1
|
Han R, Huang H, Zhu J, Jin X, Wang Y, Xu Y, Xia Z. Adipokines and their potential impacts on susceptibility to myocardial ischemia/reperfusion injury in diabetes. Lipids Health Dis 2024; 23:372. [PMID: 39538244 PMCID: PMC11558907 DOI: 10.1186/s12944-024-02357-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Coronary artery disease has a high mortality rate and is a striking public health concern, affecting a substantial portion of the global population. On the early onset of myocardial ischemia, thrombolytic therapy and coronary revascularization could promptly restore the bloodstream and nutrient supply to the ischemic tissue, efficiently preserving less severely injured myocardium. However, the abrupt re-establishment of blood flow triggers the significant discharge of previously accumulated oxidative substances and inflammatory cytokines, leading to further harm referred to as ischemia/reperfusion (I/R) injury. Diabetes significantly raises the vulnerability of the heart to I/R injury due to disrupted glucose and lipid processing, impaired insulin sensitivity and metabolic signaling, and increased inflammatory responses. Numerous studies have indicated that adipokines are crucial in the etiology and pathogenesis of obesity, diabetes, hyperlipidemia, hypertension, and coronary artery disease. Adipokines such as adiponectin, adipsin, visfatin, chemerin, omentin, and apelin, which possess protective properties against inflammatory activity and insulin resistance, have been shown to confer myocardial protection in conditions such as atherosclerosis, myocardial hypertrophy, myocardial I/R injury, and diabetic complications. On the other hand, adipokines such as leptin and resistin, known for their pro-inflammatory characteristics, have been linked to elevated cardiac lipid deposition, insulin resistance, and fibrosis. Meteorin-like (metrnl) exhibits opposite effects in various pathological conditions. However, the data on adipokines in myocardial I/R, especially in diabetes, is still incomplete and controversial. This review focuses on recent research regarding the categorization and function of adipokines in the heart muscle, and the identification of different signaling pathways involved in myocardial I/R injury under diabetic conditions, aiming to facilitate the exploration of therapeutic strategies against myocardial I/R injury in diabetes.
Collapse
Affiliation(s)
- Ronghui Han
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, PR, China
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China
| | - Hemeng Huang
- Department of Emergency, Affiliated Hospital of Guangdong Medical University, Guangdong, China
| | - Jianyu Zhu
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China
| | - Xiaogao Jin
- Department of Anesthesiology, The Second Affiliated Hospital of Guangdong Medical University, Guangdong, China
| | - Yongyan Wang
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, PR, China
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China
| | - Youhua Xu
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, PR, China.
- Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute, Hengqin, Zhuhai, People's Republic of China.
- Faculty of Pharmacy, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, People's Republic of China.
| | - Zhengyuan Xia
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, PR, China.
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China.
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
2
|
De Luca G, Algowhary M, Uguz B, Oliveira DC, Ganyukov V, Zimbakov Z, Cercek M, Jensen LO, Loh PH, Calmac L, Roura I Ferrer G, Quadros A, Milewski M, D'Uccio FS, von Birgelen C, Versaci F, Berg JT, Casella G, Lung AWS, Kala P, Díez Gil JL, Carrillo X, Dirksen M, Becerra-Munoz VM, Lee MKY, Juzar DA, Moura Joaquim RD, Paladino R, Milicic D, Davlouros P, Bakraceski N, Zilio F, Donazzan L, Kraaijeveld A, Galasso G, Arpad L, Lucia M, Vincenzo G, Menichelli M, Scoccia A, Yamac AH, Mert KU, Rios XF, Kovarnik T, Kidawa M, Moreu J, Flavien V, Fabris E, Martínez-Luengas IL, Ojeda FB, Rodríguez-Sanchez R, Caiazzo G, Cirrincione G, Kao HL, Forés JS, Vignali L, Pereira H, Manzo S, Ordoñez S, Özkan AA, Scheller B, Lehtola H, Teles R, Mantis C, Antti Y, Silveira JAB, Zoni R, Bessonov I, Savonitto S, Kochiadakis G, Alexopulos D, Uribe CE, Kanakakis J, Faurie B, Gabrielli G, Gutierrez Barrios A, Bachini JP, Rocha A, Tam FCC, Rodriguez A, Lukito AA, Bellemain-Appaix A, Pessah G, Cortese G, Parodi G, Burgadha MA, Kedhi E, Lamelas P, Suryapranata H, Nardin M, Verdoia M. Impact of diabetes on epicardial reperfusion and mortality in a contemporary STEMI population undergoing mechanical reperfusion: Insights from the ISACS STEMI COVID 19 registry. Nutr Metab Cardiovasc Dis 2024:103763. [PMID: 39638679 DOI: 10.1016/j.numecd.2024.09.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND AND AIM Diabetes has been shown in last decades to be associated with a significantly higher mortality among patients with ST-segment elevation myocardial infarction (STEMI) treated with primary PCI (PPCI). Therefore, the aim of current study was to evaluate the impact of diabetes on times delays, reperfusion and mortality in a contemporary STEMI population undergoing PPCI, including treatment during the COVID pandemic. METHODS AND RESULTS The ISACS-STEMI COVID-19 is a large-scale retrospective multicenter registry involving PPCI centers from Europe, Latin America, South-East Asia and North-Africa, including patients treated from 1st of March until June 30, 2019 and 2020. Primary study endpoint of this analysis was in-hospital mortality. Secondary endpoints were postprocedural TIMI 0-2 flow and 30-day mortality. Our population is represented by 16083 STEMI patients. A total of 3812 (23,7 %) patients suffered from diabetes. They were older, more often males as compared to non-diabetes. Diabetic patients were less often active smokers and had less often a positive family history of CAD, but they were more often affected by hypertension and hypercholesterolemia, with higher prevalence of previous STEMI and previous CABG. Diabetic patients had longer ischemia time, had more often anterior MI, cardiogenic shock, rescue PCI and multivessel disease. They had less often out-of-hospital cardiac arrest and in-stent thrombosis, received more often a mechanical support, received less often a coronary stent and DES. Diabetes was associated with a significantly impaired postprocedural TIMI flow (TIMI 0-2: 9.8 % vs 7.2 %, adjusted OR [95 % CI] = 1.17 [1.02-1.38], p = 0.024) and higher mortality (in-hospital: 9.1 % vs 4.8 %, Adjusted OR [95 % CI] = 1.70 [1.43-2.02], p < 0.001; 30-day mortality: 10.8 % vs 6 %, Adjusted HR [95 % CI] = 1.46 [1.26-1.68], p < 0.001) as compared to non-diabetes, particularly during the pandemic. CONCLUSIONS Our study showed that in a contemporary STEMI population undergoing PPCI, diabetes is significantly associated with impaired epicardial reperfusion that translates into higher in-hospital and 30-day mortality, particularly during the pandemic.
