1
|
Qiu C, Zhang L, Yong C, Hu R, Sun Y, Wang B, Fang L, Zhu GJ, Lu Q, Wang J, Ma X, Zhang L, Wan G. Stub1 promotes degradation of the activated Diaph3: A negative feedback regulatory mechanism of the actin nucleator. J Biol Chem 2024; 300:107813. [PMID: 39322015 PMCID: PMC11736009 DOI: 10.1016/j.jbc.2024.107813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/30/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024] Open
Abstract
The formin protein Diaph3 is an actin nucleator that regulates numerous cytoskeleton-dependent cellular processes through the activation of actin polymerization. Expression and activity of Diaph3 is tightly regulated: lack of Diaph3 results in developmental defects and embryonic lethality in mice, while overexpression of Diaph3 causes auditory neuropathy. It is known that Diaph3 homophilic interactions include the intramolecular interaction of its Dia-inhibitory domain (DID)-diaphanous autoregulatory domain (DAD) domains and the intermolecular interactions of DD-DD domains or FH2-FH2 domains. However, the physiological significance of these interactions in Diaph3 protein stability and activity is not fully understood. In this study, we show that FH2-FH2 interaction promotes Diaph3 activity, while DID-DAD and DD-DD interactions inhibit Diaph3 activity through distinct mechanisms. DID-DAD interaction is responsible for the autoinhibition of Diaph3 protein, which is disrupted by binding of Rho GTPases. Interestingly, we find that DID-DAD interaction stabilizes the expression of each DID or DAD domain against proteasomal-mediated degradation. Disruption of DID-DAD interaction by RhoA binding or M1041A mutation causes increased Diaph3 activity and accelerated degradation of the activated Diaph3 protein. Further, the activated Diaph3 is ubiquitinated at K1142/1143/1144 lysine residues by the E3 ligase Stub1. Expression of Stub1 is causally related to the stability and activity of Diaph3. Knockdown of Stub1 in mouse cochlea results in hair cell stereocilia defects, neuronal degeneration, and hearing loss, resembling the phenotypes of mice overexpressing Diaph3. Thus, our study reports a novel regulatory mechanism of Diaph3 protein expression and activity whereby the active but not inactive Diaph3 is readily degraded to prevent excessive actin polymerization.
Collapse
Affiliation(s)
- Cui Qiu
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, China
| | - Linqing Zhang
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, China
| | - Chenxuan Yong
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, China
| | - Ruixing Hu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Yuecen Sun
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, China
| | - Busong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of China, Medical School, Nanjing University, Nanjing, China
| | - Lei Fang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of China, Medical School, Nanjing University, Nanjing, China
| | - Guang-Jie Zhu
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, China; Research Institute of Otolaryngology, Nanjing, China
| | - Qing Lu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Junguo Wang
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, China; Research Institute of Otolaryngology, Nanjing, China.
| | - Xiaofeng Ma
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, China; Research Institute of Otolaryngology, Nanjing, China.
| | - Luping Zhang
- Department of Otolaryngology-Head and Neck Surgery, Affiliated Hospital, Nantong University, Nantong, China.
| | - Guoqiang Wan
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of China, Medical School, Nanjing University, Nanjing, China; Research Institute of Otolaryngology, Nanjing, China.
| |
Collapse
|
2
|
Liu Y, Zhou H, Tang X. STUB1/CHIP: New insights in cancer and immunity. Biomed Pharmacother 2023; 165:115190. [PMID: 37506582 DOI: 10.1016/j.biopha.2023.115190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
The STUB1 gene (STIP1 homology and U-box-containing protein 1), located at 16q13.3, encodes the CHIP (carboxyl terminus of Hsc70-interacting protein), an essential E3 ligase involved in protein quality control. CHIP comprises three domains: an N-terminal tetratricopeptide repeat (TPR) domain, a middle coiled-coil domain, and a C-terminal U-box domain. It functions as a co-chaperone for heat shock protein (HSP) via the TPR domain and as an E3 ligase, ubiquitinating substrates through its U-box domain. Numerous studies suggest that STUB1 plays a crucial role in various physiological process, such as aging, autophagy, and bone remodeling. Moreover, emerging evidence has shown that STUB1 can degrade oncoproteins to exert tumor-suppressive functions, and it has recently emerged as a novel player in tumor immunity. This review provides a comprehensive overview of STUB1's role in cancer, including its clinical significance, impact on tumor progression, dual roles, tumor stem cell-like properties, angiogenesis, drug resistance, and DNA repair. In addition, we explore STUB1's functions in immune cell differentiation and maturation, inflammation, autoimmunity, antiviral immune response, and tumor immunity. Collectively, STUB1 represents a promising and valuable therapeutic target in cancer and immunology.
Collapse
Affiliation(s)
- Yongshuo Liu
- Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China.
| | - Honghong Zhou
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaolong Tang
- Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
3
|
Abstract
Protein homeostasis relies on a balance between protein folding and protein degradation. Molecular chaperones like Hsp70 and Hsp90 fulfill well-defined roles in protein folding and conformational stability via ATP-dependent reaction cycles. These folding cycles are controlled by associations with a cohort of non-client protein co-chaperones, such as Hop, p23, and Aha1. Pro-folding co-chaperones facilitate the transit of the client protein through the chaperone-mediated folding process. However, chaperones are also involved in proteasomal and lysosomal degradation of client proteins. Like folding complexes, the ability of chaperones to mediate protein degradation is regulated by co-chaperones, such as the C-terminal Hsp70-binding protein (CHIP/STUB1). CHIP binds to Hsp70 and Hsp90 chaperones through its tetratricopeptide repeat (TPR) domain and functions as an E3 ubiquitin ligase using a modified RING finger domain (U-box). This unique combination of domains effectively allows CHIP to network chaperone complexes to the ubiquitin-proteasome and autophagosome-lysosome systems. This chapter reviews the current understanding of CHIP as a co-chaperone that switches Hsp70/Hsp90 chaperone complexes from protein folding to protein degradation.
