1
|
Chettouh-Hammas N, Grillon C. Physiological skin oxygen levels: An important criterion for skin cell functionality and therapeutic approaches. Free Radic Biol Med 2024; 222:259-274. [PMID: 38908804 DOI: 10.1016/j.freeradbiomed.2024.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 06/24/2024]
Abstract
The skin is made up of different layers with various gradients, which maintain a complex microenvironment, particularly in terms of oxygen levels. However, all types of skin cells are cultured in conventional incubators that do not reproduce physiological oxygen levels. Instead, they are cultured at atmospheric oxygen levels, a condition that is far removed from physiology and may lead to the generation of free radicals known to induce skin ageing. This review aims to summarize the current literature on the effect of physiological oxygen levels on skin cells, highlight the shortcomings of current in vitro models, and demonstrate the importance of respecting skin oxygen levels. We begin by clarifying the terminology used about oxygen levels and describe the specific distribution of oxygen in the skin. We review and discuss how skin cells adapt their oxygen consumption and metabolism to oxygen levels environment, as well as the changes that are induced, particularly, their redox state, life cycle and functions. We examine the effects of oxygen on both simple culture models and more complex reconstructed skin models. Finally, we present the implications of oxygen modulation for a more therapeutic approach.
Collapse
Affiliation(s)
- Nadira Chettouh-Hammas
- Center for Molecular Biophysics UPR4301 CNRS, Rue Charles Sadron, 45071, Orléans, Cedex 2, France.
| | - Catherine Grillon
- Center for Molecular Biophysics UPR4301 CNRS, Rue Charles Sadron, 45071, Orléans, Cedex 2, France.
| |
Collapse
|
2
|
Liu Y, Chen L, Zhang S, Wang X, Song Y, Sun H, Cai Z, Wang L. Do wearing masks and preservatives have a combined effect on skin health? ECO-ENVIRONMENT & HEALTH (ONLINE) 2024; 3:107-115. [PMID: 38445214 PMCID: PMC10912353 DOI: 10.1016/j.eehl.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/25/2023] [Accepted: 01/08/2024] [Indexed: 03/07/2024]
Abstract
Chemical exposure and local hypoxia caused by mask-wearing may result in skin physiology changes. The effects of methylparaben (MeP), a commonly used preservative in personal care products, and hypoxia on skin health were investigated by HaCaT cell and ICR mouse experiments. MeP exposure resulted in lipid peroxidation and interfered with cellular glutathione metabolism, while hypoxia treatment disturbed phenylalanine, tyrosine, and tryptophan biosynthesis pathways and energy metabolism to respond to oxidative stress. A hypoxic environment increased the perturbation of MeP on the purine metabolism in HaCaT cells, resulting in increased expression of proinflammatory cytokines. The synergistic effects were further validated in a mouse model with MeP dermal exposure and "mask-wearing" treatment. CAT, PPARG, and MMP2 were identified as possible key gene targets associated with skin health risks posed by MeP and hypoxia. Network toxicity analysis suggested a synergistic effect, indicating the risk of skin inflammation and skin barrier aging.
Collapse
Affiliation(s)
- Yu Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Leijian Chen
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Shuyi Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiaoxiao Wang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Yuanyuan Song
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
3
|
Chettouh-Hammas N, Fasani F, Boileau A, Gosset D, Busco G, Grillon C. Improvement of Antioxidant Defences in Keratinocytes Grown in Physioxia: Comparison of 2D and 3D Models. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:6829931. [PMID: 37360501 PMCID: PMC10290565 DOI: 10.1155/2023/6829931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/25/2023] [Accepted: 05/27/2023] [Indexed: 06/28/2023]
Abstract
Keratinocytes prevent skin photoaging by ensuring the defence against oxidative stress, an excessive production of reactive oxygen species (ROS). They are localized within the epidermis where the oxygen level (1-3% O2), named physioxia, is low compared to other organs. Oxygen is essential for life but also generates ROS. Most of the in vitro studies on keratinocyte antioxidant capacities are performed under atmospheric oxygen, named normoxia, which is very far from the physiological microenvironment, thus submitting cells to an overoxygenation. The present study is aimed at investigating the antioxidant status of keratinocyte grown under physioxia in both 2D and 3D models. First, we show that the basal antioxidant profiles of keratinocytes display important differences when comparing the HaCaT cell line, primary keratinocytes (NHEK), reconstructed epidermis (RHE), and skin explants. Physioxia was shown to promote a strong proliferation of keratinocytes in monolayers and in RHE, resulting in a thinner epidermis likely due to a slowdown in cell differentiation. Interestingly, cells in physioxia exhibited a lower ROS production upon stress, suggesting a better protection against oxidative stress. To understand this effect, we studied the antioxidant enzymes and reported a lower or equivalent level of mRNA for all enzymes in physioxia conditions compared to normoxia, but a higher activity for catalase and superoxide dismutases, whatever the culture model. The unchanged catalase amount, in NHEK and RHE, suggests an overactivation of the enzyme in physioxia, whereas the higher amount of SOD2 can explain the strong activity. Taken together, our results demonstrate the role of oxygen in the regulation of the antioxidant defences in keratinocytes, topic of particular importance for studying skin aging. Additionally, the present work points out the interest of the choice of both the keratinocyte culture model and the oxygen level to be as close as possible to the in situ skin.