Collapse
Affiliation(s)
- Giuseppe De Luca
- Division of Cardiology, AOU "Policlinico G. Martino", Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy; Division of Cardiology, IRCSS Galeazzi-Sant'Ambrogio Hospital, Milan, Italy.
| | - Magdy Algowhary
- Division of Cardiology, Assiut University Heart Hospital, Assiut University, Asyut, Egypt
| | - Berat Uguz
- Division of Cardiology, Bursa City Hospital, Bursa, Turkey
| | - Dinaldo C Oliveira
- Pronto de Socorro Cardiologico Prof. Luis Tavares, Centro PROCAPE, Federal University of Pernambuco, Recife, Brazil
| | - Vladimir Ganyukov
- Department of Heart and Vascular Surgery, State Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| | - Zan Zimbakov
- University Clinic for Cardiology, Medical Faculty, Ss' Cyril and Methodius University, Skopje, Macedonia
| | - Miha Cercek
- Centre for Intensive Internal Medicine, University Medical Centre, Ljubljana, Slovenia
| | | | - Poay Huan Loh
- Department of Cardiology, National University Hospital, Singapore
| | | | - Gerard Roura I Ferrer
- Interventional Cardiology Unit, Heart Disease Institute, Hospital Universitari de Bellvitge, Spain
| | | | - Marek Milewski
- Division of Cardiology, Medical University of Silezia, Katowice, Poland
| | | | - Clemens von Birgelen
- Department of Cardiology, Medisch Spectrum Twente, Thoraxcentrum Twente, Enschede, the Netherlands
| | | | - Jurrien Ten Berg
- Division of Cardiology, St Antonius Hospital, Nieuwegein, the Netherlands
| | - Gianni Casella
- Division of Cardiology, Ospedale Maggiore Bologna, Italy
| | | | - Petr Kala
- University Hospital Brno, Medical Faculty of Masaryk University Brno, Czech Republic
| | | | | | - Maurits Dirksen
- Division of Cardiology, Northwest Clinics Alkmaar, the Netherlands
| | | | - Michael Kang-Yin Lee
- Department of Cardiology, Queen Elizabeth Hospital, University of Hong Kong, Hong Kong
| | - Dafsah Arifa Juzar
- Department of cardiology and Vascular Medicine, University of Indonesia National Cardiovascular Center "Harapan Kita", Jakarta, Indonesia
| | | | | | - Davor Milicic
- Department of Cardiology, University Hospital Centre, University of Zagreb, Zagreb, Croatia
| | - Periklis Davlouros
- Invasive Cardiology and Congenital Heart Disease, Patras University Hospital, Patras, Greece
| | | | - Filippo Zilio
- Division of Cardiology, Ospedale Santa Chiara di Trento, Italy
| | - Luca Donazzan
- Division of Cardiology, Ospedale "S. Maurizio" Bolzano Italy
| | | | - Gennaro Galasso
- Division of Cardiology, Ospedale San Giovanni di Dio e Ruggi d'Aragona, Salerno, Italy
| | - Lux Arpad
- Maastricht University Medical Center, the Netherlands
| | - Marinucci Lucia
- Division of Cardiology, Azienda Ospedaliera "Ospedali Riuniti Marche Nord", Pesaro, Italy
| | | | | | | | - Aylin Hatice Yamac
- Department of Cardiology, Hospital Bezmialem Vakıf University İstanbul, Turkey
| | - Kadir Ugur Mert
- Division of Cardiology, Eskisehir Osmangazi University, Faculty of Medicine, Eskisehir, Turkey
| | | | | | - Michal Kidawa
- Central Hospital of Medical University of Lodz, Poland
| | - Josè Moreu
- Division of Cardiology, Complejo Hospitalario de Toledo, Toledo, Spain
| | - Vincent Flavien
- Division of Cardiology, Center Hospitalier Universitaire de Lille, Lille, France
| | - Enrico Fabris
- Azienda Ospedaliero - Universitaria Ospedali Riuniti Trieste, Italy
| | | | - Francisco Bosa Ojeda
- Division of cardiology, Hospital Universitario de Canarias, Santa Cruz de Tenerife, Spain
| | | | | | | | - Hsien-Li Kao
- Cardiology Division, Department of Internal Medicine, National Taiwan University Hospital, Tapei, Taiwan
| | - Juan Sanchis Forés
- Division of Cardiology, Hospital Clinico Universitario de Valencia, Spain
| | - Luigi Vignali
- Interventional Cardiology Unit, Azienda Ospedaliera Sanitaria, Parma, Italy
| | - Helder Pereira
- Hospital Garcia de Orta, Cardiology Department, Pragal, Almada, Portugal
| | - Stephane Manzo
- Division of Cardiology, CHU Lariboisière, AP-HP, Paris VII University, INSERM UMRS 942, France
| | - Santiago Ordoñez
- Instituto Cardiovascular de Buenos Aires, Buenos Aires, Argentina
| | - Alev Arat Özkan
- Cardiology Institute, Instanbul University, Instanbul, Turkey
| | - Bruno Scheller
- Division of Cardiology, Clinical and Experimental Interventional Cardiology, University of Saarland, Germany
| | - Heidi Lehtola
- Division of Cardiology, Oulu University Hospital, Finland
| | - Rui Teles
- Division of Cardiology, Hospital de Santa Cruz, CHLO - Nova Medical School, CEDOC, Lisbon, Portugal
| | - Christos Mantis
- Division of Cardiology, Kontantopoulion Hospital, Athens, Greece
| | | | | | - Rodrigo Zoni
- Department of Teaching and Research, Instituto de Cardiología de Corrientes "Juana F. Cabral", Argentina
| | | | | | | | | | - Carlos E Uribe
- Carlos E Uribe, Division of Cardiology, Universidad UPB, Universidad CES, Medellin, Colombia
| | - John Kanakakis
- Division of Cardiology, Alexandra Hospital, Athens, Greece
| | - Benjamin Faurie
- Division of Cardiology, Groupe Hospitalier Mutualiste de Grenoble, France
| | | | | | | | - Alex Rocha
- Department of Cardiology and Cardiovascular Interventions, Instituto Nacional de Cirugía Cardíaca, Montevideo, Uruguay
| | | | | | - Antonia Anna Lukito
- Cardiovascular Department Pelita Harapan University/Heart Center Siloam Lippo Village Hospital, Tangerang, Banten, Indonesia
| | | | - Gustavo Pessah
- Division of Cardiology, Hospiatl Cordoba, Cordoba, Argentina
| | | | - Guido Parodi
- Azienda Ospedaliero-Universitaria Sassari, Italy
| | | | - Elvin Kedhi
- Division of Cardiology, Hopital Erasmus, Universitè Libre de Bruxelles, Belgium
| | - Pablo Lamelas
- Instituto Cardiovascular de Buenos Aires, Buenos Aires, Argentina
| | - Harry Suryapranata
- Division of Cardiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Matteo Nardin
- Department of Internal Medicine, Ospedale Riuniti, Brescia, Italy
| | - Monica Verdoia
- Division of Cardiology, Ospedale degli Infermi, ASL Biella, Italy
| |
Collapse
|
3
|
Adel O, El-Sherbiny HR, M Shahat A, Ismail ST. N-Acetylcysteine Supplementation Improves Testicular Haemodynamics, Testosterone Levels, Seminal Antioxidant Capacity and Semen Quality in Heat-Stressed Goat Bucks. Reprod Domest Anim 2024; 59:e14709. [PMID: 39189388 DOI: 10.1111/rda.14709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/03/2024] [Accepted: 08/08/2024] [Indexed: 08/28/2024]
Abstract
Heat stress (HS) disrupts testicular homeostasis because of oxidative stress. N-acetylcysteine (NAC) is a thiol compound with antioxidants, anti-inflammatory and anti-apoptotic properties. As a sequel, this research aimed to assess the ameliorative effects of NAC supplementation on the reproductive performance of goat bucks kept under environmental HS. Primarily, Doppler examination as well as semen collection and evaluation were conducted on 12 mature bucks for 2 weeks (W) as pre-heat stress control (W1 and W2) during winter (February 2023). The temperature-humidity index (THI) was 63.4-64.3 (winter season). Then during summer HS conditions (from the beginning of July till the end of August 2023) bucks were assessed before NAC supplementation (W0), afterwards they were arbitrarily assigned into two groups. The control group (CON; n = 6) received the basal diet while the NAC group (n = 6) received the basal diet in addition to oral NAC daily for 7 weeks (W1-W7). The THI was 78.1-81.6 (summer season). Testicular blood flow parameters, serum concentration of nitric oxide (NO) and testosterone were measured. Additionally, total antioxidant capacity (TAC) and malondialdehyde (MDA) content in seminal plasma and semen quality parameters were evaluated. There were marked reductions (p < 0.05) in the resistive index (RI; W1, W4 and W5), pulsatility index (PI; W2 and W4-W7), and systolic/diastolic ratio (S/D; W4-W7) in the NAC group compared to the CON group. Furthermore, testosterone and NO levels were higher (p < 0.01 and p < 0.05, respectively) in the NAC group (W2, W3, W5 and W3-W5, respectively). Seminal plasma TAC increased (p < 0.05) and MDA decreased (p < 0.05) in the NAC group (W2, W4 and W5) compared to the CON group. Moreover, there were marked improvements (p < 0.05) in semen quality parameters (mass motility, total motility, viability and normal morphology) in the NAC group. In conclusion, oral NAC supplementation could be used to enhance the reproductive performance of goat bucks during HS conditions which is supported by remarkable enhancement in testicular haemodynamics, NO, testosterone levels and semen quality parameters.