Collapse
Affiliation(s)
- Abantika Chakraborty
- Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology, Rhodes University, Makhanda/Grahamstown, South Africa
| | - Adrienne L Edkins
- Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology, Rhodes University, Makhanda/Grahamstown, South Africa.
| |
Collapse
|
4
|
Hu L, Li H, Zi M, Li W, Liu J, Yang Y, Zhou D, Kong QP, Zhang Y, He Y. Why Senescent Cells Are Resistant to Apoptosis: An Insight for Senolytic Development. Front Cell Dev Biol 2022; 10:822816. [PMID: 35252191 PMCID: PMC8890612 DOI: 10.3389/fcell.2022.822816] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/26/2022] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is a process that leads to a state of irreversible cell growth arrest induced by a variety of intrinsic and extrinsic stresses. Senescent cells (SnCs) accumulate with age and have been implicated in various age-related diseases in part via expressing the senescence-associated secretory phenotype. Elimination of SnCs has the potential to delay aging, treat age-related diseases and extend healthspan. However, once cells becoming senescent, they are more resistant to apoptotic stimuli. Senolytics can selectively eliminate SnCs by targeting the SnC anti-apoptotic pathways (SCAPs). They have been developed as a novel pharmacological strategy to treat various age-related diseases. However, the heterogeneity of the SnCs indicates that SnCs depend on different proteins or pathways for their survival. Thus, a better understanding of the underlying mechanisms for apoptotic resistance of SnCs will provide new molecular targets for the development of cell-specific or broad-spectrum therapeutics to clear SnCs. In this review, we discussed the latest research progresses and challenge in senolytic development, described the significance of regulation of senescence and apoptosis in aging, and systematically summarized the SCAPs involved in the apoptotic resistance in SnCs.
Collapse
Affiliation(s)
- Li Hu
- Department of Geriatrics, The Second Affiliated Hospital of Hainan Medical University, Haikou, China.,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,College of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, China
| | - Huiqin Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Meiting Zi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Wen Li
- Department of Endocrinology, The Third People's Hospital of Yunnan Province, Kunming, China
| | - Jing Liu
- Lab of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, China
| | - Yang Yang
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Daohong Zhou
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Qing-Peng Kong
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yunxia Zhang
- Department of Geriatrics, The Second Affiliated Hospital of Hainan Medical University, Haikou, China.,College of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, China
| | - Yonghan He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
5
|
Pawge G, Khatik GL. p53 regulated senescence mechanism and role of its modulators in age-related disorders. Biochem Pharmacol 2021; 190:114651. [PMID: 34118220 DOI: 10.1016/j.bcp.2021.114651] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/05/2021] [Accepted: 06/08/2021] [Indexed: 10/21/2022]
Abstract
Multiple co-morbidities are associated with age, and there is a need for the broad-spectrum drug to prevent multiple regimens that may cause an adverse effect in the geriatric population. Cellular senescence is a primary mechanism for ageing in various tissues. p53, a tumor suppressor protein, plays a significant role in forming DNA damage foci and post different stress responses. DNA damage foci can be transient or persistent that can progress to DNA-SCARS inducing senescence. p53 also plays a role in apoptosis and negative regulation of SASP. Few upstream targets like FOXO4, MDM2, MDM4, USP7 control the availability of p53 for apoptosis. Hence, the senolytic therapies, modulating p53 upstream targets, can be a good approach for preventing age-related disorders. This review discusses the insights on the role of p53 in the formation of DNA-SCARS, various upstream target proteins, and pathways involved in p53 regulation. Further, the review aimed to include recently discovered small molecules acting on these upstream targets, and those can be modified using medicinal chemistry approaches to give successful senotherapeutics.
Collapse
Affiliation(s)
- Girija Pawge
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research- Raebareli, New Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, Uttar Pradesh 226301, India
| | - Gopal L Khatik
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research- Raebareli, New Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, Uttar Pradesh 226301, India.
| |
Collapse
|
6
|
Senolytic targets and new strategies for clearing senescent cells. Mech Ageing Dev 2021; 195:111468. [PMID: 33741395 DOI: 10.1016/j.mad.2021.111468] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/06/2021] [Accepted: 03/10/2021] [Indexed: 01/10/2023]
Abstract
Senescent cells (SCs) accumulate with age and cause various age-related diseases. Clearance of SCs by transgenic or pharmaceutical strategies has been demonstrated to delay aging, treat age-related diseases and extend healthspan. SCs are resistant to various stressors because they are protected from apoptosis by SC anti-apoptotic pathways (SCAPs). Targeting the proteins in the SCAPs with small molecules can selectively kill SCs, the effector proteins are called senolytic targets and the small molecules are called senolytics. Until now, a series of senolytic targets, such as BCL-XL, heat shock protein 90 (HSP90), Na+/K+ ATPase, bromodomain containing 4 (BRD4), and oxidation resistance 1 (OXR1) have been identified. However, current senolytics targeting these proteins still have some limitations in killing SCs in terms of safety, specificity and broad-spectrum activity. To overcome the challenges, some new strategies, such as proteolysis-targeting chimera (PROTAC) technology, chimeric antigen receptor (CAR) T cells, and β-galactosidase-modified prodrugs, were developed to clear SCs and shown to have promising therapeutic potential. Here we review the significance of SCs in aging and age-related diseases, summarize the known senolytic targets and highlight the emerging new strategies for clearing SCs.
