1
|
Nogueira RC, Sanches-Lopes JM, Oliveira-Paula GH, Tanus-Santos JE. Inhibitors of gastric acid secretion increase oxidative stress and matrix metalloproteinase-2 activity leading to vascular remodeling. Mol Cell Biochem 2024; 479:3141-3152. [PMID: 38302836 DOI: 10.1007/s11010-023-04921-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/20/2023] [Indexed: 02/03/2024]
Abstract
The use of inhibitors of gastric acid secretion (IGAS), especially proton pump inhibitors (PPI), has been associated with increased cardiovascular risk. While the mechanisms involved are not known, there is evidence supporting increased oxidative stress, a major activator of matrix metalloproteinases (MMP), as an important player in such effect. However, there is no study showing whether other IGAS such as histamine H2-receptor blockers (H2RB) cause similar effects. This study aimed at examining whether treatment with the H2RB ranitidine promotes oxidative stress resulting in vascular MMP activation and corresponding functional and structural alterations in the vasculature, as compared with those found with the PPI omeprazole. Male Wistar rats were treated (4 weeks) with vehicle (2% tween 20), omeprazole (10 mg/Kg/day; i.p.) or ranitidine (100 mg/Kg/day; gavage). Then the aorta was collected to perform functional, biochemical, and morphometric analysis. Both ranitidine and omeprazole increased gastric pH and oxidative stress assessed in situ with the fluorescent dye dihydroethidium (DHE) and with lucigenin chemiluminescence assay. Both IGAS augmented vascular activated MMP-2. These findings were associated with aortic remodeling (increased media/lumen ratio and number of cells/μm2). Both IGAS also impaired the endothelium-dependent relaxation induced by acetylcholine (isolated aortic ring preparation). This study provides evidence that the H2RB ranitidine induces vascular dysfunction, redox alterations, and remodeling similar to those found with the PPI omeprazole. These findings strongly suggest that IGAS increase oxidative stress and matrix metalloproteinase-2 activity leading to vascular remodeling, which helps to explain the increased cardiovascular risk associated with the use of those drugs.
Collapse
Affiliation(s)
- Renato C Nogueira
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, 14049-900, Brazil
| | - Jéssica M Sanches-Lopes
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, 14049-900, Brazil
| | - Gustavo H Oliveira-Paula
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, 14049-900, Brazil
- Division of Cardiology, Department of Medicine, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jose E Tanus-Santos
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, 14049-900, Brazil.
| |
Collapse
|
2
|
da Mata AMOF, Paz MFCJ, de Menezes AAPM, dos Reis AC, da Silva Souza B, de Carvalho Sousa CD, Machado SA, Medeiros TSG, Sarkar C, Islam MT, Sharifi-Rad J, Daştan SD, Alshehri MM, de Castro e Sousa JM, de Carvalho Melo Cavalcante AA. Evaluation of mutagenesis, necrosis and apoptosis induced by omeprazole in stomach cells of patients with gastritis. Cancer Cell Int 2022; 22:154. [PMID: 35436881 PMCID: PMC9016981 DOI: 10.1186/s12935-022-02563-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/30/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Gastritis is a superficial and prevalent inflammatory lesion that is considered a public health concern once can cause gastric ulcers and gastric cancer, especially when associated with Helicobacter pylori infection. Proton pump inhibitors, such as omeprazole, are the most widely used drugs to treat this illness. The aim of the study was evaluate cytogenetic effects of omeprazole in stomach epithelial cells of patients with gastritis in presence and absence of H. pylori, through cytogenetic biomarkers and catalse and superoxide dismutase analysis. METHODS The study included 152 patients from the Gastroenterology Outpatient Clinic of Hospital Getúlio Vargas, Teresina-Brazil, that reported continuous and prolonged omeprazole use in doses of 20, 30 and 40 mg/kg. The participants were divided into groups: (1) patients without gastritis (n = 32); (2) patients without gastritis but with OME use (n = 24); (3) patients with gastritis (n = 26); (4) patients with gastritis undergoing