Collapse
Affiliation(s)
- Ola Adel
- Theriogenology Department, Faculty of Veterinary Medicine, Cairo University, Giza Square, Egypt
| | - Hossam R El-Sherbiny
- Theriogenology Department, Faculty of Veterinary Medicine, Cairo University, Giza Square, Egypt
| | - Abdallah M Shahat
- Theriogenology Department, Faculty of Veterinary Medicine, Cairo University, Giza Square, Egypt
| | - Sayed Taha Ismail
- Theriogenology Department, Faculty of Veterinary Medicine, Cairo University, Giza Square, Egypt
| |
Collapse
|
4
|
Miao H, Tang X, Cui Y, Shi J, Xiong X, Wang C, Zhang Y. Obeticholic Acid Inhibit Mitochondria Dysfunction Via Regulating ERK1/2-DRP Pathway to Exert Protective Effect on Lipopolysaccharide-Induced Myocardial Injury. Adv Biol (Weinh) 2024; 8:e2300576. [PMID: 38728002 DOI: 10.1002/adbi.202300576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/19/2024] [Indexed: 07/13/2024]
Abstract
Farnesoid X receptor (FXR) plays critical regulatory roles in cardiovascular physiology/pathology. However, the role of FXR agonist obeticholic acid (OCA) in sepsis-associated myocardial injury and underlying mechanisms remain unclear. C57BL/6J mice are treated with OCA before lipopolysaccharide (LPS) administration. The histopathology of the heart and assessment of FXR expression and mitochondria function are performed. To explore the underlying mechanisms, H9c2 cells, and primary cardiomyocytes are pre-treated with OCA before LPS treatment, and extracellular signal-regulated protein kinase (ERK) inhibitor PD98059 is used. LPS-induced myocardial injury in mice is significantly improved by OCA pretreatment. Mechanistically, OCA pretreatment decreased reactive oxygen species (ROS) levels and blocked the loss of mitochondrial membrane potential (ΔΨm) in cardiomyocytes. The expression of glutathione peroxidase 1 (GPX1), superoxide dismutase 1 (SOD1), superoxide dismutase 2 (SOD2), and nuclear factor erythroid 2-related factor 2 (NRF-2) increased in the case of OCA pretreatment. In addition, OCA improved mitochondria respiratory chain with increasing Complex I expression and decreasing cytochrome C (Cyt-C) diffusion. Moreover, OCA pretreatment inhibited LPS-induced mitochondria dysfunction via suppressing ERK1/2-DRP signaling pathway. FXR agonist OCA inhibits LPS-induced mitochondria dysfunction via suppressing ERK1/2-DRP signaling pathway to protect mice against LPS-induced myocardial injury.
Collapse
Affiliation(s)
- Huijie Miao
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200062, China
- Institute of Pediatric Critical Care, Shanghai Jiao Tong University School of Medicine, Shanghai, 200062, China
| | - Xiaomeng Tang
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200062, China
- Institute of Pediatric Critical Care, Shanghai Jiao Tong University School of Medicine, Shanghai, 200062, China
| | - Yun Cui
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200062, China
- Institute of Pediatric Critical Care, Shanghai Jiao Tong University School of Medicine, Shanghai, 200062, China
| | - Jingyi Shi
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200062, China
- Institute of Pediatric Critical Care, Shanghai Jiao Tong University School of Medicine, Shanghai, 200062, China
| | - Xi Xiong
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200062, China
- Institute of Pediatric Critical Care, Shanghai Jiao Tong University School of Medicine, Shanghai, 200062, China
| | - Chunxia Wang
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200062, China
- Institute of Pediatric Critical Care, Shanghai Jiao Tong University School of Medicine, Shanghai, 200062, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200062, China
- Clinical Research Unit, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200062, China
| | - Yucai Zhang
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200062, China
- Institute of Pediatric Critical Care, Shanghai Jiao Tong University School of Medicine, Shanghai, 200062, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200062, China
- Clinical Research Unit, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200062, China
| |
Collapse
|
5
|
Zhou D, Yang Y, Chen J, Zhou J, He J, Liu D, Zhang A, Yuan B, Jiang Y, Xia W, Han R, Xia Z. N-acetylcysteine Protects Against Myocardial Ischemia-Reperfusion Injury Through Anti-ferroptosis in Type 1 Diabetic Mice. Cardiovasc Toxicol 2024; 24:481-498. [PMID: 38647950 PMCID: PMC11076402 DOI: 10.1007/s12012-024-09852-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/24/2024] [Indexed: 04/25/2024]
Abstract
The hearts of subjects with diabetes are vulnerable to ischemia-reperfusion injury (IRI). In contrast, experimentally rodent hearts have been shown to be more resistant to IRI at the very early stages of diabetes induction than the heart of the non-diabetic control mice, and the mechanism is largely unclear. Ferroptosis has recently been shown to play an important role in myocardial IRI including that in diabetes, while the specific mechanisms are still unclear. Non-diabetic control (NC) and streptozotocin-induced diabetic (DM) mice were treated with the antioxidant N-acetylcysteine (NAC) in drinking water for 4 week starting at 1 week after diabetes induction. Mice were subjected to myocardial IRI induced by occluding the coronary artery for 30 min followed by 2 h of reperfusion, subsequently at 1, 2, and 5 week of diabetes induction. The post-ischemic myocardial infarct size in the DM mice was smaller than that in NC mice at 1 week of diabetes but greater than that in the NC mice at 2 and 5 week of diabetes, which were associated with a significant increase of ferroptosis at 2 and 5 week but a significant reduction of ferroptosis at 1 week of diabetes. NAC significantly attenuated post-ischemic ferroptosis as well as oxidative stress and reduced infarct size at 2 and 5 week of diabetes. Application of erastin, a ferroptosis inducer, reversed the cardioprotective effects of NAC. It is concluded that increased oxidative stress and ferroptosis are the major factors attributable to the increased vulnerability to myocardial IRI in diabetes and that attenuation of ferroptosis represents a major mechanism whereby NAC confers cardioprotection against myocardial IRI in diabetes.