Collapse
|
7
|
Pan M, Blattner C. Regulation of p53 by E3s. Cancers (Basel) 2021; 13:745. [PMID: 33670160 PMCID: PMC7916862 DOI: 10.3390/cancers13040745] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/15/2021] [Accepted: 02/05/2021] [Indexed: 12/18/2022] Open
Abstract
More than 40 years of research on p53 have given us tremendous knowledge about this protein. Today we know that p53 plays a role in different biological processes such as proliferation, invasion, pluripotency, metabolism, cell cycle control, ROS (reactive oxygen species) production, apoptosis, inflammation and autophagy. In the nucleus, p53 functions as a bona-fide transcription factor which activates and represses transcription of a number of target genes. In the cytoplasm, p53 can interact with proteins of the apoptotic machinery and by this also induces cell death. Despite being so important for the fate of the cell, expression levels of p53 are kept low in unstressed cells and the protein is largely inactive. The reason for the low expression level is that p53 is efficiently degraded by the ubiquitin-proteasome system and the vast inactivity of the tumor suppressor protein under normal growth conditions is due to the absence of activating and the presence of inactivating posttranslational modifications. E3s are important enzymes for these processes as they decorate p53 with ubiquitin and small ubiquitin-like proteins and by this control p53 degradation, stability and its subcellular localization. In this review, we provide an overview about E3s that target p53 and discuss the connection between p53, E3s and tumorigenesis.
Collapse
Affiliation(s)
| | - Christine Blattner
- Institute of Biological and Chemical Systems—Biological Information Processing, Karlsruhe Institute of Technology, PO-box 3640, 76021 Karlsruhe, Germany;
| |
Collapse
|
8
|
Fan Y, Cheng J, Zeng H, Shao L. Senescent Cell Depletion Through Targeting BCL-Family Proteins and Mitochondria. Front Physiol 2020; 11:593630. [PMID: 33335487 PMCID: PMC7736607 DOI: 10.3389/fphys.2020.593630] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/04/2020] [Indexed: 01/10/2023] Open
Abstract
Senescent cells with replicative arrest can be generated during genotoxic, oxidative, and oncogenic stress. Long-term retention of senescent cells in the body, which is attributed to highly expressed BCL-family proteins, chronically damages tissues mainly through a senescence-associated secretory phenotype (SASP). It has been documented that accumulation of senescent cells contributes to chronic diseases and aging-related diseases. Despite the fact that no unique marker is available to identify senescent cells, increased p16INK4a expression has long been used as an in vitro and in vivo marker of senescent cells. We reviewed five existing p16INK4a reporter mouse models to detect, isolate, and deplete senescent cells. Senescent cells express high levels of anti-apoptotic and pro-apoptotic genes compared to normal cells. Thus, disrupting the balance between anti-apoptotic and pro-apoptotic gene expression, such as ABT-263 and ABT-737, can activate the apoptotic signaling pathway and remove senescent cells. Mitochondrial abnormalities in senescent cells were also discussed, for example mitochondrial DNA mutation accumulation, dysfunctional mitophagy, and mitochondrial unfolded protein response (mtUPR). The mitochondrial-targeted tamoxifen, MitoTam, can efficiently remove senescent cells due to its inhibition of respiratory complex I and low expression of adenine nucleotide translocase-2 (ANT2) in senescent cells. Therefore, senescent cells can be removed by various strategies, which delays chronic and aging-related diseases and enhances lifespan and healthy conditions in the body.
Collapse
Affiliation(s)
- Ying Fan
- Department of Occupational Health and Toxicology, Medical College of Nanchang University, Nanchang, China.,Department of Histology and Embryology, Medical College of Nanchang University, Nanchang, China.,Department of Histology and Embryology, Medical College of Nanchang University, Nanchang, China
| | - Jiaoqi Cheng
- Department of Occupational Health and Toxicology, Medical College of Nanchang University, Nanchang, China.,Department of Histology and Embryology, Medical College of Nanchang University, Nanchang, China
| | - Huihong Zeng
- Department of Occupational Health and Toxicology, Medical College of Nanchang University, Nanchang, China.,Department of Histology and Embryology, Medical College of Nanchang University, Nanchang, China
| | - Lijian Shao
- Department of Occupational Health and Toxicology, Medical College of Nanchang University, Nanchang, China.,Department of Histology and Embryology, Medical College of Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, China
| |
Collapse
|
9
|
Abstract
BACKGROUND Beast cancer is the most common women cancer worldwide, while two third of them are ER alpha positive breast cancer. Among the ER alpha positive breast cancer, about 80% are P53 wild type, indicating the potential tumor suppression role in ER alpha positive breast cancer. Since P53 is an important safeguard to inhibit cell malignant transformation, reactivating P53 signaling could a plausible approach to treat breast cancer. METHODS TRIM3 protein levels were measured by western blot, while the P53 classical target genes were measured by real-time PCR. WST1 assay were used to measure cell proliferation, while cleaved caspase-3 was used to detect cell apoptosis. Protein stability and ubiquitin assay were used to detect the P53 protein ubiquitin and stability. The immuno-precipitation assays were used to detect the protein interactions. Immuno-staining was used to detect the protein localization of P53 and TRIM3, while the ubiquitin-based immuno-precipitation assays were used to detect the specific ubiquitination manner of P53. RESULTS In our study, we identified TRIM3 as an endogenous inhibitor for P53 signaling. TRIM3 depletion inhibited breast cancer cell proliferation and promoted apoptosis. In addition, TRIM3 depletion increased P53 protein level in breast cancer cell. Further investigation showed that TRIM3 could associate with P53 and promote P53 K48-linked ubiquitination and degradation. CONCLUSION Our study identified a novel post-translational modification mechanism between TRIM3 and P53. TRIM3 depletion or blockage could be a promising strategy to rescue P53 signaling and inhibit breast cancer progression.