Collapse
Affiliation(s)
- Nadira Chettouh-Hammas
- Center for Molecular Biophysics UPR4301 CNRS, Rue Charles Sadron, 45071 Orléans Cedex 2, France
| | - Fabienne Fasani
- Center for Molecular Biophysics UPR4301 CNRS, Rue Charles Sadron, 45071 Orléans Cedex 2, France
| | - Amandine Boileau
- Center for Molecular Biophysics UPR4301 CNRS, Rue Charles Sadron, 45071 Orléans Cedex 2, France
| | - David Gosset
- Center for Molecular Biophysics UPR4301 CNRS, Rue Charles Sadron, 45071 Orléans Cedex 2, France
| | - Giovanni Busco
- Center for Molecular Biophysics UPR4301 CNRS, Rue Charles Sadron, 45071 Orléans Cedex 2, France
| | - Catherine Grillon
- Center for Molecular Biophysics UPR4301 CNRS, Rue Charles Sadron, 45071 Orléans Cedex 2, France
| |
Collapse
|
4
|
Faßbender S, Sondenheimer K, Majora M, Schindler J, Opitz FV, Pollet M, Haarmann-Stemmann T, Krutmann J, Weighardt H. Keratinocytes Counteract UVB-Induced Immunosuppression in Mice Via HIF-1a Signaling. J Invest Dermatol 2021; 142:1183-1193. [PMID: 34571000 DOI: 10.1016/j.jid.2021.07.185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 07/14/2021] [Accepted: 07/23/2021] [Indexed: 01/20/2023]
Abstract
The transcription factor Hypoxia-Inducible Factor-1alpha (HIF-1a) regulates cellular metabolism under hypoxia but also immune responses and UVB-induced skin reactions. In keratinocytes, HIF-1a is an environmental sensor orchestrating the adaptation to environmental changes. Here, we investigated the role of HIF-1a in keratinocytes for skin reactions to acute and chronic UVB exposure in mice. The function of HIF-1a in keratinocytes under UVB exposure was analyzed in conditional keratinocyte-specific HIF-1a-KO (in short "cKO") mice. cKO mice were hypersensitive to acute high-dose UVB irradiation compared to wildtype (WT), displaying increased cell death and delayed barrier repair. After chronic low-dose UVB treatment, cKO mice also had stronger epidermal damage but reduced infiltration of dermal macrophages and T helper cells compared to WT mice. Irradiated cKO mice revealed accumulation of regulatory lymphocytes in dorsal skin-draining lymph nodes compared to WT and unirradiated mice. This was reflected by augmented IL-10 release of lymph node cells and a weaker contact hypersensitivity reaction to DNFB in UVB-exposed cKO mice compared to WT and unirradiated controls. In summary, we found that keratinocyte-specific HIF-1a expression is crucial for adaptation to UVB exposure and inhibits the development of UVB-induced immunosuppression in mice. Therefore, HIF-1a signaling in keratinocytes could ameliorate photoaging-related skin disorders.
Collapse
Affiliation(s)
- Sonja Faßbender
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Strasse 31, D-53115 Bonn, Germany; IUF Leibniz Research Institute for Environmental Medicine, Auf´m Hennekamp 50, D-40225 Duesseldorf, Germany.