OME therapy (n = 26); (5) patients with gastritis and H. pylori (n = 22) and (6) patients with gastritis and H. pylori on OME therapy (n = 22). RESULTS OME induced cytogenetic imbalance in the stomach epithelium through the formation of micronuclei (group 6 > 1, 2, 3, 4, 5; group 5 > 1, 2, 3; group 4 > 1, 2, 3); bridges (groups 4 and 6 > 1, 2, 3, 5 and group 2 > 3, 5); buds (groups 2,4,6 > , 1, 3, 5); binucleated cells (group 6 > 1, 2, 3, 4, 5; group 4 > 1, 2, 3); (groups 2 and 3 > 1); picnoses (group 6 > 1, 2, 3, 4, 5), groups 2 and 5 > 1, 3; group 4 > 1, 2, 3, 5); cariorrexis (groups 6 and 4 > 1, 2, 3, 5; groups 2, 3, 5 > 1) and karyolysis (groups 2, 4, and 6 > 1, 3, 5; groups 3 and 5 > 1). The OME cytogenetic instability was associated with H. pylori infection, indicating clastogenic/aneugenic effects, chromosomes alterations, gene expression changes, cytotoxicity and apoptosis. CONCLUSIONS The cytogenetic changescan be attributed to several mechanisms that are still unclear, including oxidative damage, as observed by increased catalase and superoxide dismutase expresion. Positive correlations between antioxidant enzymes were found with micronuclei formation, and were negative for picnoses. Thus, the continuous and prolonged omeprazole use induces genetic instability, which can be monitored through cytogenetic analyzes, as precursor for gastric cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Chandan Sarkar
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University Bangladesh, Gopalganj, 8100 Bangladesh
| | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University Bangladesh, Gopalganj, 8100 Bangladesh
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
| | - Sevgi Durna Daştan
- Department of Biology, Faculty of Science, Sivas Cumhuriyet University, 58140 Sivas, Turkey
- Beekeeping Development Application and Research Center, Sivas Cumhuriyet University, 58140 Sivas, Turkey
| | - Mohammed M. Alshehri
- Pharmaceutical Care Department, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | | | | |
Collapse
|
3
|
Omeprazole induces vascular remodeling by mechanisms involving xanthine oxidoreductase and matrix metalloproteinase activation. Biochem Pharmacol 2021; 190:114633. [PMID: 34058185 DOI: 10.1016/j.bcp.2021.114633] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 05/14/2021] [Accepted: 05/26/2021] [Indexed: 11/20/2022]
Abstract
Proton pump inhibitors (PPI) are commonly used drugs that may increase the cardiovascular risk by mechanisms not entirely known. We examined whether the PPI omeprazole promotes vascular oxidative stress mediated by xanthine oxidoreductase (XOR) leading to activation of matrix metalloproteinases (MMPs) and vascular remodeling. We studied Wistar rats treated with omeprazole (or vehicle) combined with the XOR inhibitor allopurinol (or vehicle) for four weeks. Systolic blood pressure (SBP) measured by tail-cuff plethysmography was not affected by treatments. Omeprazole treatment increased the aortic cross-sectional area and media/lumen ratio by 25% (P < 0.05). Omeprazole treatment decreased gastric pH and induced vascular remodeling accompanied by impaired endothelium-dependent aortic responses (assessed with isolated aortic ring preparation) to acetylcholine (P < 0.05). Omeprazole increased vascular active MMP-2 expression and activity assessed by gel zymography and in situ zymography, respectively (P < 0.05). Moreover, omeprazole enhanced vascular oxidative stress assessed in situ with the fluorescent dye DHE and with the lucigenin chemiluminescence assay (both P < 0.05). All these biochemical changes caused by omeprazole were associated with increased vascular XOR activity (but not XOR expression assessed by Western blot) and treatment with allopurinol fully prevented them (all P < 0.05). Importantly, treatment with allopurinol prevented the vascular dysfunction and remodeling caused by omeprazole. Our results suggest that the long-term use of omeprazole induces vascular dysfunction and remodeling by promoting XOR-derived reactive oxygen species formation and MMP activation. These findings provide evidence of a new mechanism that may underlie the unfavorable cardiovascular outcomes observed with PPI therapy. Clinical studies are warranted to validate our findings.