Collapse
Affiliation(s)
- Dongcheng Zhou
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yuhui Yang
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jiajia Chen
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jiaqi Zhou
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jianfeng He
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Danyong Liu
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Anyuan Zhang
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Bixian Yuan
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yuxin Jiang
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Weiyi Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Ronghui Han
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhengyuan Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine, The University of Hong Kong, Pok Fu Lam Road, Hong Kong.
| |
Collapse
|
6
|
Li Y, Wang HB, Cao JL, Zhang WJ, Wang HL, Xu CH, Li KP, Liu Y, Wang JR, Ha HL, Fu SJ, Yang L. Proteomic analysis of mitochondria associated membranes in renal ischemic reperfusion injury. J Transl Med 2024; 22:261. [PMID: 38461333 PMCID: PMC10925013 DOI: 10.1186/s12967-024-05021-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/23/2024] [Indexed: 03/11/2024] Open
Abstract
BACKGROUND The mitochondria and endoplasmic reticulum (ER) communicate via contact sites known as mitochondria associated membranes (MAMs). Many important cellular functions such as bioenergetics, mitophagy, apoptosis, and calcium signaling are regulated by MAMs, which are thought to be closely related to ischemic reperfusion injury (IRI). However, there exists a gap in systematic proteomic research addressing the relationship between these cellular processes. METHODS A 4D label free mass spectrometry-based proteomic analysis of mitochondria associated membranes (MAMs) from the human renal proximal tubular epithelial cell line (HK-2 cells) was conducted under both normal (N) and hypoxia/reperfusion (HR) conditions. Subsequent differential proteins analysis aimed to characterize disease-relevant signaling molecules. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis was applied to total proteins and differentially expressed proteins, encompassing Biological Process (BP), Cell Component (CC), Molecular Function (MF), and KEGG pathways. Further, Protein-Protein Interaction Network (PPI) exploration was carried out, leading to the identification of hub genes from differentially expressed proteins. Notably, Mitofusion 2 (MFN2) and BCL2/Adenovirus E1B 19-kDa interacting protein 3(BNIP3) were identified and subsequently validated both in vitro and in vivo. Finally, the impact of MFN2 on MAMs during hypoxia/reoxygenation was explored through regulation of gene expression. Subsequently, a comparative proteomics analysis was conducted between OE-MFN2 and normal HK-2 cells, providing further insights into the underlying mechanisms. RESULTS A total of 4489 proteins were identified, with 3531 successfully quantified. GO/KEGG analysis revealed that MAM proteins were primarily associated with mitochondrial function and energy metabolism. Differential analysis between the two groups showed that 688 proteins in HR HK-2 cells exhibited significant changes in expression level with P-value < 0.05 and HR/N > 1.5 or HR/N < 0.66 set as the threshold criteria. Enrichment analysis of differentially expressed proteins unveiled biological processes such as mRNA splicing, apoptosis regulation, and cell division, while molecular functions were predominantly associated with energy metabolic activity. These proteins play key roles in the cellular responses during HR, offering insights into the IRI mechanisms and potential therapeutic targets. The validation of hub genes MFN2 and BNIP3 both in vitro and vivo was consistent with the proteomic findings. MFN2 demonstrated a protective role in maintaining the integrity of mitochondria associated membranes (MAMs) and mitigating mitochondrial damage following hypoxia/reoxygenation injury, this protective effect may be associated with the activation of the PI3K/AKT pathway. CONCLUSIONS The proteins located in mitochondria associated membranes (MAMs) are implicated in crucial roles during renal ischemic reperfusion injury (IRI), with MFN2 playing a pivotal regulatory role in this context.
Collapse
Affiliation(s)
- Yi Li
- Department of Urology, Institute of Urology, Gansu Urological Clinical Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
- Department of Anesthesiology, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Hua-Bin Wang
- Department of Urology, Institute of Urology, Gansu Urological Clinical Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Jin-Long Cao
- Department of Urology, Institute of Urology, Gansu Urological Clinical Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Wen-Jun Zhang
- Department of Urology, Institute of Urology, Gansu Urological Clinical Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
- Department of Nephrology, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Hai-Long Wang
- Department of Urology, Institute of Urology, Gansu Urological Clinical Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Chang-Hong Xu
- Department of Urology, Institute of Urology, Gansu Urological Clinical Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Kun-Peng Li
- Department of Urology, Institute of Urology, Gansu Urological Clinical Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Yi Liu
- Department of Urology, Institute of Urology, Gansu Urological Clinical Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Ji-Rong Wang
- Department of Urology, Institute of Urology, Gansu Urological Clinical Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Hua-Lan Ha
- Department of Nephrology, The First People's Hospital of Lanzhou City, Lanzhou, 730030, Gansu, China
| | - Sheng-Jun Fu
- Department of Urology, Institute of Urology, Gansu Urological Clinical Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Li Yang
- Department of Urology, Institute of Urology, Gansu Urological Clinical Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China.
| |
Collapse
|
7
|
Jiang H, Yang J, Li T, Wang X, Fan Z, Ye Q, Du Y. JAK/STAT3 signaling in cardiac fibrosis: a promising therapeutic target. Front Pharmacol 2024; 15:1336102. [PMID: 38495094 PMCID: PMC10940489 DOI: 10.3389/fphar.2024.1336102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/18/2024] [Indexed: 03/19/2024] Open
Abstract
Cardiac fibrosis is a serious health problem because it is a common pathological change in almost all forms of cardiovascular diseases. Cardiac fibrosis is characterized by the transdifferentiation of cardiac fibroblasts (CFs) into cardiac myofibroblasts and the excessive deposition of extracellular matrix (ECM) components produced by activated myofibroblasts, which leads to fibrotic scar formation and subsequent cardiac dysfunction. However, there are currently few effective therapeutic strategies protecting against fibrogenesis. This lack is largely because the molecular mechanisms of cardiac fibrosis remain unclear despite extensive research. The Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling cascade is an extensively present intracellular signal transduction pathway and can regulate a wide range of biological processes, including cell proliferation, migration, differentiation, apoptosis, and immune response. Various upstream mediators such as cytokines, growth factors and hormones can initiate signal transmission via this pathway and play corresponding regulatory roles. STAT3 is a crucial player of the JAK/STAT pathway and its activation is related to inflammation, malignant tumors and autoimmune illnesses. Recently, the JAK/STAT3 signaling has been in the spotlight for its role in the occurrence and development of cardiac fibrosis and its activation can promote the proliferation and activation of CFs and the production of ECM proteins, thus leading to cardiac fibrosis. In this manuscript, we discuss the structure, transactivation and regulation of the JAK/STAT3 signaling pathway and review recent progress on the role of this pathway in cardiac fibrosis. Moreover, we summarize the current challenges and opportunities of targeting the JAK/STAT3 signaling for the treatment of fibrosis. In summary, the information presented in this article is critical for comprehending the role of the JAK/STAT3 pathway in cardiac fibrosis, and will also contribute to future research aimed at the development of effective anti-fibrotic therapeutic strategies targeting the JAK/STAT3 signaling.