| | - Kevin Sondenheimer
- IUF Leibniz Research Institute for Environmental Medicine, Auf´m Hennekamp 50, D-40225 Duesseldorf, Germany
| | - Marc Majora
- IUF Leibniz Research Institute for Environmental Medicine, Auf´m Hennekamp 50, D-40225 Duesseldorf, Germany
| | - Jennifer Schindler
- IUF Leibniz Research Institute for Environmental Medicine, Auf´m Hennekamp 50, D-40225 Duesseldorf, Germany
| | - Friederike V Opitz
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Strasse 31, D-53115 Bonn, Germany; IUF Leibniz Research Institute for Environmental Medicine, Auf´m Hennekamp 50, D-40225 Duesseldorf, Germany
| | - Marius Pollet
- IUF Leibniz Research Institute for Environmental Medicine, Auf´m Hennekamp 50, D-40225 Duesseldorf, Germany
| | - Thomas Haarmann-Stemmann
- IUF Leibniz Research Institute for Environmental Medicine, Auf´m Hennekamp 50, D-40225 Duesseldorf, Germany
| | - Jean Krutmann
- IUF Leibniz Research Institute for Environmental Medicine, Auf´m Hennekamp 50, D-40225 Duesseldorf, Germany
| | - Heike Weighardt
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Strasse 31, D-53115 Bonn, Germany; IUF Leibniz Research Institute for Environmental Medicine, Auf´m Hennekamp 50, D-40225 Duesseldorf, Germany
| |
Collapse
|
5
|
Han JH, Park J, Myung SH, Lee SH, Kim HY, Kim KS, Seo YW, Kim TH. Noxa mitochondrial targeting domain induces necrosis via VDAC2 and mitochondrial catastrophe. Cell Death Dis 2019; 10:519. [PMID: 31285435 PMCID: PMC6614423 DOI: 10.1038/s41419-019-1753-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 06/07/2019] [Accepted: 06/21/2019] [Indexed: 11/09/2022]
Abstract
Noxa, a Bcl-2 homology 3 (BH3)-only protein of the Bcl-2 family, is responsive to cell stresses and triggers apoptosis by binding the prosurvival Bcl-2-like proteins Mcl1, BclXL, and Bcl2A1. Although the Noxa BH3 domain is necessary to induce apoptosis, the mitochondrial targeting domain (MTD) of Noxa functions as a pronecrotic domain, an inducer of mitochondrial fragmentation, and delivery to mitochondria. In this study, we demonstrate that the extended MTD (eMTD) peptide induces necrotic cell death by interaction with the VDAC2 protein. The eMTD peptide penetrates the cell membrane, causing cell membrane blebbing, cytosolic calcium influx, and mitochondrial swelling, fragmentation, and ROS generation. The MTD domain binds VDACs and opens the mitochondrial permeability transition pore (mPTP) in a CypD-independent manner. The opening of mPTP induced by eMTD is inhibited either by down-regulation of VDAC2 or by the VDACs inhibitor DIDS. These results indicate that the MTD domain of Noxa causes mitochondrial damage by opening mPTP through VDACs, especially VDAC2, during necrotic cell death.
Collapse
Affiliation(s)
- Ji-Hye Han
- Department of Biochemistry and Molecular Biology, Chosun University School of Medicine, 309 Pilmoon-Daero, Dong-Gu, Gwang-Ju, 61452, Korea
| | - Junghee Park
- Department of Biochemistry and Molecular Biology, Chosun University School of Medicine, 309 Pilmoon-Daero, Dong-Gu, Gwang-Ju, 61452, Korea
| | - Seung-Hyun Myung
- Department of Biochemistry and Molecular Biology, Chosun University School of Medicine, 309 Pilmoon-Daero, Dong-Gu, Gwang-Ju, 61452, Korea
| | - Sung Hang Lee
- Department of Molecular and Cellular Biology, Chosun University School of Medicine, 309 Pilmoon-Daero, Dong-Gu, Gwang-Ju, 61452, Korea
| | - Hwa-Young Kim
- Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine, Daegu, Korea
| | - Kyung Sook Kim
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Young-Woo Seo
- Korea Basic Science Institute Gwang-Ju Center, Chonnam National University, 77, Yongbong-ro, Buk-gu, Gwang-ju, 61186, Korea.
| | - Tae-Hyoung Kim
- Department of Biochemistry and Molecular Biology, Chosun University School of Medicine, 309 Pilmoon-Daero, Dong-Gu, Gwang-Ju, 61452, Korea.
| |
Collapse
|
6
|
Wang Y, Li W, Xu S, Hu R, Zeng Q, Liu Q, Li S, Lee H, Chang M, Guan L. Protective skin aging effects of cherry blossom extract (Prunus Yedoensis) on oxidative stress and apoptosis in UVB-irradiated HaCaT cells. Cytotechnology 2019; 71:475-487. [PMID: 30874982 DOI: 10.1007/s10616-018-0215-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 03/19/2018] [Indexed: 11/28/2022] Open
Abstract
Extracts of the cherry blossom plant have been reported to exert various biological effects on human cells. However, no previous investigations have examined the antioxidant and anti-apoptotic effects of these extracts on ultraviolet B (UVB) radiation-induced skin aging. This study explores the underlying mechanisms of the antioxidant and anti-apoptotic effects of cherry blossom extract (CBE) in human keratinocyte (HaCaT) cells. HaCaT cells were treated with CBE at concentrations of 0.5, 1.0, and 2.0% for 24 h and then irradiated with UVB (40 mJ/cm2). CBE effectively and dose-dependently decreased the levels of reactive oxygen species and malondialdehyde, while increasing the activities of superoxide dismutase and glutathione peroxidase. Pretreatment with 1 and 2% CBE attenuated UVB-induced DNA damage by reducing the formation of cyclobutane pyrimidine dimers and 8-hydroxy-20-deoxyguanosine. Furthermore, CBE also prevented UVB-induced apoptosis and significantly downregulated B cell lymphoma 2 (Bcl-2)-associated X, cytochrome-c, and caspase-3 expression, while upregulating Bcl-2 expression. Taken together, these results indicate that CBE protects HaCaT cells from UVB-induced oxidative stress and apoptosis and suggest that CBE could be a potent antioxidant against skin aging.
