1
|
Gajski G, Ravlić S, Godschalk R, Collins A, Dusinska M, Brunborg G. Application of the comet assay for the evaluation of DNA damage in mature sperm. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2021; 788:108398. [PMID: 34893163 DOI: 10.1016/j.mrrev.2021.108398] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/26/2021] [Accepted: 11/05/2021] [Indexed: 06/14/2023]
Abstract
DNA integrity is considered an important parameter of semen quality and is of significant value as a predictor of male fertility. Currently, there are several methods that can assess sperm DNA integrity. One such assay is the comet assay, or single-cell gel electrophoresis, which is a simple, sensitive, reliable, quick and low-cost technique that is used for measuring DNA strand breaks and repair at the level of individual cells. Although the comet assay is usually performed with somatic cells from different organs, the assay has the ability to detect genotoxicity in germ cells at different stages of spermatogenesis. Since the ability of sperm to remove DNA damage differs between the stages, interpretation of the results is dependent on the cells used. In this paper we give an overview on the use and applications of the comet assay on mature sperm and its ability to detect sperm DNA damage in both animals and humans. Overall, it can be concluded that the presence in sperm of significantly damaged DNA, assessed by the comet assay, is related to male infertility and seems to reduce live births. Although there is some evidence that sperm DNA damage also has a long-term impact on offspring's health, this aspect of DNA damage in sperm is understudied and deserves further attention. In summary, the comet assay can be applied as a useful tool to study effects of genotoxic exposures on sperm DNA integrity in animals and humans.
Collapse
Affiliation(s)
- Goran Gajski
- Institute for Medical Research and Occupational Health, Mutagenesis Unit, Zagreb, Croatia.
| | - Sanda Ravlić
- University of Zagreb, Centre for Research and Knowledge Transfer in Biotechnology, Zagreb, Croatia
| | - Roger Godschalk
- Maastricht University, School for Nutrition and Translational Research in Metabolism (NUTRIM), Department of Pharmacology & Toxicology, Maastricht, the Netherlands
| | - Andrew Collins
- University of Oslo, Institute of Basic Medical Sciences, Department of Nutrition, Oslo, Norway
| | - Maria Dusinska
- Norwegian Institute for Air Research (NILU), Department of Environmental Chemistry, Health Effects Laboratory, Kjeller, Norway
| | - Gunnar Brunborg
- Norwegian Institute of Public Health (NIPH), Section of Molecular Toxicology, Department of Environmental Health, Oslo, Norway
| |
Collapse
|
2
|
Kostka T, Empl MT, Seiwert N, Geisen SM, Hoffmann P, Adam J, Seeger B, Shay JW, Christmann M, Sturla SJ, Fahrer J, Steinberg P. Repair of O6-carboxymethylguanine adducts by O6-methylguanine-DNA methyltransferase in human colon epithelial cells. Carcinogenesis 2021; 42:1110-1118. [PMID: 34115837 DOI: 10.1093/carcin/bgab049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/23/2021] [Accepted: 06/09/2021] [Indexed: 11/13/2022] Open
Abstract
The protein O6-methylguanine-DNA methyltransferase (MGMT) is able to repair the mutagenic O6-methylguanine adduct back to guanine. In this context, it may protect against colorectal cancer (CRC) formation associated with N-nitroso compounds. Such compounds may be endogenously formed by nitrosylation of amino acids, which can give rise to mutagenic O6-methylguanine (O6-MeG) and O6-carboxymethylguanine (O6-CMG) adducts. It is well-established that O6-MeG is repaired by MGMT. However, up to now, whether O6-CMG is repaired by this enzyme remains unresolved. Therefore, the aim of the present study was to analyze the fate of both types of O6-guanine adducts in the presence and absence of MGMT activity. To this end, MGMT activity was efficiently blocked by its chemical inhibitor O6-benzylguanine in human colon epithelial cells (HCEC). Exposure of cells to azaserine (AZA) caused significantly higher levels of both O6-MeG and O6-CMG adducts in MGMT-inhibited cells, with O6-CMG as the more abundant DNA lesion. Interestingly, MGMT inhibition did not result in higher levels of AZA-induced DNA strand breaks in spite of elevated DNA adduct levels. In contrast, MGMT inhibition significantly increased DNA strand break formation after exposure to temozolomide (TMZ), a drug that exclusively generates O6-MeG adducts. In line with this finding, the viability of the cells was moderately reduced by TMZ upon MGMT inhibition, whereas no clear effect was observed in cells treated with AZA. In conclusion, our study clearly shows that O6-CMG is repaired by MGMT in HCEC, thereby suggesting that MGMT might play an important role as a tumor suppressor in diet-mediated CRC.
