cancer-relevant proteins. Its deregulation has been linked to many human cancers, making it an attractive target for therapeutic intervention. This review discusses how targeting the ubiquitin-proteasome system, particularly CRLs, is an exciting new strategy for radiosensitization in cancer and, specifically, focuses on MLN4924, a recently discovered small-molecule inhibitor of the NEDD8-activating enzyme, which is being characterized as a novel radiosensitizing agent against cancer cells by inactivating CRL E3 ubiquitin ligases.
Collapse
Affiliation(s)
- Dongping Wei
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109
| | | | | |
Collapse
|
28
|
The p21-dependent radiosensitization of human breast cancer cells by MLN4924, an investigational inhibitor of NEDD8 activating enzyme. PLoS One 2012; 7:e34079. [PMID: 22457814 PMCID: PMC3310880 DOI: 10.1371/journal.pone.0034079] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 02/21/2012] [Indexed: 12/25/2022] Open
Abstract
Radiotherapy is a treatment choice for local control of breast cancer. However, intrinsic radioresistance of cancer cells limits therapeutic efficacy. We have recently validated that SCF (SKP1, Cullins, and F-box protein) E3 ubiquitin ligase is an attractive radiosensitizing target. Here we tested our hypothesis that MLN4924, a newly discovered investigational small molecule inhibitor of NAE (NEDD8 Activating Enzyme) that inactivates SCF E3 ligase, could act as a novel radiosensitizing agent in breast cancer cells. Indeed, we found that MLN4924 effectively inhibited cullin neddylation, and sensitized breast cancer cells to radiation with a sensitivity enhancement ratio (SER) of 1.75 for SK-BR-3 cells and 1.32 for MCF7 cells, respectively. Mechanistically, MLN4924 significantly enhanced radiation-induced G2/M arrest in SK-BR-3 cells, but not in MCF7 cells at early time point, and enhanced radiation-induced apoptosis in both lines at later time point. However, blockage of apoptosis by Z-VAD failed to abrogate MLN4924 radiosensitization, suggesting that apoptosis was not causally related. We further showed that MLN4924 failed to enhance radiation-induced DNA damage response, but did cause minor delay in DNA damage repair. Among a number of tested SCF E3 substrates known to regulate growth arrest, apoptosis and DNA damage response, p21 was the only one showing an enhanced accumulation in MLN4924-radiation combination group, as compared to the single treatment groups. Importantly, p21 knockdown via siRNA partialy inhibited MLN4924-induced G2/M arrest and radiosensitization, indicating a causal role played by p21. Our study suggested that MLN4924 could be further developed as a novel class of radiosensitizer for the treatment of breast cancer.
Collapse
|
29
|
Tan M, Li Y, Yang R, Xi N, Sun Y. Inactivation of SAG E3 ubiquitin ligase blocks embryonic stem cell differentiation and sensitizes leukemia cells to retinoid acid. PLoS One 2011; 6:e27726. [PMID: 22110742 PMCID: PMC3217012 DOI: 10.1371/journal.pone.0027726] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 10/23/2011] [Indexed: 01/15/2023] Open
Abstract
Sensitive to Apoptosis Gene (SAG), also known as RBX2 (RING box protein-2), is the RING component of SCF (SKP1, Cullin, and F-box protein) E3 ubiquitin ligase. Our previous studies have demonstrated that SAG is an anti-apoptotic protein and an attractive anti-cancer target. We also found recently that Sag knockout sensitized mouse embryonic stem cells (mES) to radiation and blocked mES cells to undergo endothelial differentiation. Here, we reported that compared to wild-type mES cells, the Sag(-/-) mES cells were much more sensitive to all-trans retinoic acid (RA)-induced suppression of cell proliferation and survival. While wild-type mES cells underwent differentiation upon exposure to RA, Sag(-/-) mES cells were induced to death via apoptosis instead. The cell fate change, reflected by cellular stiffness, can be detected as early as 12 hrs post RA exposure by AFM (Atomic Force Microscopy). We then extended this novel finding to RA differentiation therapy of leukemia, in which the resistance often develops, by testing our hypothesis that SAG inhibition would sensitize leukemia to RA. Indeed, we found a direct correlation between SAG overexpression and RA resistance in multiple leukemia lines. By using MLN4924, a small molecule inhibitor of NEDD8-Activating Enzyme (NAE), that inactivates SAG-SCF E3 ligase by blocking cullin neddylation, we were able to sensitize two otherwise resistant leukemia cell lines, HL-60 and KG-1 to RA. Mechanistically, RA sensitization by MLN4924 was mediated via enhanced apoptosis, likely through accumulation of pro-apoptotic proteins NOXA and c-JUN, two well-known substrates of SAG-SCF E3 ligase. Taken together, our study provides the proof-of-concept evidence for effective treatment of leukemia patients by RA-MLN4924 combination.