Collapse
Affiliation(s)
- Yaning Wang
- Skin Research Center, Landproof Testing Technology Co., Ltd, No. 129, Longkou Dong Road, Guangzhou, 510635, Guangdong Province, China
| | - Weixuan Li
- Clinical Laboratory, The First People Hospital of Foshan, No. 81, Lingnan Avenue North, Foshan, Guangdong Province, 528000, People's Republic of China.
| | - Sika Xu
- Skin Research Center, Landproof Testing Technology Co., Ltd, No. 129, Longkou Dong Road, Guangzhou, 510635, Guangdong Province, China
| | - Rong Hu
- Skin Research Center, Landproof Testing Technology Co., Ltd, No. 129, Longkou Dong Road, Guangzhou, 510635, Guangdong Province, China
| | - Qingting Zeng
- Skin Research Center, Landproof Testing Technology Co., Ltd, No. 129, Longkou Dong Road, Guangzhou, 510635, Guangdong Province, China
| | - Qiaoyuan Liu
- Skin Research Center, Landproof Testing Technology Co., Ltd, No. 129, Longkou Dong Road, Guangzhou, 510635, Guangdong Province, China
| | - Shan Li
- Skin Research Center, Landproof Testing Technology Co., Ltd, No. 129, Longkou Dong Road, Guangzhou, 510635, Guangdong Province, China
| | - Hayeon Lee
- The Garden of Naturalsolution, Gajangsaneopseo-ro, Osan-si, Gyeonggi-Do, Republic of Korea
| | - Moonsik Chang
- The Garden of Naturalsolution, Gajangsaneopseo-ro, Osan-si, Gyeonggi-Do, Republic of Korea
| | - Lei Guan
- Skin Research Center, Landproof Testing Technology Co., Ltd, No. 129, Longkou Dong Road, Guangzhou, 510635, Guangdong Province, China.
| |
Collapse
|
7
|
Park JE, Hyun YJ, Piao MJ, Kang KA, Ryu YS, Shilnikova K, Zhen AX, Ahn MJ, Ahn YS, Koh YS, Kang HK, Hyun JW. Mackerel-derived fermented fish oil protects skin against UVB-induced cellular damage by inhibiting oxidative stress. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.04.057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
8
|
Jeayeng S, Wongkajornsilp A, Slominski AT, Jirawatnotai S, Sampattavanich S, Panich U. Nrf2 in keratinocytes modulates UVB-induced DNA damage and apoptosis in melanocytes through MAPK signaling. Free Radic Biol Med 2017; 108:918-928. [PMID: 28495448 PMCID: PMC5546090 DOI: 10.1016/j.freeradbiomed.2017.05.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 04/10/2017] [Accepted: 05/07/2017] [Indexed: 11/24/2022]
Abstract
Responses of melanocytes (MC) to ultraviolet (UV) irradiation can be influenced by their neighbouring keratinocytes (KC). We investigated the role of Nrf2 in regulating paracrine effects of KC on UVB-induced MC responses through phosphorylation of MAPKs in association with oxidative stress in primary human MC cocultured with primary human KC using a transwell co-culture system and small-interfering RNA-mediated silencing of Nrf2 (siNrf2). The mechanisms by which Nrf2 modulated paracrine factors including α-melanocyte-stimulating hormone (α-MSH) and paracrine effects of KC on UVB-mediated apoptosis were also assessed. Our findings showed that co-culture of MC with siNrf2-transfected KC enhanced UVB-mediated cyclobutane pyrimidine dimer (CPD) formation, apoptosis and oxidant formation, together with phosphorylation of ERK, JNK and p38 in MC. Treatment of MC with conditioned medium (CM) from Nrf2-depleted KC also increased UVB-mediated MC damage, suggesting that KC modulated UVB-mediated MC responses via paracrine effects. Additionally, depletion of Nrf2 in KC suppressed UVB-induced α-MSH levels as early as 30min post-irradiation, although pretreatment with N-acetylcysteine (NAC) elevated its levels in CM from siNrf2-transfected KC. Furthermore, NAC reversed the effect of CM from Nrf2-depleted KC on UVB-induced apoptosis and inflammatory response in MC. Our study demonstrates for the first time that KC provided a rescue effect on UVB-mediated MC damage, although depletion of Nrf2 in KC reversed its protective effects on MC in a paracrine fashion in association with elevation of ROS levels and activation of MAPK pathways in MC. Nrf2 may indirectly regulate the paracrine effects of KC probably by affecting levels of the paracrine factor α-MSH via a ROS-dependent mechanism.