Collapse
Affiliation(s)
- Tina Kostka
- Institute for Food Toxicology, University of Veterinary Medicine Hannover, 30173 Hannover, Germany.,Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz University Hannover, 30167 Hannover, Germany
| | - Michael T Empl
- Institute for Food Toxicology, University of Veterinary Medicine Hannover, 30173 Hannover, Germany
| | - Nina Seiwert
- Division of Food Chemistry and Toxicology, Department of Chemistry, Technical University of Kaiserslautern, Kaiserslautern, Germany
| | - Susanne M Geisen
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Pascal Hoffmann
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, 30173 Hannover, Germany
| | - Janine Adam
- Institute for Food Toxicology, University of Veterinary Medicine Hannover, 30173 Hannover, Germany
| | - Bettina Seeger
- Institute for Food Toxicology, University of Veterinary Medicine Hannover, 30173 Hannover, Germany.,Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Jerry W Shay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Markus Christmann
- Department of Toxicology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Shana J Sturla
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Jörg Fahrer
- Division of Food Chemistry and Toxicology, Department of Chemistry, Technical University of Kaiserslautern, Kaiserslautern, Germany
| | - Pablo Steinberg
- Institute for Food Toxicology, University of Veterinary Medicine Hannover, 30173 Hannover, Germany.,Max Rubner-Institut, Federal Research Institute of Nutrition and Food, 76131 Karlsruhe, Germany
| |
Collapse
|
3
|
B-Comet Assay (Comet Assay on Buccal Cells) for the Evaluation of Primary DNA Damage in Human Biomonitoring Studies. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17249234. [PMID: 33321868 PMCID: PMC7763633 DOI: 10.3390/ijerph17249234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/29/2020] [Accepted: 12/07/2020] [Indexed: 12/16/2022]
Abstract
Many subjects perceive venous blood collection as too invasive, and thus moving to better-accepted procedures for leukocytes collection might be crucial in human biomonitoring studies (e.g., biomonitoring of occupational or residential exposure to genotoxins) management. In this context, primary DNA damage was assessed in buccal lymphocytes (BLs), fresh whole venous, and capillary blood leukocytes, and compared with that in peripheral blood lymphocytes (PBLs)—the most frequently used cells—in 15 young subjects. Mouthwashes were collected after the volunteers rinsed their mouths with normal saline, and BLs were isolated by density gradient centrifugation. Blood samples were collected by venipuncture or by lancet. Anthropometric and lifestyle information was obtained by the administration of a structured questionnaire. As shown in the Bland-Altman plots, the level of agreement between BLs and PBLs lied within the accepted range, we thus enrolled a wider population (n = 54) to assess baseline DNA damage in BLs. In these cells, mean values of tail length (µm), tail intensity (%), and tail moment were 25.7 ± 0.9, 6.7 ± 0.4 and 1.0 ± 0.1, respectively. No significant association was observed between sex and smoking habit with any of the DNA damage parameters. Conversely, underweight subjects displayed significantly higher genomic instability compared with normal weight group (p < 0.05). In conclusion, we successfully managed to set up and update a non-invasive and well-accepted procedure for the isolation of BLs from saliva that could be useful in upcoming biomonitoring studies.