Collapse
|
10
|
Ullah K, Chen S, Lu J, Wang X, Liu Q, Zhang Y, Long Y, Hu Z, Xu G. The E3 ubiquitin ligase STUB1 attenuates cell senescence by promoting the ubiquitination and degradation of the core circadian regulator BMAL1. J Biol Chem 2020; 295:4696-4708. [PMID: 32041778 PMCID: PMC7135990 DOI: 10.1074/jbc.ra119.011280] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 02/06/2020] [Indexed: 01/10/2023] Open
Abstract
Cell senescence is one of the most important processes determining cell fate and is involved in many pathophysiological conditions, including cancer, neurodegenerative diseases, and other aging-associated diseases. It has recently been discovered that the E3 ubiquitin ligase STIP1 homology and U-box-containing protein 1 (STUB1 or CHIP) is up-regulated during the senescence of human fibroblasts and modulates cell senescence. However, the molecular mechanism underlying STUB1-controlled senescence is not clear. Here, using affinity purification and MS-based analysis, we discovered that STUB1 binds to brain and muscle ARNT-like 1 (BMAL1, also called aryl hydrocarbon receptor nuclear translocator-like protein 1 (ARNTL)). Through biochemical experiments, we confirmed the STUB1-BMAL1 interaction, identified their interaction domains, and revealed that STUB1 overexpression down-regulates BMAL1 protein levels through STUB1's enzymatic activity and that STUB1 knockdown increases BMAL1 levels. Further experiments disclosed that STUB1 enhances BMAL1 degradation, which is abolished upon proteasome inhibition. Moreover, we found that STUB1 promotes the formation of Lys-48-linked polyubiquitin chains on BMAL1, facilitating its proteasomal degradation. Interestingly, we also discovered that oxidative stress promotes STUB1 nuclear translocation and enhances its co-localization with BMAL1. STUB1 expression attenuates hydrogen peroxide-induced cell senescence, indicated by a reduced signal in senescence-associated β-gal staining and decreased protein levels of two cell senescence markers, p53 and p21. BMAL1 knockdown diminishes this effect, and BMAL1 overexpression abolishes STUB1's effect on cell senescence. In summary, the results of our work reveal that the E3 ubiquitin ligase STUB1 ubiquitinates and degrades its substrate BMAL1 and thereby alleviates hydrogen peroxide-induced cell senescence.
Collapse
Affiliation(s)
- Kifayat Ullah
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Suping Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Jiaqi Lu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Xiaohui Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Qing Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Yang Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Yaqiu Long
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Zhanhong Hu
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| |
Collapse
|
11
|
He Y, Li W, Lv D, Zhang X, Zhang X, Ortiz YT, Budamagunta V, Campisi J, Zheng G, Zhou D. Inhibition of USP7 activity selectively eliminates senescent cells in part via restoration of p53 activity. Aging Cell 2020; 19:e13117. [PMID: 32064756 PMCID: PMC7059172 DOI: 10.1111/acel.13117] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 12/18/2019] [Accepted: 01/05/2020] [Indexed: 12/11/2022] Open
Abstract
The accumulation of senescent cells (SnCs) is a causal factor of various age‐related diseases as well as some of the side effects of chemotherapy. Pharmacological elimination of SnCs (senolysis) has the potential to be developed into novel therapeutic strategies to treat these diseases and pathological conditions. Here we show that ubiquitin‐specific peptidase 7 (USP7) is a novel target for senolysis because inhibition of USP7 with an inhibitor or genetic depletion of USP7 by RNA interference induces apoptosis selectively in SnCs. The senolytic activity of USP7 inhibitors is likely attributable in part to the promotion of the human homolog of mouse double minute 2 (MDM2) ubiquitination and degradation by the ubiquitin–proteasome system. This degradation increases the levels of p53, which in turn induces the pro‐apoptotic proteins PUMA, NOXA, and FAS and inhibits the interaction of BCL‐XL and BAK to selectively induce apoptosis in SnCs. Further, we show that treatment with a USP7 inhibitor can effectively eliminate SnCs and suppress the senescence‐associated secretory phenotype (SASP) induced by doxorubicin in mice. These findings suggest that small molecule USP7 inhibitors are novel senolytics that can be exploited to reduce chemotherapy‐induced toxicities and treat age‐related diseases.
Collapse
Affiliation(s)
- Yonghan He
- Department of Pharmacodynamics College of Pharmacy University of Florida Gainesville FL USA
| | - Wen Li
- Department of Pharmacodynamics College of Pharmacy University of Florida Gainesville FL USA
| | - Dongwen Lv
- Department of Pharmacodynamics College of Pharmacy University of Florida Gainesville FL USA
| | - Xin Zhang
- Department of Pharmacodynamics College of Pharmacy University of Florida Gainesville FL USA
| | - Xuan Zhang
- Department of Medicinal Chemistry College of Pharmacy University of Florida Gainesville FL USA
| | - Yuma T. Ortiz
- Department of Pharmacodynamics College of Pharmacy University of Florida Gainesville FL USA
| | | | - Judith Campisi
- The Buck Institute for Research on Aging Novato CA USA
- Lawrence Berkeley National Laboratory Berkeley CA USA
| | - Guangrong Zheng
- Department of Medicinal Chemistry College of Pharmacy University of Florida Gainesville FL USA
| | - Daohong Zhou
- Department of Pharmacodynamics College of Pharmacy University of Florida Gainesville FL USA
| |
Collapse
|
12
|
Seo J, Han SY, Seong D, Han HJ, Song J. Multifaceted C-terminus of HSP70-interacting protein regulates tumorigenesis via protein quality control. Arch Pharm Res 2019; 42:63-75. [PMID: 30600426 DOI: 10.1007/s12272-018-1101-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 12/11/2018] [Indexed: 10/27/2022]
Abstract
C-terminus of heat shock protein 70 (HSP70)-interacting protein (CHIP) is an E3 ligase involved in a variety of protein homeostasis events implicated in diverse signaling pathways. Its involvement in varied and even opposite signaling circuits might be due to its hallmark signature of associating with molecular chaperones, including HSP90 and HSP70. Together, these proteins may be pivotal in implementing protein quality control. A curious and puzzling aspect of the function of CHIP is its capability to induce protein degradation via the proteasome- or lysosome-dependent pathways. In addition, these pathways are combined with ubiquitin-dependent or -independent pathways. This review focuses on the role of CHIP in the development or suppression of tumorigenesis. CHIP can act as a tumor suppressor by downregulating various oncogenes. CHIP also displays an oncogenic feature involving the inhibition of diverse tumor suppressors, including proteins related to intrinsic and extrinsic apoptotic pathways. The ability of CHIP to exhibit dual roles in determining the fate of cells has not been studied analytically. However, its association with various proteins involved in protein quality control might play a major role. In this review, the mechanistic roles of CHIP in tumor formation based on the regulation of diverse proteins are discussed.