Collapse
Affiliation(s)
- Heng Jiang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Junjie Yang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Tao Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Xinyu Wang
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Zhongcai Fan
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Qiang Ye
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yanfei Du
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| |
Collapse
|
8
|
Jiang Y, Cai Y, Han R, Xu Y, Xia Z, Xia W. Salvianolic acids and its potential for cardio-protection against myocardial ischemic reperfusion injury in diabetes. Front Endocrinol (Lausanne) 2024; 14:1322474. [PMID: 38283744 PMCID: PMC10811029 DOI: 10.3389/fendo.2023.1322474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/21/2023] [Indexed: 01/30/2024] Open
Abstract
The incidence of diabetes and related mortality rate increase yearly in modern cities. Additionally, elevated glucose levels can result in an increase of reactive oxygen species (ROS), ferroptosis, and the disruption of protective pathways in the heart. These factors collectively heighten the vulnerability of diabetic individuals to myocardial ischemia. Reperfusion therapies have been effectively used in clinical practice. There are limitations to the current clinical methods used to treat myocardial ischemia-reperfusion injury. As a result, reducing post-treatment ischemia/reperfusion injury remains a challenge. Therefore, efforts are underway to provide more efficient therapy. Salvia miltiorrhiza Bunge (Danshen) has been used for centuries in ancient China to treat cardiovascular diseases (CVD) with rare side effects. Salvianolic acid is a water-soluble phenolic compound with potent antioxidant properties and has the greatest hydrophilic property in Danshen. It has recently been discovered that salvianolic acids A (SAA) and B (SAB) are capable of inhibiting apoptosis by targeting the JNK/Akt pathway and the NF-κB pathway, respectively. This review delves into the most recent discoveries regarding the therapeutic and cardioprotective benefits of salvianolic acid for individuals with diabetes. Salvianolic acid shows great potential in myocardial protection in diabetes mellitus. A thorough understanding of the protective mechanism of salvianolic acid could expand its potential uses in developing medicines for treating diabetes mellitus related myocardial ischemia-reperfusion.
Collapse
Affiliation(s)
- Yuxin Jiang
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China
| | - Yin Cai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Ronghui Han
- Faculty of Chinese Medicine State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao SAR, China
| | - Youhua Xu
- Faculty of Chinese Medicine State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao SAR, China
| | - Zhengyuan Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Doctoral Training Platform for Research and Translation, BoShiWan, GuanChong Village, Shuanghe Town, ZhongXiang City, Hubei, China
| | - Weiyi Xia
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
- Doctoral Training Platform for Research and Translation, BoShiWan, GuanChong Village, Shuanghe Town, ZhongXiang City, Hubei, China
| |
Collapse
|
9
|
Yang X, Wang J, Dai X, Ma N, Cheng H, Guo H, Chen S, Huang Y, Wu J. The mechanism and targeted intervention of the HIF-1 pathway in improving atherosclerotic heart's sensitivity to ischemic postconditioning. Free Radic Biol Med 2023; 208:494-509. [PMID: 37660838 DOI: 10.1016/j.freeradbiomed.2023.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND IPoC possesses a preventive effect against IR injury in healthy myocardium, but IPoC's protective effect on atherosclerotic myocardium is controversial. The current investigation aims to determine whether IPoC remains protective in atherosclerotic myocardium subjected to ischemia-reperfusion (IR) injury; to explore the specific mechanisms by which IPoC exerts cardioprotection; to explore whether HIF-1 upregulation combined with IPoC could further the provide cardioprotection; and to gaze at the specific mechanism whereby combined treatment expert the cardioprotection. METHODS ApoE-/- mice fed with a high-fat diet (HFD) were used to develop a model of atherosclerosis. The myocardial IR model was induced by occlusion of the left anterior descending (LAD) artery for 45 min, followed by reperfusion for 120 min. The protection of IPoC in both healthy and atherosclerotic myocardium was evaluated by measuring oxidative stress, apoptosis, infarct size, pathology, mitochondrial dysfunction and morphology of myocardium. The specific mechanism by which IPoC exerts cardioprotection in healthy and atherosclerotic myocardium was observed by measuring the expression of proteins involved in HIF-1, APMK and RISK pathways. The effect of HIF-1α overexpression on the cardioprotection by IPoC was observed by intravenous AAV9 -HIF-1α injection. RESULTS In healthy ischemic myocardium, IPoC exerted myocardial protective effects (antioxidant, anti-apoptosis, and improved mitochondrial function) through the activation of HIF-1, AMPK and RISK pathways. In atherosclerotic ischemic myocardium, IPoC exerted cardioprotection only through the activation of HIF-1 pathway; however, HIF-1 overexpression combined IPoC restored the activation of AMPK and RISK pathways, thereby further alleviating the myocardial IR injury. CONCLUSIONS In the atherosclerotic state, the HIF-1 pathway is the intrinsic mechanism by which IPoC exerts cardioprotective effects. The combination of HIF-1 upregulation and IPoC has a significant effect in reducing myocardial injury, which is worth being promoted and advocated. In addition, HIF-1-AMPK and HIF-1-RISK may be two endogenous cardioprotective signalling pathways with great value, which deserve to be thoroughly investigated in the future.
Collapse
Affiliation(s)
- Xue Yang
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Jiang Wang
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Xiaowen Dai
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Ning Ma
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Hu Cheng
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Hai Guo
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Siyu Chen
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yidan Huang
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Jianjiang Wu
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.
| |
Collapse
|
10
|
Deng RM, Zhou J. The role of PI3K/AKT signaling pathway in myocardial ischemia-reperfusion injury. Int Immunopharmacol 2023; 123:110714. [PMID: 37523969 DOI: 10.1016/j.intimp.2023.110714] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 07/09/2023] [Accepted: 07/24/2023] [Indexed: 08/02/2023]
Abstract
Myocardial ischemia has a high incidence and mortality rate, and reperfusion is currently the standard intervention. However, reperfusion may lead to further myocardial damage, known as myocardial ischemia/reperfusion injury (MIRI). There are currently no effective clinical treatments for MIRI. The PI3K/Akt signaling pathway is involved in cardiovascular health and disease and plays an important role in reducing myocardial infarct size and restoring cardiac function after MIRI. Activation of the PI3K/Akt pathway provides myocardial protection through synergistic upregulation of antioxidant, anti-inflammatory, and autophagy activities and inhibition of mitochondrial dysfunction and cardiomyocyte apoptosis. Many studies have shown that PI3K/Akt has a significant protective effect against MIRI. Here, we reviewed the molecular regulation of PI3K/Akt in MIRI and summarized the molecular mechanism by which PI3K/Akt affects MIRI, the effects of ischemic preconditioning and ischemic postconditioning, and the role of related drugs or activators targeting PI3K/Akt in MIRI, providing novel insights for the formulation of myocardial protection strategies. This review provides evidence of the role of PI3K/Akt activation in MIRI and supports its use as a therapeutic target.