Collapse
Affiliation(s)
- Saowanee Jeayeng
- Siriraj Laboratory for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Adisak Wongkajornsilp
- Siriraj Laboratory for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA; VA Medical Center, Birmingham, AL 35233, USA
| | - Siwanon Jirawatnotai
- Siriraj Laboratory for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Somponnat Sampattavanich
- Siriraj Laboratory for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Uraiwan Panich
- Siriraj Laboratory for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| |
Collapse
|
9
|
Xu Y, Xing Y, Xu Y, Huang C, Bao H, Hong K, Cheng X. Pim-2 protects H9c2 cardiomyocytes from hypoxia/reoxygenation-induced apoptosis via downregulation of Bim expression. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 48:94-102. [PMID: 27770661 DOI: 10.1016/j.etap.2016.10.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 10/12/2016] [Accepted: 10/15/2016] [Indexed: 06/06/2023]
Abstract
We know that silencing Bim, a pro-apoptosis protein, significantly attenuates glucose and oxygen-deprived induced apoptosis in cardiomyocytes. However, the mechanisms underlying the regulation of the Bim activation in the heart have remained unknown. Pim-2 is one of three Pim serine/threonine kinase family members thought to be involved in cell survival and proliferation. H9c2 cardiomyocytes were subjected to a hypoxia/reoxygenation (H/R) condition in vitro, mimicking ischemic/reperfusion injury in vivo. H/R augmented the expression of Bim, Cyt C, and Pim-2 and induced H9c2 cell apoptosis. Overexpression of Pim-2 attenuated apoptosis which induced by H/R in H9c2 cells, via downregulation of Bim and Cyt C expression. Silencing of Pim-2 promoted H/R-induced apoptosis via upregulation of Bim and Cyt C expression. Co-IP revealed the interaction between Pim-2 and Bim protein, with Bim Ser65 phosphorylated by Pim-2. Furthermore, blocking proteasome activity by MG132 prevented Bim degradation, and Bim S65A mutation could reverse the anti-apoptotic role of Pim-2 which induced by H/R. These data demonstrated that Pim-2 is a novel Bim-interacting protein, which negatively regulates Bim degradation and protects H9c2 cardiomyocytes from H/R-induced apoptosis.
Collapse
Affiliation(s)
- Yan Xu
- Department of Cardiovascular, Second affiliated Hospital of Nanchang University, Institute of Cardiovascular disease in Nanchang University, Nan Chang, Jiang Xi, 330006, China
| | - Yawei Xing
- Department of Cardiovascular, Second affiliated Hospital of Nanchang University, Institute of Cardiovascular disease in Nanchang University, Nan Chang, Jiang Xi, 330006, China
| | - Yanjie Xu
- Department of Cardiovascular, Second affiliated Hospital of Nanchang University, Institute of Cardiovascular disease in Nanchang University, Nan Chang, Jiang Xi, 330006, China
| | - Chahua Huang
- Department of Cardiovascular, Second affiliated Hospital of Nanchang University, Institute of Cardiovascular disease in Nanchang University, Nan Chang, Jiang Xi, 330006, China
| | - Huihui Bao
- Department of Cardiovascular, Second affiliated Hospital of Nanchang University, Institute of Cardiovascular disease in Nanchang University, Nan Chang, Jiang Xi, 330006, China
| | - Kui Hong
- Department of Cardiovascular, Second affiliated Hospital of Nanchang University, Institute of Cardiovascular disease in Nanchang University, Nan Chang, Jiang Xi, 330006, China; Medical Molecular Laboratory, the Second Affiliated Hospital of Nanchang University, Nanchang, 330006, PR China
| | - Xiaoshu Cheng
- Department of Cardiovascular, Second affiliated Hospital of Nanchang University, Institute of Cardiovascular disease in Nanchang University, Nan Chang, Jiang Xi, 330006, China.