Collapse
Affiliation(s)
- Jinho Seo
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Su Yeon Han
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Daehyeon Seong
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Hyun-Ji Han
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Jaewhan Song
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea.
| |
Collapse
|
13
|
Essential Roles of E3 Ubiquitin Ligases in p53 Regulation. Int J Mol Sci 2017; 18:ijms18020442. [PMID: 28218667 PMCID: PMC5343976 DOI: 10.3390/ijms18020442] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 02/10/2017] [Accepted: 02/11/2017] [Indexed: 01/30/2023] Open
Abstract
The ubiquitination pathway and proteasomal degradation machinery dominantly regulate p53 tumor suppressor protein stability, localization, and functions in both normal and cancerous cells. Selective E3 ubiquitin ligases dominantly regulate protein levels and activities of p53 in a large range of physiological conditions and in response to cellular changes induced by exogenous and endogenous stresses. The regulation of p53’s functions by E3 ubiquitin ligases is a complex process that can lead to positive or negative regulation of p53 protein in a context- and cell type-dependent manner. Accessory proteins bind and modulate E3 ubiquitin ligases, adding yet another layer of regulatory control for p53 and its downstream functions. This review provides a comprehensive understanding of p53 regulation by selective E3 ubiquitin ligases and their potential to be considered as a new class of biomarkers and therapeutic targets in diverse types of cancers.
Collapse
|
14
|
Schönbühler B, Schmitt V, Huesmann H, Kern A, Gamerdinger M, Behl C. BAG2 Interferes with CHIP-Mediated Ubiquitination of HSP72. Int J Mol Sci 2016; 18:ijms18010069. [PMID: 28042827 PMCID: PMC5297704 DOI: 10.3390/ijms18010069] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 12/23/2016] [Accepted: 12/27/2016] [Indexed: 11/29/2022] Open
Abstract
The maintenance of cellular proteostasis is dependent on molecular chaperones and protein degradation pathways. Chaperones facilitate protein folding, maturation, and degradation, and the particular fate of a misfolded protein is determined by the interaction of chaperones with co-chaperones. The co-factor CHIP (C-terminus of HSP70-inteacting protein, STUB1) ubiquitinates chaperone substrates and directs proteins to the cellular degradation systems. The activity of CHIP is regulated by two co-chaperones, BAG2 and HSPBP1, which are potent inhibitors of the E3 ubiquitin ligase activity. Here, we examined the functional correlation of HSP72, CHIP, and BAG2, employing human primary fibroblasts. We showed that HSP72 is a substrate of CHIP and that BAG2 efficiently prevented the ubiquitination of HSP72 in young cells as well as aged cells. Aging is associated with a decline in proteostasis and we observed increased protein levels of CHIP as well as BAG2 in senescent cells. Interestingly, the ubiquitination of HSP72 was strongly reduced during aging, which revealed that BAG2 functionally counteracted the increased levels of CHIP. Interestingly, HSPBP1 protein levels were down-regulated during aging. The data presented here demonstrates that the co-chaperone BAG2 influences HSP72 protein levels and is an important modulator of the ubiquitination activity of CHIP in young as well as aged cells.
Collapse
Affiliation(s)
- Bianca Schönbühler
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, D-55099 Mainz, Germany.
| | - Verena Schmitt
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, D-55099 Mainz, Germany.
| | - Heike Huesmann
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, D-55099 Mainz, Germany.
| | - Andreas Kern
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, D-55099 Mainz, Germany.
| | - Martin Gamerdinger
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, D-55099 Mainz, Germany.
| | - Christian Behl
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, D-55099 Mainz, Germany.
| |
Collapse
|
15
|
Doxorubicin attenuates CHIP-guarded HSF1 nuclear translocation and protein stability to trigger IGF-IIR-dependent cardiomyocyte death. Cell Death Dis 2016; 7:e2455. [PMID: 27809308 PMCID: PMC5260882 DOI: 10.1038/cddis.2016.356] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 09/17/2016] [Accepted: 10/03/2016] [Indexed: 12/11/2022]
Abstract
Doxorubicin (DOX) is one of the most effective antitumor drugs, but its cardiotoxicity has been a major concern for its use in cancer therapy for decades. Although DOX-induced cardiotoxicity has been investigated, the underlying mechanisms responsible for this cardiotoxicity have not been completely elucidated. Here, we found that the insulin-like growth factor receptor II (IGF-IIR) apoptotic signaling pathway was responsible for DOX-induced cardiotoxicity via proteasome-mediated heat shock transcription factor 1 (HSF1) degradation. The carboxyl-terminus of Hsp70 interacting protein (CHIP) mediated HSF1 stability and nuclear translocation through direct interactions via its tetratricopeptide repeat domain to suppress IGF-IIR expression and membrane translocation under physiological conditions. However, DOX attenuated the HSF1 inhibition of IGF-IIR expression by diminishing the CHIP–HSF1 interaction, removing active nuclear HSF1 and triggering HSF1 proteasomal degradation. Overexpression of CHIP redistributed HSF1 into the nucleus, inhibiting IGF-IIR expression and preventing DOX-induced cardiomyocyte apoptosis. Moreover, HSF1A, a small molecular drug that enhances HSF1 activity, stabilized HSF1 expression and minimized DOX-induced cardiac damage in vitro and in vivo. Our results suggest that the cardiotoxic effects of DOX result from the prevention of CHIP-mediated HSF1 nuclear translocation and activation, which leads to an upregulation of the IGF-IIR apoptotic signaling pathway. We believe that the administration of an HSF1 activator or agonist may further protect against the DOX-induced cell death of cardiomyocytes.