Collapse
Affiliation(s)
- Rui-Ming Deng
- Department of Anesthesiology, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China; The Affiliated Ganzhou Hospital of Nanchang University, 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China
| | - Juan Zhou
- Department of thyroid and Breast Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China; The Affiliated Ganzhou Hospital of Nanchang University, 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China.
| |
Collapse
|
11
|
Yang T, Zhang D. Research progress on the effects of novel hypoglycemic drugs in diabetes combined with myocardial ischemia/reperfusion injury. Ageing Res Rev 2023; 86:101884. [PMID: 36801379 DOI: 10.1016/j.arr.2023.101884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/08/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
Acute myocardial infarction (AMI) reperfusion is associated with ischemia/reperfusion (I/R) injury, which leads to enlarged myocardial infarction size, poor healing of the infarcted myocardium, and poor left ventricular remodeling, thus increasing the risk of major adverse cardiovascular events (MACEs). Diabetes increases myocardial susceptibility to I/R injury, decreases myocardial responsiveness to cardioprotective strategies, exacerbates myocardial I/R injury, and expands the infarct size of AMI, thereby increasing the incidence of malignant arrhythmias and heart failure. Currently, evidence regarding pharmacological interventions for diabetes combined with AMI and I/R injury is lacking. Traditional hypoglycemic drugs have a limited role in the prevention and treatment of diabetes combined with I/R injury. Current evidence suggests that novel hypoglycemic drugs may exert a preventive effect on diabetes combined with myocardial I/R injury, especially glucagon-like peptide-1 receptor agonists (GLP-1 RA) and sodium-dependent glucose transporter protein 2 inhibitors (SGLT2i), which may increase coronary blood flow, reduce acute thrombosis, attenuate I/R injury, decrease myocardial infarction size, inhibit structural and functional remodeling of the ischemic heart, improve cardiac function, and reduce the occurrence of MACEs of diabetes patients combined with AMI via mechanisms such as reduction of inflammatory response, inhibition of oxidative stress, and improvement of vascular endothelial function. This paper will systematically elaborate the protective role and molecular mechanisms of GLP-1 RA and SGLT2i in diabetes combined with myocardial I/R injury, aiming to provide clinical assistance.
Collapse
Affiliation(s)
- Tiangui Yang
- Department of Cardiology, Shengjing Hospital of China Medical University, China.
| | - Daqing Zhang
- Department of Cardiology, Shengjing Hospital of China Medical University, China.
| |
Collapse
|
12
|
Xia W, Li X, Wu Q, Xu A, Zhang L, Xia Z. The importance of caveolin as a target in the prevention and treatment of diabetic cardiomyopathy. Front Immunol 2022; 13:951381. [PMID: 36405687 PMCID: PMC9666770 DOI: 10.3389/fimmu.2022.951381] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/21/2022] [Indexed: 08/30/2023] Open
Abstract
The diabetic population has been increasing in the past decades and diabetic cardiomyopathy (DCM), a pathology that is defined by the presence of cardiac remodeling and dysfunction without conventional cardiac risk factors such as hypertension and coronary heart diseases, would eventually lead to fatal heart failure in the absence of effective treatment. Impaired insulin signaling, commonly known as insulin resistance, plays an important role in the development of DCM. A family of integral membrane proteins named caveolins (mainly caveolin-1 and caveolin-3 in the myocardium) and a protein hormone adiponectin (APN) have all been shown to be important for maintaining normal insulin signaling. Abnormalities in caveolins and APN have respectively been demonstrated to cause DCM. This review aims to summarize recent research findings of the roles and mechanisms of caveolins and APN in the development of DCM, and also explore the possible interplay between caveolins and APN.
Collapse
Affiliation(s)
- Weiyi Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Xia Li
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingping Wu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Liangqing Zhang
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China
| | - Zhengyuan Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
13
|
Impact of N-Acetyl-Cysteine on Ischemic Stumps Following Major Lower Extremity Amputation: A Pilot Randomized Clinical Trial. Ann Surg 2022; 276:e302-e310. [PMID: 35129469 PMCID: PMC9987417 DOI: 10.1097/sla.0000000000005389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To evaluate the impact of N-acetyl-cysteine (NAC) on amputation stump perfusion and healing in patients with critical limb-threatening ischemia (CLTI). BACKGROUND Patients with CLTI are at increased risk of poor amputation site healing leading to increased procedure-associated morbidity. METHODS In a pilot, double-blind, placebo-controlled, randomized controlled trial, patients with CLTI undergoing major elective lower extremity amputation were randomized 1:1 to intravenous NAC (1200 mg twice-daily) or placebo for up to 5 days postoperatively. Primary outcomes were change in stump perfusion at postoperative day 3 (POD3) and POD5, and healing at POD30. Stumps were serially evaluated for wound healing, and tissue perfusion was evaluated using noninvasive laser-assisted fluorescent angiography. RESULTS Thirty-three patients were randomized to NAC (n = 16) or placebo (n = 17). Thirty-one patients were eligible for intent-to-treat analysis (NAC14; placebo17). Twenty patients (NAC7; placebo13) had amputation stump perfusion defects at POD0 and were considered high-risk for poor healing. Intent-to-treat analysis revealed no significant differences between treatment groups. Subgroup analysis of high-risk patients revealed differences in stump perfusion defect size (NAC-0.53-fold, placebo +0.71-fold; 95% confidence interval -2.11 to-0.35; P < 0.05) and healing (NAC [100%], placebo [46%]; P < 0.01) between study treatments. CONCLUSIONS Postoperative NAC administration may improve amputation stump perfusion and healing in patients with CLTI and tissue perfusion defects at the time of amputation. Intraoperative laser-assisted fluorescent angiogra-phy may help surgeons identify high-risk patients with stump perfusion defects and provide early adjunctive interventions. Future studies can further explore the therapeutic benefits of NAC in the healing and perfusion of other surgical operative sites in high-risk individuals. TRIAL REGISTRATION clinicaltrials.gov, Identifier: NCT03253328.
Collapse
|
14
|
Mahdiani S, Omidkhoda N, Rezaee R, Heidari S, Karimi G. Induction of JAK2/STAT3 pathway contributes to protective effects of different therapeutics against myocardial ischemia/reperfusion. Biomed Pharmacother 2022; 155:113751. [PMID: 36162372 DOI: 10.1016/j.biopha.2022.113751] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/25/2022] Open
Abstract
Insufficiency in coronary blood supply results in myocardial ischemia and consequently, various clinical syndromes and irreversible injuries. Myocardial damage occurs as a result of two processes during acute myocardial infarction (MI): ischemia and subsequent reperfusion. According to the available evidence, oxidative stress, excessive inflammation reaction, reactive oxygen species (ROS) generation, and apoptosis are crucial players in the pathogenesis of myocardial ischemia/reperfusion (IR) injury. There is emerging evidence that Janus tyrosine kinase 2 (JAK2) signal transducer and activator of the transcription 3 (STAT3) pathway offers cardioprotection against myocardial IR injury. This article reviews therapeutics that exert cardioprotective effects against myocardial IR injury through induction of JAK2/STAT3 pathway.