| |
Collapse
|
10
|
Maes H, Martin S, Verfaillie T, Agostinis P. Dynamic interplay between autophagic flux and Akt during melanoma progression in vitro. Exp Dermatol 2014; 23:101-6. [PMID: 24313465 DOI: 10.1111/exd.12298] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2013] [Indexed: 01/06/2023]
Abstract
Despite advances in cancer diagnosis and therapy, metastatic melanoma remains untreatable, due to its notorious resistance to apoptosis, deeming traditional therapies obsolete. Deregulated PI3K/Akt signalling is a common oncogenic event enabling melanocyte transformation and represents a significant and 'druggable' pathway in melanoma. Emerging data show that the ability of cancer cells to survive is also facilitated by alteration of vital homoeostatic mechanisms, such as autophagy. Although the role of autophagy in melanoma is still controversial, recent studies suggest that basal autophagy is down-modulated in primary melanomas. However, the dynamic connection between pro-tumorigenic PI3K/Akt and autophagy during melanoma progression has not been systematically studied. By using human primary melanocytes, incipient melanoma and metastatic melanoma cell lines, we show that early in melanomagenesis, increased Akt activity is associated with a low baseline autophagic flux. However, during melanoma progression, metastatic melanoma cells regain the ability to stimulate autophagic flux, supporting survival. Heightened autophagy is associated with an attenuated Akt activation status and can be suppressed by overexpressing a constitutive active mutant of Akt. On the other hand, blocking the higher Akt activity of primary melanoma is sufficient to incite autophagy. Interestingly, we found that although Akt supports survival of melanocytes and all melanoma cell lines, autophagy inhibition specifically targeted the metastatic melanoma cells, thus indicating a stage-specific requirement for Akt and autophagic flux, throughout melanoma progression. Therefore, this study highlights a dynamic interplay between Akt signalling and autophagic rescue in melanoma, which should be considered in the design of therapeutic strategies targeting these pathways.
Collapse
Affiliation(s)
- Hannelore Maes
- Cell Death Research and Therapy Unit, Department for Cellular and Molecular Medicine, Catholic University of Leuven (KU Leuven), Leuven, Belgium
| | | | | | | |
Collapse
|
11
|
Gebruers E, Cordero-Maldonado ML, Gray AI, Clements C, Harvey AL, Edrada-Ebel R, de Witte PAM, Crawford AD, Esguerra CV. A phenotypic screen in zebrafish identifies a novel small-molecule inducer of ectopic tail formation suggestive of alterations in non-canonical Wnt/PCP signaling. PLoS One 2013; 8:e83293. [PMID: 24349481 PMCID: PMC3859651 DOI: 10.1371/journal.pone.0083293] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 11/11/2013] [Indexed: 01/26/2023] Open
Abstract
Zebrafish have recently emerged as an attractive model for the in vivo bioassay-guided isolation and characterization of pharmacologically active small molecules of natural origin. We carried out a zebrafish-based phenotypic screen of over 3000 plant-derived secondary metabolite extracts with the goal of identifying novel small-molecule modulators of the BMP and Wnt signaling pathways. One of the bioactive plant extracts identified in this screen - Jasminum gilgianum, an Oleaceae species native to Papua New Guinea - induced ectopic tails during zebrafish embryonic development. As ectopic tail formation occurs when BMP or non-canonical Wnt signaling is inhibited during the tail protrusion process, we suspected a constituent of this extract to act as a modulator of these pathways. A bioassay-guided isolation was carried out on the basis of this zebrafish phenotype, identifying para-coumaric acid methyl ester (pCAME) as the active compound. We then performed an in-depth phenotypic analysis of pCAME-treated zebrafish embryos, including a tissue-specific marker analysis of the secondary tails. We found pCAME to synergize with the BMP-inhibitors dorsomorphin and LDN-193189 in inducing ectopic tails, and causing convergence-extension defects in compound-treated embryos. These results indicate that pCAME may interfere with non-canonical Wnt signaling. Inhibition of Jnk, a downstream target of Wnt/PCP signaling (via morpholino antisense knockdown and pharmacological inhibition with the kinase inhibitor SP600125) phenocopied pCAME-treated embryos. However, immunoblotting experiments revealed pCAME to not directly inhibit Jnk-mediated phosphorylation of c-Jun, suggesting additional targets of SP600125, and/or other pathways, as possibly being involved in the ectopic tail formation activity of pCAME. Further investigation of pCAME's mechanism of action will help determine this compound's pharmacological utility.