Collapse
|
4
|
Braga AL, do Nascimento PB, Paz MFCJ, de Lima RMT, Santos JVDO, de Alencar MVOB, de Meneses AAPM, Júnior ALG, Islam MT, Sousa JMDCE, Melo-Cavalcante AADC. Antioxidative defense against omeprazole-induced toxicogenetical effects in Swiss mice. Pharmacol Rep 2021; 73:551-562. [PMID: 33476036 DOI: 10.1007/s43440-021-00219-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/30/2020] [Accepted: 01/07/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Omeprazole (OME), a most frequently used proton pump inhibitor in gastric acidosis, is evident to show many adverse effects, including genetic instability. This study evaluated toxicogenic effects of OME in Mus musculus. METHODS For this study, 40 male Swiss mice were divided into 8 groups (n = 5) and treated with OME at doses of 10, 20, and 40 mg/kg and/or treated with the antioxidants retinol palmitate (100 IU/kg) and ascorbic acid (2.0 μM/kg). Cyclophosphamide 50 mg/kg, (cytotoxic agent) and the vehicle were served as positive and negative control group, respectively. After 14 days of treatment, the stomach cells along with the bone marrow and peripheral blood lymphocytes were collected and submitted to the comet assay (alkaline version) and micronucleus test. Additionally, hematological and biochemical parameters of the animals were also determined inspect of vehicle group. RESULTS The results suggest that OME at all doses induced genotoxicity and mutagenicity in the treated cells. However, in association with the antioxidants, these effects were modulated and/or inhibited along with a DNA repair capacity. CONCLUSIONS Taken together, antioxidants (such as retinol palmitate and ascorbic acid) may be one of the best options to counteract OME-induced cytogenetic instability.
Collapse
Affiliation(s)
- Antonio Lima Braga
- Laboratory of Genetics and Toxicology (LAPGENIC), Federal University of Piauí, 64.049-550, Teresina, Piauí, Brazil.,Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, 64.049-550, Teresina, Piauí, Brazil
| | | | - Márcia Fernanda Correia Jardim Paz
- Laboratory of Genetics and Toxicology (LAPGENIC), Federal University of Piauí, 64.049-550, Teresina, Piauí, Brazil.,Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, 64.049-550, Teresina, Piauí, Brazil
| | - Rosália Maria Tôrres de Lima
- Laboratory of Genetics and Toxicology (LAPGENIC), Federal University of Piauí, 64.049-550, Teresina, Piauí, Brazil.,Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, 64.049-550, Teresina, Piauí, Brazil
| | - José Victor de Oliveira Santos
- Laboratory of Genetics and Toxicology (LAPGENIC), Federal University of Piauí, 64.049-550, Teresina, Piauí, Brazil.,Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, 64.049-550, Teresina, Piauí, Brazil
| | - Marcus Vinícius Oliveira Barros de Alencar
- Laboratory of Genetics and Toxicology (LAPGENIC), Federal University of Piauí, 64.049-550, Teresina, Piauí, Brazil.,Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, 64.049-550, Teresina, Piauí, Brazil
| | - Ag-Anne Pereira Melo de Meneses
- Laboratory of Genetics and Toxicology (LAPGENIC), Federal University of Piauí, 64.049-550, Teresina, Piauí, Brazil.,Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, 64.049-550, Teresina, Piauí, Brazil
| | - Antonio Luiz Gomes Júnior
- Laboratory of Genetics and Toxicology (LAPGENIC), Federal University of Piauí, 64.049-550, Teresina, Piauí, Brazil.,Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, 64.049-550, Teresina, Piauí, Brazil
| | - Muhammad Torequl Islam
- Laboratory of Theoretical and Computational Biophysics, Ton Duc Thang University, Ho Chi Minh City, Vietnam. .,Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| | - João Marcelo de Castro E Sousa
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, 64.049-550, Teresina, Piauí, Brazil.,Department of Biological Sciences, Federal University of Piauí, 64.607-670, Picos, Piauí, Brazil
| | - Ana Amélia de Carvalho Melo-Cavalcante
- Laboratory of Genetics and Toxicology (LAPGENIC), Federal University of Piauí, 64.049-550, Teresina, Piauí, Brazil.,Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, 64.049-550, Teresina, Piauí, Brazil
| |
Collapse
|
5
|
Paz MFCJ, de Alencar MVOB, de Lima RMP, Sobral ALP, do Nascimento GTM, dos Reis CA, Coêlho MDPSDS, do Nascimento MLLB, Gomes Júnior AL, Machado KDC, de Menezes AAPM, de Lima RMT, de Oliveira Filho JWG, Dias ACS, dos Reis AC, da Mata AMOF, Machado SA, Sousa CDDC, da Silva FCC, Islam MT, de Castro e Sousa JM, Melo Cavalcante AADC. Pharmacological Effects and Toxicogenetic Impacts of Omeprazole: Genomic Instability and Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3457890. [PMID: 32308801 PMCID: PMC7146093 DOI: 10.1155/2020/3457890] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/19/2019] [Accepted: 11/21/2019] [Indexed: 12/15/2022]
Abstract
Omeprazole (OME) is commonly used to treat gastrointestinal disorders. However, long-term use of OME can increase the risk of gastric cancer. We aimed to characterize the pharmacological effects of OME and to correlate its adverse effects and toxicogenetic risks to the genomic instability mechanisms and cancer-based on database reports. Thus, a search (till Aug 2019) was made in the PubMed, Scopus, and ScienceDirect with relevant keywords. Based on the study objective, we included 80 clinical reports, forty-six in vitro, and 76 in vivo studies. While controversial, the findings suggest that long-term use of OME (5 to 40 mg/kg) can induce genomic instability. On the other hand, OME-mediated protective effects are well reported and related to proton pump blockade and anti-inflammatory activity through an increase in gastric flow, anti-inflammatory markers (COX-2 and interleukins) and antiapoptotic markers (caspases and BCL-2), glycoprotein expression, and neutrophil infiltration reduction. The reported adverse and toxic effects, especially in clinical studies, were atrophic gastritis, cobalamin deficiencies, homeostasis disorders, polyp development, hepatotoxicity, cytotoxicity, and genotoxicity. This study highlights that OME may induce genomic instability and increase the risk of certain types of cancer. Therefore, adequate precautions should be taken, especially in its long-term therapeutic strategies and self-medication practices.