Collapse
|
16
|
Kim RH, Kang MK, Kim T, Yang P, Bae S, Williams DW, Phung S, Shin K, Hong C, Park N. Regulation of p53 during senescence in normal human keratinocytes. Aging Cell 2015; 14:838-46. [PMID: 26138448 PMCID: PMC4568971 DOI: 10.1111/acel.12364] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2015] [Indexed: 12/17/2022] Open
Abstract
p53, the guardian of the genome, is a tumor suppressor protein and critical for the genomic integrity of the cells. Many studies have shown that intracellular level of p53 is enhanced during replicative senescence in normal fibroblasts, and the enhanced level of p53 is viewed as the cause of senescence. Here, we report that, unlike in normal fibroblasts, the level of intracellular p53 reduces during replicative senescence and oncogene-induced senescence (OIS) in normal human keratinocytes (NHKs). We found that the intracellular p53 level was also decreased in age-dependent manner in normal human epithelial tissues. Senescent NHKs exhibited an enhanced level of p16INK4A, induced G2 cell cycle arrest, and lowered the p53 expression and transactivation activity. We found that low level of p53 in senescent NHKs was due to reduced transcription of p53. The methylation status at the p53 promoter was not altered during senescence, but senescent NHKs exhibited notably lower level of acetylated histone 3 (H3) at the p53 promoter in comparison with rapidly proliferating cells. Moreover, p53 knockdown in rapidly proliferating NHKs resulted in the disruption of fidelity in repaired DNA. Taken together, our study demonstrates that p53 level is diminished during replicative senescence and OIS and that such diminution is associated with H3 deacetylation at the p53 promoter. The reduced intracellular p53 level in keratinocytes of the elderly could be a contributing factor for more frequent development of epithelial cancer in the elderly because of the loss of genomic integrity of cells.
Collapse
Affiliation(s)
- Reuben H. Kim
- UCLA School of Dentistry Los Angeles CA 90095USA
- UCLA Jonsson Comprehensive Cancer Center Los Angeles CA 90095USA
| | - Mo K. Kang
- UCLA School of Dentistry Los Angeles CA 90095USA
- UCLA Jonsson Comprehensive Cancer Center Los Angeles CA 90095USA
| | - Terresa Kim
- UCLA School of Dentistry Los Angeles CA 90095USA
| | - Paul Yang
- UCLA School of Dentistry Los Angeles CA 90095USA
| | - Susan Bae
- UCLA School of Dentistry Los Angeles CA 90095USA
| | | | | | - Ki‐Hyuk Shin
- UCLA School of Dentistry Los Angeles CA 90095USA
- UCLA Jonsson Comprehensive Cancer Center Los Angeles CA 90095USA
| | | | - No‐Hee Park
- UCLA School of Dentistry Los Angeles CA 90095USA
- UCLA Jonsson Comprehensive Cancer Center Los Angeles CA 90095USA
- UCLA David Geffen School of Medicine Los Angeles CA 90095USA
| |
Collapse
|
17
|
Cao Z, Xu J, Huang H, Shen P, You L, Zhou L, Zheng L, Zhang T, Zhao Y. MiR-1178 promotes the proliferation, G1/S transition, migration and invasion of pancreatic cancer cells by targeting CHIP. PLoS One 2015; 10:e0116934. [PMID: 25635996 PMCID: PMC4312055 DOI: 10.1371/journal.pone.0116934] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 12/16/2014] [Indexed: 12/21/2022] Open
Abstract
CHIP, a co-chaperone protein that interacts with Hsc/Hsp70, has been shown to be under-expressed in pancreatic cancer cells and has demonstrated a potential tumor suppressor property. Nevertheless, the underlying mechanisms of CHIP regulation in pancreatic cancer cells remain unknown. In this study, we found that miR-1178 decreased the translation of the CHIP protein by targeting the 3′-UTR region. We observed that over-expression of miR-1178 facilitated the proliferation, G1/S transition, migration and invasion of pancreatic cancer cells. Conversely, the inhibition of miR-1178 expression significantly suppressed these phenotypes. Furthermore, CHIP over-expression abrogated miR-1178-induced cell proliferation and invasion. Our data suggest that miR-1178 acts as an oncomiR in pancreatic cancer cells by inhibiting CHIP expression.
Collapse
Affiliation(s)
- Zhe Cao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianwei Xu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hua Huang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peng Shen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Zhou
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lianfang Zheng
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- * E-mail: (TZ); (YZ)
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- * E-mail: (TZ); (YZ)
| |
Collapse
|
18
|
Abstract
Protein homeostasis relies on a balance between protein folding and protein degradation. Molecular chaperones like Hsp70 and Hsp90 fulfil well-defined roles in protein folding and conformational stability via ATP dependent reaction cycles. These folding cycles are controlled by associations with a cohort of non-client protein co-chaperones, such as Hop, p23 and Aha1. Pro-folding co-chaperones facilitate the transit of the client protein through the chaperone mediated folding process. However, chaperones are also involved in ubiquitin-mediated proteasomal degradation of client proteins. Similar to folding complexes, the ability of chaperones to mediate protein degradation is regulated by co-chaperones, such as the C terminal Hsp70 binding protein (CHIP). CHIP binds to Hsp70 and Hsp90 chaperones through its tetratricopeptide repeat (TPR) domain and functions as an E3 ubiquitin ligase using a modified RING finger domain (U-box). This unique combination of domains effectively allows CHIP to network chaperone complexes to the ubiquitin-proteasome system. This chapter reviews the current understanding of CHIP as a co-chaperone that switches Hsp70/Hsp90 chaperone complexes from protein folding to protein degradation.