Collapse
Affiliation(s)
- Evelien Gebruers
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Leuven, Belgium
| | - María Lorena Cordero-Maldonado
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Leuven, Belgium
- Faculty of Chemistry Sciences, School of Biochemistry and Pharmacy, University of Cuenca, Cuenca, Ecuador
- Chemical Biology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Alexander I. Gray
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland
| | - Carol Clements
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland
| | - Alan L. Harvey
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland
| | - Ruangelie Edrada-Ebel
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland
| | - Peter A. M. de Witte
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Leuven, Belgium
| | - Alexander D. Crawford
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Leuven, Belgium
- Chemical Biology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Camila V. Esguerra
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Leuven, Belgium
- * E-mail:
| |
Collapse
|
12
|
Edmunds MC, Czopek A, Wigmore SJ, Kluth DC. Paradoxical effects of heme arginate on survival of myocutaneous flaps. Am J Physiol Regul Integr Comp Physiol 2013; 306:R10-22. [PMID: 24089372 DOI: 10.1152/ajpregu.00240.2013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ischemia reperfusion injury (IRI) contributes to partial flap and solid organ transplant failure. Heme-oxygenase 1 (HO-1) is an inducible, cytoprotective enzyme which protects against IRI in solid organ transplant models. Heme arginate (HA), a HO-1 inducer, is a promising, translatable, preconditioning agent. This study investigated the effects of preconditioning with HA on the clinical outcome of a myocutaneous IRI model. Forty male Lewis rats were randomized to intravenously receive 1) Control-NaCl, 2) HA, 3) HA and tin mesoporphyrin (SnMP), a HO-1 inhibitor; and 4) SnMP alone. Twenty-four hours later, an in situ transverse rectus abdominis myocutaneous flap was performed under isoflurane anesthesia. Viability of flaps was measured clinically and by laser-Doppler perfusion scanning. In vitro work on human epidermal keratinocytes (HEKa) assessed the effects of HA, SnMP, and the iron chelator desferrioxamine on 1) cytotoxicity, 2) intracellular reactive oxygen species (ROS) concentration, and 3) ROS-mediated DNA damage. In contrast to our hypothesis, HA preconditioning produced over 30% more flap necrosis at 48 h compared with controls (P = 0.02). HA-containing treatments produced significantly worse flap perfusion at all postoperative time points. In vitro work showed that HA is cytotoxic to keratinocytes. This cytotoxicity was independent of HO-1 and was mediated by the generation of ROS by free heme. In contrast to solid organ data, pharmacological preconditioning with HA significantly worsened clinical outcome, thus indicating that this is not a viable approach in free flap research.
Collapse
Affiliation(s)
- Marie-Claire Edmunds
- Medical Research Council Centre for Inflammation Research, Queen's Medical Research Institute, Department of Surgery, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom; and
| | | | | | | |
Collapse
|
13
|
Hyun YJ, Piao MJ, Ko MH, Lee NH, Kang HK, Yoo ES, Koh YS, Hyun JW. Photoprotective effect of Undaria crenata against ultraviolet B-induced damage to keratinocytes. J Biosci Bioeng 2013; 116:256-64. [PMID: 23474096 DOI: 10.1016/j.jbiosc.2013.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 01/11/2013] [Accepted: 02/05/2013] [Indexed: 10/27/2022]
Abstract
Chronic exposure of the skin to ultraviolet B (UVB) radiation induces oxidative stress, which plays a crucial role in the induction of skin cancer. The brown alga Undaria crenata is a potential source of antioxidant and anti-apoptotic compounds due to its capacity to produce protective compounds against environmental factors, including UV radiation. The aim of this study was to investigate the photoprotective properties of an U. crenata ethanol extract (UCE) against UVB-induced cell damage in human HaCaT keratinocytes. UCE exhibited absorbing effect of UVB (280-320 nm) and scavenging activity against the 1,1-diphenyl-2-picrylhydrazyl radical and intracellular reactive oxygen species induced by hydrogen peroxide and UVB rays. Furthermore, electron spin resonance spectrometry revealed the significant scavenging effect of UCE against superoxide anion and hydroxyl radical. UCE reduced UVB-induced apoptosis, as shown by a decrease in apoptotic bodies and nuclear and DNA fragmentation, resulting in the recovery of cell viability. UCE also decreased the degree of UVB-induced oxidative stress to lipids, proteins, and DNA as shown by a decrease in 8-isoprostane level, protein carbonylation and DNA tails. These results suggest that UCE protects human keratinocytes against UVB-induced oxidative stress.
Collapse
Affiliation(s)
- Yu Jae Hyun
- Jeju National University, School of Medicine, Jeju 690-756, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Empetrum nigrum var. japonicum Extract Suppresses Ultraviolet B-Induced Cell Damage via Absorption of Radiation and Inhibition of Oxidative Stress. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:983609. [PMID: 23476710 PMCID: PMC3588204 DOI: 10.1155/2013/983609] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 12/21/2012] [Accepted: 12/27/2012] [Indexed: 12/22/2022]
Abstract
This study focused on the protective actions of Empetrum nigrum against ultraviolet B (UVB) radiation in human HaCaT keratinocytes. An ethyl acetate extract of E. nigrum (ENE) increased cell viability decreased by exposure to UVB rays. ENE also absorbed UVB radiation and scavenged UVB-induced intracellular reactive oxygen species (ROS) in HaCaT keratinocytes. In addition, ENE shielded HaCaT keratinocytes from damage to cellular components (e.g., peroxidation of lipids, modification of proteins, and breakage of DNA strands) following UVB irradiation. Furthermore, ENE protected against UVB-induced apoptotic cell death, as determined by a reduction in the numbers of apoptotic bodies and sub-G1 hypodiploid cells, as well as by the recovery of mitochondrial membrane potential. The results of the current study therefore suggest that ENE safeguards human keratinocytes against UVB-induced cellular damage via the absorption of UVB ray and scavenging of UVB-generated ROS.