Collapse
Affiliation(s)
- Márcia Fernanda Correia Jardim Paz
- Postgraduate Program in Biotechnology (RENORBIO), Federal University of Piauí, Teresina, PI, Brazil
- Laboratory of Genetic Toxicity, Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, PI, Brazil
| | | | | | - André Luiz Pinho Sobral
- Laboratory of Genetic Toxicity, Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, PI, Brazil
- University Hospital, Teresina, PI, Brazil
| | | | | | | | | | - Antonio Luiz Gomes Júnior
- Laboratory of Genetic Toxicity, Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, PI, Brazil
- University Centre UNINOVAFAPI, Teresina, PI, Brazil
| | | | | | - Rosália Maria Torres de Lima
- Laboratory of Genetic Toxicity, Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, PI, Brazil
| | | | - Ana Carolina Soares Dias
- Laboratory of Genetics and Molecular Biology, Federal University of Maranhão, São Luís, MA, Brazil
| | - Antonielly Campinho dos Reis
- Laboratory of Genetic Toxicity, Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, PI, Brazil
| | | | | | | | - Felipe Cavalcanti Carneiro da Silva
- Postgraduate Program in Biotechnology (RENORBIO), Federal University of Piauí, Teresina, PI, Brazil
- Department of Biological Sciences, Federal University of Piauí, Picos, PI, Brazil
| | - Muhammad Torequl Islam
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
| | | | - Ana Amélia de Carvalho Melo Cavalcante
- Postgraduate Program in Biotechnology (RENORBIO), Federal University of Piauí, Teresina, PI, Brazil
- Laboratory of Genetic Toxicity, Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, PI, Brazil
| |
Collapse
|
6
|
Ascorbic acid and retinol palmitate modulatory effect on omeprazole-induced oxidative damage, and the cytogenetic changes in S. cerevisiae and S180 cells. Chem Biol Interact 2019; 311:108776. [PMID: 31369745 DOI: 10.1016/j.cbi.2019.108776] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/13/2019] [Accepted: 07/29/2019] [Indexed: 11/23/2022]
Abstract
Omeprazole (OM), a prototype proton pump inhibitor, oxidizes thiol groups and induces DNA damage. The aim of this study was to evaluate the oxidative effects of omeprazole and its interactions with ascorbic acid (AA, 50 μM) and retinol palmitate (RP) in proficient and deficient Saccharomyces cerevisiae strains, as well as levels of cytogenetic damage in Sarcoma 180 (S180) cells. Omeprazole was tested at concentrations of 10, 20 and 40 μg/mL, whereas H2O2 (10 mM), cyclophosphamide (20 mg/mL), and saline (0.9% NaCl solution) were employed as stressor, positive control, and negative control, respectively. Results revealed that omeprazole concentration-dependently induces oxidative effects in S. cerevisiae strains. However, omeprazole co-treated with ascorbic acid (50 μM) and retinol palmitate (100 IU) significantly modulated the oxidative damage inflected on the S. cerevisiae strains. Furthermore, omeprazole did not produce micronucleus formation and chromosomal bridges in S180 cells, but induced shoots. Significant increase in karyolysis and karyorrhexis were also observed with the omeprazole treated groups, which was modulated by co-treatment with ascorbic acid and retinol palmitate. Taken all together, it is suggested that ascorbic acid and retinol palmitate can substantially modulate the oxidative damage caused by omeprazole on the S. cerevisiae strains, however, much precaution is recommended with omeprazole and antioxidant co-treatment.