Collapse
Affiliation(s)
- Sina Mahdiani
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Navid Omidkhoda
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ramin Rezaee
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shadi Heidari
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
15
|
Sun M, Wang R, Xia R, Xia Z, Wu Z, Wang T. Amelioration of myocardial ischemia/reperfusion injury in diabetes: A narrative review of the mechanisms and clinical applications of dexmedetomidine. Front Pharmacol 2022; 13:949754. [PMID: 36120296 PMCID: PMC9470922 DOI: 10.3389/fphar.2022.949754] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Mechanisms contributing to the pathogenesis of myocardial ischemia-reperfusion (I/R) injury are complex and multifactorial. Many strategies have been developed to ameliorate myocardial I/R injuries based on these mechanisms. However, the cardioprotective effects of these strategies appear to diminish in diabetic states. Diabetes weakens myocardial responses to therapies by disrupting intracellular signaling pathways which may be responsible for enhancing cellular resistance to damage. Intriguingly, it was found that Dexmedetomidine (DEX), a potent and selective α2-adrenergic agonist, appears to have the property to reverse diabetes-related inhibition of most intervention-mediated myocardial protection and exert a protective effect. Several mechanisms were revealed to be involved in DEX’s protection in diabetic rodent myocardial I/R models, including PI3K/Akt and associated GSK-3β pathway stimulation, endoplasmic reticulum stress (ERS) alleviation, and apoptosis inhibition. In addition, DEX could attenuate diabetic myocardial I/R injury by up-regulating autophagy, reducing ROS production, and inhibiting the inflammatory response through HMGB1 pathways. The regulation of autonomic nervous function also appeared to be involved in the protective mechanisms of DEX. In the present review, the evidence and underlying mechanisms of DEX in ameliorating myocardial I/R injury in diabetes are summarized, and the potential of DEX for the treatment/prevention of myocardial I/R injury in diabetic patients is discussed.
Collapse
Affiliation(s)
- Meng Sun
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rong Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Xia
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhengyuan Xia
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhilin Wu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Zhilin Wu, ; Tingting Wang,
| | - Tingting Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Zhilin Wu, ; Tingting Wang,
| |
Collapse
|
16
|
He J, Liu D, Zhao L, Zhou D, Rong J, Zhang L, Xia Z. Myocardial ischemia/reperfusion injury: Mechanisms of injury and implications for management (Review). Exp Ther Med 2022; 23:430. [PMID: 35607376 PMCID: PMC9121204 DOI: 10.3892/etm.2022.11357] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/13/2022] [Indexed: 01/18/2023] Open
Abstract
Myocardial infarction is one of the primary causes of mortality in patients with coronary heart disease worldwide. Early treatment of acute myocardial infarction restores blood supply of ischemic myocardium and decreases the mortality risk. However, when the interrupted myocardial blood supply is recovered within a certain period of time, it causes more serious damage to the original ischemic myocardium; this is known as myocardial ischemia/reperfusion injury (MIRI). The pathophysiological mechanisms leading to MIRI are associated with oxidative stress, intracellular calcium overload, energy metabolism disorder, apoptosis, endoplasmic reticulum stress, autophagy, pyroptosis, necroptosis and ferroptosis. These interplay with one another and directly or indirectly lead to aggravation of the effect. In the past, apoptosis and autophagy have attracted more attention but necroptosis and ferroptosis also serve key roles. However, the mechanism of MIRI has not been fully elucidated. The present study reviews the mechanisms underlying MIRI. Based on current understanding of the pathophysiological mechanisms of MIRI, the association between cell death-associated signaling pathways were elaborated, providing direction for investigation of novel targets in clinical treatment.
Collapse
Affiliation(s)
- Jianfeng He
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Danyong Liu
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Lixia Zhao
- Department of Anesthesiology, The Eighth Affiliated Hospital of Sun Yat‑Sen University, Shenzhen, Guangdong 518033, P.R. China
| | - Dongcheng Zhou
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Jianhui Rong
- Department of Internal Medicine, Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen, Guangdong 518057, P.R. China
| | - Liangqing Zhang
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Zhengyuan Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| |
Collapse
|
17
|
Huang L, Ding L, Yu S, Huang X, Ren Q. Propofol postconditioning alleviates diabetic myocardial ischemia‑reperfusion injury via the miR‑200c‑3p/AdipoR2/STAT3 signaling pathway. Mol Med Rep 2022; 25:137. [PMID: 35211763 PMCID: PMC8908333 DOI: 10.3892/mmr.2022.12653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 08/20/2021] [Indexed: 11/23/2022] Open
Abstract
Myocardial ischemia/reperfusion (MI/RI) syndrome is one of the leading causes of mortality and disability. Propofol postconditioning is known to improve myocardial ischemia/reperfusion injury (MI/RI). The present study aimed to explore the mechanism of propofol postconditioning in diabetic MI/RI. Diabetic MI/RI rat models were established and the rats were treated via propofol postconditioning. Staining with 2,3,5-triphenyl-2H-tetrazolium chloride, H&E staining, TUNEL staining and ELISA were applied to detect infarct size, pathological changes, apoptosis and oxidative stress-related factor and apoptotic factor levels, respectively. Subsequently, the effect of propofol on H9C2 cells was also assessed using the Cell Counting Kit-8 assay. High-glucose hypoxia/reperfusion (H/R) models of H9C2 cardiomyocytes were established. miR-200c-3p overexpression or AdipoR2 silencing combined with propofol postconditioning was performed in H/R-induced H9C2 cells and STAT3 protein expression levels were determined. Propofol postconditioning significantly reduced myocardial infarct size, oxidative stress and apoptosis in diabetic MI/RI models. Furthermore, propofol postconditioning significantly reduced the oxidative stress and apoptosis of H9C2 cells in high-glucose H/R models. Propofol postconditioning also significantly downregulated miR-200c-3p expression levels and promoted AdipoR2 expression levels. miR-200c-3p overexpression or AdipoR2 downregulation significantly reversed the effects of propofol postconditioning on its antioxidation and anti-apoptotic effects in H9C2 cells and on decreasing STAT3 phosphorylation levels. Together, the results of the present study demonstrated that propofol postconditioning inhibited miR-200c-3p, upregulated AdipoR2 and activated the STAT3 signaling pathway, thus alleviating diabetic MI/RI and therefore highlighting its potential as a treatment of diabetic MI/RI.