Collapse
|
4
|
Gajski G, Gerić M, Živković Semren T, Tariba Lovaković B, Oreščanin V, Pizent A. Application of the comet assay for the evaluation of DNA damage from frozen human whole blood samples: Implications for human biomonitoring. Toxicol Lett 2019; 319:58-65. [PMID: 31730884 DOI: 10.1016/j.toxlet.2019.11.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/11/2019] [Accepted: 11/11/2019] [Indexed: 12/18/2022]
Abstract
This study proposes the application of the comet assay for the evaluation of DNA damage from frozen human whole blood samples that could be readily used in human biomonitoring and epidemiological studies. It was done on simply frozen whole blood samples collected from male volunteers (N = 60) aliquoted in small volumes and stored at -80 °C without the addition of cryopreservatives for a period of 5 years. To test the applicability of the alkaline comet assay for the evaluation of DNA damage in frozen whole blood, samples were quickly thawed at 37 °C and immediately embedded in an agarose matrix followed by an alkaline comet assay procedure. We concluded that the whole blood freezing and prolonged storage do not severely affect comet assay values, although background values were higher compared to our historical control data from the fresh whole blood. Even the influence of the variables tested, such as age, body mass index, smoking habit and alcohol consumption were in agreement with our previous data using fresh blood. The obtained results suggest that the comet assay could be applied to frozen blood samples, if properly stored, even for decades, which would certainly facilitate large-scale human biomonitoring and long-term epidemiological studies.
Collapse
Affiliation(s)
- Goran Gajski
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia.
| | - Marko Gerić
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Tanja Živković Semren
- Analytical Toxicology and Mineral Metabolism Unit, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Blanka Tariba Lovaković
- Analytical Toxicology and Mineral Metabolism Unit, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | | | - Alica Pizent
- Analytical Toxicology and Mineral Metabolism Unit, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| |
Collapse
|
5
|
Gajski G, Žegura B, Ladeira C, Pourrut B, Del Bo’ C, Novak M, Sramkova M, Milić M, Gutzkow KB, Costa S, Dusinska M, Brunborg G, Collins A. The comet assay in animal models: From bugs to whales – (Part 1 Invertebrates). MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2019; 779:82-113. [DOI: 10.1016/j.mrrev.2019.02.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 02/07/2019] [Accepted: 02/09/2019] [Indexed: 01/09/2023]
|
6
|
Ferreira J, Ramos AA, Almeida T, Azqueta A, Rocha E. Drug resistance in glioblastoma and cytotoxicity of seaweed compounds, alone and in combination with anticancer drugs: A mini review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 48:84-93. [PMID: 30195884 DOI: 10.1016/j.phymed.2018.04.062] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/19/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Glioblastomas (GBM) are one of the most aggressive tumor of the central nervous system with an average life expectancy of only 1-2 years after diagnosis, even with the use of advanced treatments with surgery, radiation, and chemotherapy. There are several anticancer drugs with alkylating properties that have been used in the therapy of malignant gliomas. Temozolomide (TMZ) is one of them, widely used even in combination with ionizing radiation. However, the main disadvantage of using these types of drugs in the treatment of GBM is the development of cancer drug resistance. Research of bioactive compounds with anticancer activity has been heavily explored. PURPOSE This review focuses on a carotenoid and a phlorotannin present in seaweed, namely fucoxanthin and phloroglucinol, and their anticancer activity against glioblastoma. The combination of natural compounds with conventional drugs is also discussed. CONCLUSION Several natural compounds existing in seaweeds, such as fucoxanthin and phoroglucinol, have shown cytotoxic activity in models in vitro and in vivo, acting through different molecular mechanisms, such as antioxidant, antiproliferative, DNA damage/DNA repair, proapoptotic, antiangiogenic and antimetastic. Within the scope of interactions with conventional drugs, there are evidences that some seaweed compounds could be used to potentiate the action of anticancer drugs. However, their effects and mechanisms of action, alone or in combination with anticancer drugs, namely TMZ, in glioblastoma cell, still few explored and require more attention due to the unquestionable high potential of these marine compounds.
Collapse
Affiliation(s)
- Joana Ferreira
- Team of Histomorphology, Physiopathology and Applied Toxicology, CIIMAR - Interdisciplinary Center for Marine and Environmental Research, U.Porto - University of Porto, Avenida General Norton de Matos s/n, Matosinhos 4450-208, Portugal; Laboratory of Histology and Embryology, Department of Microscopy, ICBAS - Institute of Biomedical Sciences Abel Salazar, U.Porto - University of Porto, Rua de Jorge Viterbo Ferreira, n° 228, Porto 4050-313, Portugal; FCUP - Faculty of Sciences, U.Porto - University of Porto (U.Porto), Rua do Campo Alegre, Porto 4169-007, Portugal
| | - Alice Abreu Ramos
- Team of Histomorphology, Physiopathology and Applied Toxicology, CIIMAR - Interdisciplinary Center for Marine and Environmental Research, U.Porto - University of Porto, Avenida General Norton de Matos s/n, Matosinhos 4450-208, Portugal; Laboratory of Histology and Embryology, Department of Microscopy, ICBAS - Institute of Biomedical Sciences Abel Salazar, U.Porto - University of Porto, Rua de Jorge Viterbo Ferreira, n° 228, Porto 4050-313, Portugal.