Collapse
Affiliation(s)
- Mingjia Tan
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Yun Li
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, United States of America
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, and School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Ruiguo Yang
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan, United States of America
| | - Ning Xi
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan, United States of America
| | - Yi Sun
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
30
|
Wei D, Sun Y. Small RING Finger Proteins RBX1 and RBX2 of SCF E3 Ubiquitin Ligases: The Role in Cancer and as Cancer Targets. Genes Cancer 2011; 1:700-7. [PMID: 21103004 DOI: 10.1177/1947601910382776] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The SCF (Skp1-cullin-F-box proteins), also known as CRL (cullin-based RING ligase), is the largest family of E3 ubiquitin ligases that mediate approximately 20% ubiquitinated protein substrates for 26S proteasome degradation. Through promoting timely degradation of many key regulatory proteins, SCF E3 ligase controls numerous cellular processes; its dysfunction contributes to a number of human diseases, including cancer. The RING component of SCF complex consists of 2 family members, RBX1 (RING box protein 1), also known as ROC1 (regulator of cullins), and RBX2/ROC2 (also known as SAG [sensitive to apoptosis gene]), both of which are essential for the catalytic activity of SCF. RBX1 and RBX2 are evolutionarily conserved from yeast to humans and play an essential role during mouse embryonic development. Moreover, RBX1 and RBX2 are both overexpressed in multiple human cancer tissues and required for the growth and survival of cancer cells. In this review, we will discuss the similarities and differences between 2 RING family members, their regulation of SCF E3 ligase activity, and their role in development, cancer cell survival, and skin carcinogenesis, along with a brief discussion of RBX-SCF E3 ligases as the cancer targets and a recently discovered small molecule inhibitor of SCF E3 ligases as a novel class of anticancer drugs.
Collapse
Affiliation(s)
- Dongping Wei
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI, USA
| | | |
Collapse
|
31
|
Wei D, Li H, Yu J, Sebolt JT, Zhao L, Lawrence TS, Smith PG, Morgan MA, Sun Y. Radiosensitization of human pancreatic cancer cells by MLN4924, an investigational NEDD8-activating enzyme inhibitor. Cancer Res 2011; 72:282-93. [PMID: 22072567 DOI: 10.1158/0008-5472.can-11-2866] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Radiotherapy is used in locally advanced pancreatic cancers in which it can improve survival in combination with gemcitabine. However, prognosis is still poor in this setting in which more effective therapies remain needed. MLN4924 is an investigational small molecule currently in phase I clinical trials. MLN4924 inhibits NAE (NEDD8 Activating Enzyme), a pivotal regulator of the E3 ubiquitin ligase SCF (SKP1, Cullins, and F-box protein), that has been implicated recently in DNA damage and repair. In this study, we provide evidence that MLN4924 can be used as an effective radiosensitizer in pancreatic cancer. Specifically, MLN4924 (20-100 nmol/L) effectively inhibited cullin neddylation and sensitized pancreatic cancer cells to ionizing radiation in vitro with a sensitivity enhancement ratio of approximately 1.5. Mechanistically, MLN4924 treatment stimulated an accumulation of several SCF substrates, including CDT1, WEE1, and NOXA, in parallel with an enhancement of radiation-induced DNA damage, aneuploidy, G(2)/M phase cell-cycle arrest, and apoptosis. RNAi-mediated knockdown of CDT1 and WEE1 partially abrogated MLN4924-induced aneuploidy, G(2)/M arrest, and radiosensitization, indicating a causal effect. Furthermore, MLN4924 was an effective radiosensitizer in a mouse xenograft model of human pancreatic cancer. Our findings offer proof-of-concept for use of MLN4924 as a novel class of radiosensitizer for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Dongping Wei
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Xie CM, Chan WY, Yu S, Zhao J, Cheng CHK. Bufalin induces autophagy-mediated cell death in human colon cancer cells through reactive oxygen species generation and JNK activation. Free Radic Biol Med 2011; 51:1365-75. [PMID: 21763418 DOI: 10.1016/j.freeradbiomed.2011.06.016] [Citation(s) in RCA: 199] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 06/08/2011] [Accepted: 06/08/2011] [Indexed: 12/17/2022]
Abstract
Colorectal cancer is the second most common cause of cancer death in the world and about half of the patients with colorectal cancer require adjuvant therapy after surgical resection. Therefore, the eradication of cancer cells via chemotherapy constitutes a viable approach to treating patients with colorectal cancer. In this study, the effects of bufalin isolated from a traditional Chinese medicine were evaluated and characterized in HT-29 and Caco-2 human colon cancer cells. Contrary to its well-documented apoptosis-promoting activity in other cancer cells, bufalin did not cause caspase-dependent cell death in colon cancer cells, as indicated by the absence of significant early apoptosis as well as poly(ADP-ribose) polymerase and caspase-3 cleavage. Instead, bufalin activated an autophagy pathway, as characterized by the accumulation of LC3-II and the stimulation of autophagic flux. The induction of autophagy by bufalin was linked to the generation of reactive oxygen species (ROS). ROS activated autophagy via the c-Jun NH(2)-terminal kinase (JNK). JNK activation increased expression of ATG5 and Beclin-1. ROS antioxidants (N-acetylcysteine and vitamin C), the JNK-specific inhibitor SP600125, and JNK2 siRNA attenuated bufalin-induced autophagy. Our findings unveil a novel mechanism of drug action by bufalin in colon cancer cells and open up the possibility of treating colorectal cancer through a ROS-dependent autophagy pathway.
Collapse
Affiliation(s)
- Chuan-Ming Xie
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | | | | | | | |
Collapse
|