Collapse
|
7
|
Braga AL, de Meneses AAPM, Santos JVDO, Dos Reis AC, de Lima RMT, da Mata AMOF, Paz MFCJ, Alves LBDS, Shaw S, Uddin SJ, Rouf R, Das AK, Dev S, Shil MC, Shilpi JA, Khan IN, Islam MT, Ali ES, Mubarak MS, Mishra SK, E Sousa JMDC, Melo-Cavalcante AADC. Toxicogenetic study of omeprazole and the modulatory effects of retinol palmitate and ascorbic acid on Allium cepa. CHEMOSPHERE 2018; 204:220-226. [PMID: 29656158 DOI: 10.1016/j.chemosphere.2018.04.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 03/29/2018] [Accepted: 04/04/2018] [Indexed: 06/08/2023]
Abstract
Omeprazole (OME) is a proton pump inhibitor used for the treatment of various gastric and intestinal disease; however, studies on its effects on the genetic materials are still restricted. The present study aimed to evaluate possible toxicogenic effects of OME in Allium cepa meristems with the application of cytogenetic biomarkers for DNA damage, mutagenic, toxic and cytotoxic effects. Additionally, retinol palmitate (RP) and ascorbic acid (AA) were also co-treated with OME to evaluate possible modulatory effects of OME-induced cytogenetic damages. OME was tested at 10, 20 and 40 μg/mL, while RP and AA at 55 μg/mL and 352.2 μg/mL, respectively. Copper sulphate (0.6 μg/mL) and dechlorinated water were used as positive control and negative control, respectively. The results suggest that OME induced genotoxicity and mutagenicity in A. cepa at all tested concentrations. It was noted that cotreatment of OME with the antioxidant vitamins RP and/or AA significantly (p < 0.05) inhibited and/or modulated all toxicogenic damages induced by OME. These observations demonstrate their antigenotoxic, antimutagenic, antitoxic and anticitotoxic effects in A. cepa. This study indicates that application of antioxidants may be useful tools to overcome OME-induced toxic effects.
Collapse
Affiliation(s)
- Antonio Lima Braga
- Laboratory of Genetics and Toxicology (LAPGENIC), Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil; Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
| | - Ag-Anne Pereira Melo de Meneses
- Laboratory of Genetics and Toxicology (LAPGENIC), Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil; Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
| | - José Victor de Oliveira Santos
- Laboratory of Genetics and Toxicology (LAPGENIC), Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil; Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
| | - Antonielly Campinho Dos Reis
- Laboratory of Genetics and Toxicology (LAPGENIC), Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil; Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
| | - Rosália Maria Tôrres de Lima
- Laboratory of Genetics and Toxicology (LAPGENIC), Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil; Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
| | - Ana Maria Oliveira Ferreira da Mata
- Laboratory of Genetics and Toxicology (LAPGENIC), Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil; Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
| | - Márcia Fernanda Correia Jardim Paz
- Laboratory of Genetics and Toxicology (LAPGENIC), Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil; Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
| | | | - Subrata Shaw
- Center for the Development of Therapeutics (CDoT), Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA
| | - Shaikh Jamal Uddin
- Pharmacy Discipline, School of Life Sciences, Khulna University, Khulna, 9208, Bangladesh
| | - Razina Rouf
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science & Technology University, Gopalganj, Bangladesh
| | - Asish Kumar Das
- Pharmacy Discipline, School of Life Sciences, Khulna University, Khulna, 9208, Bangladesh
| | - Shrabanti Dev
- Pharmacy Discipline, School of Life Sciences, Khulna University, Khulna, 9208, Bangladesh
| | - Manik Chandra Shil
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Jamil A Shilpi
- Pharmacy Discipline, School of Life Sciences, Khulna University, Khulna, 9208, Bangladesh
| | - Ishaq N Khan
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, 25100, Pakistan
| | - Muhammad Torequl Islam
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Viet Nam; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| | - Eunüs S Ali
- Gaco Pharmaceuticals and Research Laboratory, Dhaka, 1000, Bangladesh; College of Medicine and Public Health, Flinders University, Bedford Park, 5042, Adelaide, Australia
| | | | - Siddhartha Kumar Mishra
- Cancer Biology Laboratory, School of Biological Sciences (Zoology), Dr. Harisingh Gour Central University, Sagar, 470003, India.