| | - Tânia Almeida
- Team of Histomorphology, Physiopathology and Applied Toxicology, CIIMAR - Interdisciplinary Center for Marine and Environmental Research, U.Porto - University of Porto, Avenida General Norton de Matos s/n, Matosinhos 4450-208, Portugal; Laboratory of Histology and Embryology, Department of Microscopy, ICBAS - Institute of Biomedical Sciences Abel Salazar, U.Porto - University of Porto, Rua de Jorge Viterbo Ferreira, n° 228, Porto 4050-313, Portugal; FCUP - Faculty of Sciences, U.Porto - University of Porto (U.Porto), Rua do Campo Alegre, Porto 4169-007, Portugal
| | - Amaya Azqueta
- Department of Pharmacology and Toxicology, University of Navarra, C/ Irunlarrea, CP 31008 Pamplona, Navarra, Spain
| | - Eduardo Rocha
- Team of Histomorphology, Physiopathology and Applied Toxicology, CIIMAR - Interdisciplinary Center for Marine and Environmental Research, U.Porto - University of Porto, Avenida General Norton de Matos s/n, Matosinhos 4450-208, Portugal; Laboratory of Histology and Embryology, Department of Microscopy, ICBAS - Institute of Biomedical Sciences Abel Salazar, U.Porto - University of Porto, Rua de Jorge Viterbo Ferreira, n° 228, Porto 4050-313, Portugal
| |
Collapse
|
7
|
Bussche JV, Hemeryck LY, Van Hecke T, Kuhnle GGC, Pasmans F, Moore SA, Van de Wiele T, De Smet S, Vanhaecke L. O6-carboxymethylguanine DNA adduct formation and lipid peroxidation upon in vitro gastrointestinal digestion of haem-rich meat. Mol Nutr Food Res 2014; 58:1883-96. [DOI: 10.1002/mnfr.201400078] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/15/2014] [Accepted: 05/14/2014] [Indexed: 02/06/2023]
Affiliation(s)
- Julie Vanden Bussche
- Laboratory of Chemical Analysis; Department of Veterinary Public Health and Food Safety; Faculty of Veterinary Medicine; Ghent University; Merelbeke Belgium
| | - Lieselot Y. Hemeryck
- Laboratory of Chemical Analysis; Department of Veterinary Public Health and Food Safety; Faculty of Veterinary Medicine; Ghent University; Merelbeke Belgium
| | - Thomas Van Hecke
- Laboratory of Animal Nutrition and Animal Product Quality; Department of Animal Production; Faculty of Bioscience Engineering, Ghent University; Melle Belgium
| | - Gunter G. C. Kuhnle
- Department of Food and Nutritional Sciences; University of Reading; Reading UK
- Department of Public Health and Primary Care; MRC Centre for Nutritional Epidemiology in Cancer Prevention & Survival; University of Cambridge; Cambridge UK
| | - Frank Pasmans
- Faculty of Veterinary Medicine; Department of Pathology, Bacteriology and Poultry Diseases; Ghent University; Merelbeke Belgium
| | - Sharon A. Moore
- School of Pharmacy and Biomolecular Sciences; Liverpool John Moores University; Liverpool UK
| | - Tom Van de Wiele
- Laboratory of Microbial Ecology and Technology; Department of Biochemical and Microbial Technology; Faculty of Bioscience Engineering; Ghent University; Ghent Belgium
| | - Stefaan De Smet
- Laboratory of Animal Nutrition and Animal Product Quality; Department of Animal Production; Faculty of Bioscience Engineering, Ghent University; Melle Belgium
| | - Lynn Vanhaecke
- Laboratory of Chemical Analysis; Department of Veterinary Public Health and Food Safety; Faculty of Veterinary Medicine; Ghent University; Merelbeke Belgium
| |
Collapse
|