Collapse
Affiliation(s)
- Adrienne L Edkins
- Department of Biochemistry and Microbiology, Biomedical Biotechnology Research Unit (BioBRU), Rhodes University, 6140, Grahamstown, South Africa,
| |
Collapse
|
19
|
Paul I, Ghosh MK. A CHIPotle in physiology and disease. Int J Biochem Cell Biol 2014; 58:37-52. [PMID: 25448416 DOI: 10.1016/j.biocel.2014.10.027] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 09/21/2014] [Accepted: 10/25/2014] [Indexed: 01/06/2023]
Abstract
The carboxy-terminus of Hsc70 interacting protein (CHIP) is known to function as a chaperone associated E3 ligase for several proteins and regulates a variety of physiological processes. Being a connecting link between molecular chaperones and 26S proteasomes, it is widely regarded as the central player in the cellular protein quality control system. Recent analyses have provided new insights on the biochemical and functional dynamics of CHIP. In this review article, we give a comprehensive account of our current knowledge on the biology of CHIP, which apart from shedding light on fundamental biological questions promises to provide a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Indranil Paul
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research - Indian Institute of Chemical Biology (CSIR-IICB), 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Mrinal K Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research - Indian Institute of Chemical Biology (CSIR-IICB), 4, Raja S.C. Mullick Road, Kolkata 700032, India.
| |
Collapse
|
20
|
Zhu X, Zhang J, Sun H, Jiang C, Dong Y, Shan Q, Su S, Xie Y, Xu N, Lou X, Liu S. Ubiquitination of inositol-requiring enzyme 1 (IRE1) by the E3 ligase CHIP mediates the IRE1/TRAF2/JNK pathway. J Biol Chem 2014; 289:30567-30577. [PMID: 25225294 DOI: 10.1074/jbc.m114.562868] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Deciphering the inositol-requiring enzyme 1 (IRE1) signaling pathway is fundamentally important for understanding the unfolded protein response (UPR). The ubiquitination of proteins residing on the endoplasmic reticulum (ER) membrane has been reported to be involved in the UPR, although the mechanism has yet to be fully elucidated. Using immunoprecipitation and mass spectrometry, IRE1 was identified as a substrate of the E3 ligase CHIP (carboxyl terminus of HSC70-interacting protein) in HEK293 cells under geldanamycin-induced ER stress. Two residues of IRE1, Lys(545) and Lys(828), were targeted for Lys(63)-linked ubiquitination. Moreover, in CHIP knockdown cells, IRE1 phosphorylation and the IRE1-TRAF2 interaction were nearly abolished under ER stress, which may be due to lacking ubiquitination of IRE1 on Lys(545) and Lys(828), respectively. The cellular responses were evaluated, and the data indicated that CHIP-regulated IRE1/TRAF2/JNK signaling antagonized the senescence process. Therefore, our findings suggest that CHIP-mediated ubiquitination of IRE1 contributes to the dynamic regulation of the UPR.
Collapse
Affiliation(s)
- Xu Zhu
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China,; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ju Zhang
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Huiying Sun
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Cuicui Jiang
- Beijing Protein Innovation, Beijing 101318, China, and
| | - Yusheng Dong
- Beijing Protein Innovation, Beijing 101318, China, and
| | - Qiang Shan
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Siyuan Su
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China,; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingying Xie
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China,; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ningzhi Xu
- Laboratory of Cell and Molecular Biology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xiaomin Lou
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China,.
| | - Siqi Liu
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China,; University of Chinese Academy of Sciences, Beijing 100049, China,.
| |
Collapse
|
21
|
Satija YK, Bhardwaj A, Das S. A portrayal of E3 ubiquitin ligases and deubiquitylases in cancer. Int J Cancer 2013; 133:2759-68. [PMID: 23436247 DOI: 10.1002/ijc.28129] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 02/14/2013] [Indexed: 02/03/2023]
Abstract
E3 ubiquitin ligases and deubiquitylating enzymes (DUBs) are the key components of ubiquitin proteasome system which plays a critical role in cellular protein homeostasis. Any shortcoming in their biological roles can lead to various diseases including cancer. The dynamic interplay between ubiquitylation and deubiquitylation determines the level and activity of several proteins including p53, which is crucial for cellular stress response and tumor suppression pathways. In this review, we describe the different types of E3 ubiquitin ligases including those targeting tumor suppressor p53, SCF ligases and RING type ligases and accentuate on biological functions of few important E3 ligases in the cellular regulatory networks. Tumor suppressor p53 level is tightly regulated by multiple E3 ligases including Mdm2, COP1, Pirh2, etc. SCF ubiquitin ligase complexes are key regulators of cell cycle and signal transduction. BRCA1 and VHL RING type ligases function as tumor suppressors and play an important role in DNA repair and hypoxia response respectively. Further, we discuss the biological consequences of deregulation of the E3 ligases and the implications for cancer development. We also describe deubiquitylases which reverse the process of ubiquitylation and regulate diverse cellular pathways including metabolism, cell cycle control and chromatin remodelling. As the E3 ubiquitin ligases and DUBs work in a substrate specific manner, an improved understanding of them can lead to better therapeutics for cancer.