Collapse
|
15
|
Yoshioka T, Yogosawa S, Yamada T, Kitawaki J, Sakai T. Combination of a novel HDAC inhibitor OBP-801/YM753 and a PI3K inhibitor LY294002 synergistically induces apoptosis in human endometrial carcinoma cells due to increase of Bim with accumulation of ROS. Gynecol Oncol 2013; 129:425-32. [PMID: 23403163 DOI: 10.1016/j.ygyno.2013.02.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 01/28/2013] [Accepted: 02/05/2013] [Indexed: 11/18/2022]
Abstract
OBJECTIVE In most endometrial carcinoma, it has been observed that the PI3K/Akt pathway is abnormally accelerated in association with mutations in PIK3CA and PTEN. The present study aimed to examine the combined effect of a novel histone deacetylase (HDAC) inhibitor OBP-801/YM753 and a PI3K inhibitor LY294002 against human endometrial carcinoma cells. METHODS The effects of OBP-801/YM753 and LY294002 on the growth of human endometrial carcinoma HEC-1A cells were examined using WST-8 and colony formation assays. The distribution of the cell cycle or apoptosis was analyzed by flow cytometry. The accumulation of intracellular reactive oxygen species (ROS) was measured with a 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate, acetyl ester (CM-H2DCFDA) dye. The expression of apoptosis-related proteins was investigated by Western blotting. Mice engrafted with 1×10(8) HEC-1A cells were treated with OBP-801/YM753, LY294002 or the combination, and tumor volumes were measured. RESULTS The combination of OBP-801/YM753 and LY294002 significantly inhibited the cell growth on comparison with each agent alone and synergistically increased apoptosis with the induction of Bim, a well-known apoptosis inducer. Additionally, the apoptosis induced by the combination was shown to be dependent on intracellular ROS accumulation and Bim induction. Moreover, the apoptosis-inducing effect of OBP-801/YM753 with LY294002 was more potent than that of SAHA with LY294002. Combined treatment with OBP-801/YM753 and LY294002 significantly suppressed tumor growth compared to the control in vivo. CONCLUSIONS The combination of OBP-801/YM753 and LY294002 is effective on the inhibition of the growth of HEC-1A cells, and we suggest that this combination is promising a novel therapeutic strategy for endometrial carcinoma.
Collapse
Affiliation(s)
- Takashi Yoshioka
- Department of Molecular-Targeting Cancer Prevention, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | | | | | | | | |
Collapse
|
16
|
Ghavami S, Cunnington RH, Yeganeh B, Davies JJL, Rattan SG, Bathe K, Kavosh M, Los MJ, Freed DH, Klonisch T, Pierce GN, Halayko AJ, Dixon IMC. Autophagy regulates trans fatty acid-mediated apoptosis in primary cardiac myofibroblasts. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:2274-86. [PMID: 23026405 DOI: 10.1016/j.bbamcr.2012.09.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 09/19/2012] [Accepted: 09/21/2012] [Indexed: 02/06/2023]
Abstract
Trans fats are not a homogeneous group of molecules and less is known about the cellular effects of individual members of the group. Vaccenic acid (VA) and elaidic acid (EA) are the predominant trans monoenes in ruminant fats and vegetable oil, respectively. Here, we investigated the mechanism of cell death induced by VA and EA on primary rat ventricular myofibroblasts (rVF). The MTT assay demonstrated that both VA and EA (200μM, 0-72 h) reduced cell viability in rVF (P<0.001). The FACS assay confirmed that both VA and EA induced apoptosis in rVF, and this was concomitant with elevation in cleaved caspase-9, -3 and -7, but not caspase-8. VA and EA decreased the expression ratio of Bcl2:Bax, induced Bax translocation to mitochondria and decrease in mitochondrial membrane potential (Δψ). BAX and BAX/BAK silencing in mouse embryonic fibroblasts (MEF) inhibited VA and EA-induced cell death compared to the corresponding wild type cells. Transmission electron microscopy revealed that VA and EA also induced macroautophagosome formation in rVF, and immunoblot analysis confirmed the induction of several autophagy markers: LC3-β lipidation, Atg5-12 accumulation, and increased beclin-1. Finally, deletion of autophagy genes, ATG3 and ATG5 significantly inhibited VA and EA-induced cell death (P<0.001). Our findings show for the first time that trans fat acid (TFA) induces simultaneous apoptosis and autophagy in rVF. Furthermore, TFA-induced autophagy is required for this pro-apoptotic effect. Further studies to address the effect of TFA on the heart may reveal significant translational value for prevention of TFA-linked heart disease.
Collapse
Affiliation(s)
- Saeid Ghavami
- Department of Physiology, University of Manitoba, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|