| | - João Marcelo de Castro E Sousa
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil; Department of Biological Sciences, Federal University of Piauí, Picos, Piauí, 64.607-670, Brazil
| | - Ana Amélia de Carvalho Melo-Cavalcante
- Laboratory of Genetics and Toxicology (LAPGENIC), Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil; Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
| |
Collapse
|
8
|
Pujahari AK. A Novel Method for Pain Relief in Chronic Pancreatitis: an Old Drug in a New Pack: a Controlled Study. Indian J Surg 2017; 79:549-554. [PMID: 29217908 DOI: 10.1007/s12262-016-1526-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 07/06/2016] [Indexed: 01/10/2023] Open
Abstract
Most of pain-relieving agents in chronic pancreatitis are nonspecific and unpredictable. Omeprazole induces hypergastrinemia due to reduced gastric acidity. Raised serum gastrin, in turn, modulates to reduce secretin level. Secretin is responsible for secretion of almost 80 % bicarbonate-rich pancreatic juice from the ductular epithelium without affecting enzyme output. It is a prospective randomized study in patients with CT-confirmed chronic pancreatitis. The control group got the standard care and 60 mg of omeprazole twice daily was added to the test group. Absence of pain relief at 14 days was considered as failure. Pain relief, weight gain and any toxic effect of omeprazole were reviewed at 12 months. One hundred thirty-seven cases were included, with an age range of 19 to 72 years. (mean 42.67). The majority of them were alcoholic males. At 2 weeks, pain relief was noted in 47/69(68.1 %) and 63/65(96.96 %) in the control and omeprazole group, respectively. At the end of 1 year, the omeprazole group had greater weight gain (95 %) than the control group (69.5 %). All the pseudocysts in the omeprazole group and most in the control group resolved. No side effect of omeprazole was seen. The high-dose omeprazole (HDO) group of patients had significantly better pain relief in chronic pancreatitis than those treated with conventional therapy. A high number of cases gained weight in the HDO group than the controlled group. No patient had clinical, endoscopic, biochemical, or haematological toxicity of HDO. More studies are necessary.
Collapse
Affiliation(s)
- Aswini Kumar Pujahari
- Department of Surgery, Vydehi Medical College, Bangalore, Karnataka PIN 560066 India
| |
Collapse
|
9
|
Curcumin, a component of turmeric, efficiently prevents diclofenac sodium-induced gastroenteropathic damage in rats: A step towards translational medicine. Food Chem Toxicol 2017; 108:43-52. [DOI: 10.1016/j.fct.2017.07.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 07/13/2017] [Accepted: 07/17/2017] [Indexed: 12/20/2022]
|
10
|
Wang XG, Tang XD, Wang P, Wang FY. Health education and guidance improve preventive and therapeutic effects on chronic gastritis. Shijie Huaren Xiaohua Zazhi 2014; 22:3214-3218. [DOI: 10.11569/wcjd.v22.i22.3214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Chronic gastritis (CG) is a disease frequently encountered in gastroenterology department, and it is characterized by high incidence, longer course and easy relapse. Therefore, CG has a severe impact on people's health and quality of life. Simple drug treatment often cannot achieve desired efficacy, and the curative effect is unsustained. This situation is closely related to the lack of awareness and attention of this disease. Thus, strengthening health education and guidance in patients is very important for improving the clinical control effect for this disease. This review aims to review the significance of health education and guidance for CG and propose specific methods to provide a reference for clinical treatment of this disease.
Collapse
|
11
|
Boddupalli BM, Anisetti RN, Ramani R, Malothu N. Enhanced pharmacokinetics of omeprazole when formulated as gastroretentive microspheres along with piperine. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2014. [DOI: 10.1016/s2222-1808(14)60427-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
12
|
Rapid preparation of pH-sensitive polymeric nanoparticle with high loading capacity using electrospray for oral drug delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:4562-7. [DOI: 10.1016/j.msec.2013.07.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 07/08/2013] [Accepted: 07/10/2013] [Indexed: 11/19/2022]
|
13
|
Hao S, Wang B, Wang Y, Zhu L, Wang B, Guo T. Preparation of Eudragit L 100-55 enteric nanoparticles by a novel emulsion diffusion method. Colloids Surf B Biointerfaces 2013; 108:127-33. [DOI: 10.1016/j.colsurfb.2013.02.036] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 02/21/2013] [Accepted: 02/22/2013] [Indexed: 10/27/2022]
|