Collapse
Affiliation(s)
- Yatendra Kumar Satija
- Molecular Oncology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | | | | |
Collapse
|
22
|
Chondrogianni N, Petropoulos I, Grimm S, Georgila K, Catalgol B, Friguet B, Grune T, Gonos ES. Protein damage, repair and proteolysis. Mol Aspects Med 2012; 35:1-71. [PMID: 23107776 DOI: 10.1016/j.mam.2012.09.001] [Citation(s) in RCA: 166] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 09/26/2012] [Indexed: 01/10/2023]
Abstract
Proteins are continuously affected by various intrinsic and extrinsic factors. Damaged proteins influence several intracellular pathways and result in different disorders and diseases. Aggregation of damaged proteins depends on the balance between their generation and their reversal or elimination by protein repair systems and degradation, respectively. With regard to protein repair, only few repair mechanisms have been evidenced including the reduction of methionine sulfoxide residues by the methionine sulfoxide reductases, the conversion of isoaspartyl residues to L-aspartate by L-isoaspartate methyl transferase and deglycation by phosphorylation of protein-bound fructosamine by fructosamine-3-kinase. Protein degradation is orchestrated by two major proteolytic systems, namely the lysosome and the proteasome. Alteration of the function for both systems has been involved in all aspects of cellular metabolic networks linked to either normal or pathological processes. Given the importance of protein repair and degradation, great effort has recently been made regarding the modulation of these systems in various physiological conditions such as aging, as well as in diseases. Genetic modulation has produced promising results in the area of protein repair enzymes but there are not yet any identified potent inhibitors, and, to our knowledge, only one activating compound has been reported so far. In contrast, different drugs as well as natural compounds that interfere with proteolysis have been identified and/or developed resulting in homeostatic maintenance and/or the delay of disease progression.
Collapse
Affiliation(s)
- Niki Chondrogianni
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Helenic Research Foundation, 48 Vas. Constantinou Ave., 116 35 Athens, Greece.
| | - Isabelle Petropoulos
- Laboratoire de Biologie Cellulaire du Vieillissement, UR4-UPMC, IFR 83, Université Pierre et Marie Curie-Paris 6, 4 Place Jussieu, 75005 Paris, France
| | - Stefanie Grimm
- Department of Nutritional Toxicology, Institute of Nutrition, Friedrich-Schiller University, Dornburger Straße 24, 07743 Jena, Germany
| | - Konstantina Georgila
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Helenic Research Foundation, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Betul Catalgol
- Department of Biochemistry, Faculty of Medicine, Genetic and Metabolic Diseases Research Center (GEMHAM), Marmara University, Haydarpasa, Istanbul, Turkey
| | - Bertrand Friguet
- Laboratoire de Biologie Cellulaire du Vieillissement, UR4-UPMC, IFR 83, Université Pierre et Marie Curie-Paris 6, 4 Place Jussieu, 75005 Paris, France
| | - Tilman Grune
- Department of Nutritional Toxicology, Institute of Nutrition, Friedrich-Schiller University, Dornburger Straße 24, 07743 Jena, Germany
| | - Efstathios S Gonos
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Helenic Research Foundation, 48 Vas. Constantinou Ave., 116 35 Athens, Greece.
| |
Collapse
|
23
|
Ube2w and ataxin-3 coordinately regulate the ubiquitin ligase CHIP. Mol Cell 2011; 43:599-612. [PMID: 21855799 DOI: 10.1016/j.molcel.2011.05.036] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 03/22/2011] [Accepted: 05/31/2011] [Indexed: 01/29/2023]
Abstract
The mechanisms by which ubiquitin ligases are regulated remain poorly understood. Here we describe a series of molecular events that coordinately regulate CHIP, a neuroprotective E3 implicated in protein quality control. Through their opposing activities, the initiator E2, Ube2w, and the specialized deubiquitinating enzyme (DUB), ataxin-3, participate in initiating, regulating, and terminating the CHIP ubiquitination cycle. Monoubiquitination of CHIP by Ube2w stabilizes the interaction between CHIP and ataxin-3, which through its DUB activity limits the length of chains attached to CHIP substrates. Upon completion of substrate ubiquitination, ataxin-3 deubiquitinates CHIP, effectively terminating the reaction. Our results suggest that functional pairing of E3s with ataxin-3 or similar DUBs represents an important point of regulation in ubiquitin-dependent protein quality control. In addition, the results shed light on disease pathogenesis in SCA3, a neurodegenerative disorder caused by polyglutamine expansion in ataxin-3.
Collapse
|
24
|
Sisoula C, Gonos ES. CHIP E3 ligase regulates mammalian senescence by modulating the levels of oxidized proteins. Mech Ageing Dev 2011; 132:269-72. [PMID: 21510971 DOI: 10.1016/j.mad.2011.04.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 03/15/2011] [Accepted: 04/04/2011] [Indexed: 01/03/2023]
Abstract
Senescence can be induced by various stressors including oxidative stress. It has been reported that CHIP (C-terminus of Hsp70-interacting protein) ligase is induced during senescence while CHIP(-/-) mice exhibit accelerated aging. Here, we explore the effects of modulating CHIP expression on mammalian senescence. We demonstrate that CHIP silencing induces premature senescence that is accompanied by elevated levels of oxidized proteins. On the contrary, ectopic expression of CHIP leads to oxidized proteins levels reduction. Moreover, we reveal that CHIP(-/-) mouse fibroblasts have an impaired ubiquitin proteasome system. Taken together, we propose that CHIP influences cellular senescence by modulating the oxidative load.
Collapse
Affiliation(s)
- Christina Sisoula
- National Hellenic Research Foundation, Institute of Biological Research and Biotechnology, Athens, Greece
| | | |
Collapse
|