Collapse
Affiliation(s)
- Lijun Huang
- Department of Anesthesiology, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang 315040, P.R. China
| | - Li Ding
- Department of Anesthesiology, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang 315040, P.R. China
| | - Shenghui Yu
- Department of Anesthesiology, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang 315040, P.R. China
| | - Xin Huang
- Department of Anesthesiology, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang 315040, P.R. China
| | - Qiusheng Ren
- Department of Anesthesiology, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang 315040, P.R. China
| |
Collapse
|
18
|
Dai G, He Y. Adiponectin alleviated renal cell apoptosis and inflammation via inactivation of JAK2/STAT3 signal pathway in an acute pyelonephritis mouse model. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1311. [PMID: 34532448 PMCID: PMC8422110 DOI: 10.21037/atm-21-3325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/05/2021] [Indexed: 01/26/2023]
Abstract
Background Acute pyelonephritis (APN), an acute and severe kidney infection, is usually treated with antibiotics. However, APN treatment has become increasingly challenging because of bacterial resistance. Adiponectin, an adipokine, has recently been reported to exhibit profound anti-inflammatory and anti-apoptotic effects. However, the effect of adiponectin on the outcomes of APN treatment remains unclear. In this study, we aimed to investigate the effects of adiponectin on APN and the mechanisms underlying these effects. Methods Wild-type C57 mice and adiponectin-knockout (KO) mice were divided into 6 groups: the wild-type control group, the wild-type model group, the wild-type adiponectin intervention group, the KO control group, the KO model group, and the adiponectin-KO intervention group. We measured white blood cell (WBC) and neutrophil counts (NC) using a multispecies hematology analyzer; tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) using enzyme-linked immunosorbent assay (ELISA); blood urea nitrogen (BUN) and serum creatinine (SCr) levels using colorimetry; and the protein levels of JAK2, STAT3, p-JAK2, p-STAT3, Bcl-2, and Bax in renal tissues using western blot analysis. Apoptotic cells were detected using the transferase-mediated dUTP nick end labelling (TUNEL) assay. Results Compared to the wild-type mice, the KO mice showed a more severe inflammatory response and kidney damage after Escherichia coli infection. After treatment with exogenous adiponectin injection, the inflammatory response, oxidative stress, and kidney damage were partly alleviated. Adiponectin KO led to JAK2/STAT3 signaling activation, and exogenous adiponectin administration inactivated JAK2/STAT3 signaling in the APN model. APN can lead to an increase in the level of the protein Bax and a decrease in the level of the bcl-2 protein, thereby increasing apoptosis; this effect was inhibited by adiponectin. Conclusions Through use of a pyelonephritis mouse model, we demonstrated that adiponectin might alleviate renal cell apoptosis and inflammatory response by inactivating the JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Guoyu Dai
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Yao He
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
19
|
Din SRU, Nisar MA, Ramzan MN, Saleem MZ, Ghayas H, Ahmad B, Batool S, Kifayat K, Guo X, Huang M, Zhong M. Latcripin-7A from Lentinula edodes C 91-3 induces apoptosis, autophagy, and cell cycle arrest at G1 phase in human gastric cancer cells via inhibiting PI3K/Akt/mTOR signaling. Eur J Pharmacol 2021; 907:174305. [PMID: 34224698 DOI: 10.1016/j.ejphar.2021.174305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 11/28/2022]
Abstract
Gastric cancer (G.C) is one of the most lethal cancer types worldwide. Current treatment requires surgery along with chemotherapy, which causes obstacles for speedy recovery. The discovery of novel drugs is needed for better treatment of G.C with minimum side effects. Latcripin-7A (LP-7A) is a newly discovered peptide extracted from Lentinula edodes. It is recently studied for its anti-cancer activity. In this study, LP-7A was modeled using a phyre2 server. Anti-proliferation effects of LP-7A on G.C cells were examined via CCK-8, colony formation, and morphology assay. Apoptosis of LP-7A treated G.C cells was evaluated via Hoechst Stain, western blot and flow cytometry. Autophagy was assessed via acridine orange staining and western blot. The cell cycle was assessed via flow cytometry assay and western blot. Pathway was studied via western blot and STRING database. Anti-migratory effects of LP-7A treated G.C cells were analyzed via wound healing, western blot, and migration and invasion assay. LP-7A effectively inhibited the growth of G.C cells by inhibiting the PI3K/Akt/mTOR pathway. G.C cells treated with LP-7A arrested the cell cycle at the G1 phase, contributing to the inhibition of migration and invasion. Furthermore, LP-7A induced apoptosis and autophagy in gastric cancer cells. These results indicated that LP-7A is a promising anti-cancer agent. It affected the proliferation and growth of G.C cells (SGC-7901 and BGC-823) by inducing apoptosis, autophagy, and inhibiting cell cycle at the G1 phase in G.C cells.
Collapse
Affiliation(s)
- Syed Riaz Ud Din
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, PR China.
| | - Muhammad Azhar Nisar
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, PR China.
| | - Muhammad Noman Ramzan
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, PR China.
| | - Muhammad Zubair Saleem
- Department of Pathology and Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, PR China; School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou, 350122, PR China.
| | - Hassan Ghayas
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, PR China.
| | - Bashir Ahmad
- Department of Pathology and Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, PR China; Department of Biology, The University of Haripur, Pakistan.
| | - Samana Batool
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, PR China; Department of Microbiology and Molecular Genetics, University of Okara, 56300, Pakistan.
| | - Kashif Kifayat
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, PR China.
| | - Xiaorong Guo
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, PR China.
| | - Min Huang
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, PR China.
| | - Mintao Zhong
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, PR China.
| |
Collapse
|
20
|
Liu L, Yan M, Yang R, Qin X, Chen L, Li L, Si J, Li X, Ma K. Adiponectin Attenuates Lipopolysaccharide-induced Apoptosis by Regulating the Cx43/PI3K/AKT Pathway. Front Pharmacol 2021; 12:644225. [PMID: 34084134 PMCID: PMC8167433 DOI: 10.3389/fphar.2021.644225] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 03/31/2021] [Indexed: 12/30/2022] Open
Abstract
Cardiomyocyte apoptosis is a crucial factor leading to myocardial dysfunction. Adiponectin (APN) has a cardiomyocyte-protective impact. Studies have shown that the connexin43 (Cx43) and phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT) signaling pathways play an important role in the heart, but whether APN plays a protective role by regulating these pathways is unclear. Our study aimed to confirm whether APN protects against lipopolysaccharide (LPS)-induced cardiomyocyte apoptosis and to explore whether it plays an important role through regulating the Cx43 and PI3K/AKT signaling pathways. In addition, our research aimed to explore the relationship between the Cx43 and PI3K/AKT signaling pathways. In vitro experiments: Before H9c2 cells were treated with LPS for 24 h, they were pre-treated with APN for 2 h. The cytotoxic effect of APN on H9c2 cells was evaluated by a CCK-8 assay. The protein levels of Bax, Bcl2, cleaved caspase-3, cleaved caspase-9, Cx43, PI3K, p-PI3K, AKT and p-AKT were evaluated by Western blot analysis, and the apoptosis rate was evaluated by flow cytometry. APN attenuated the cytotoxicity induced by LPS. LPS upregulated Bax, cleaved caspase-3 and cleaved caspase-9 and downregulated Bcl2 in H9c2 cells; however, these effects were attenuated by APN. In addition, LPS upregulated Cx43 expression, and APN downregulated Cx43 expression and activated the PI3K/AKT signaling pathway. LPS induced apoptosis and inhibited PI3K/AKT signaling pathway in H9c2 cells, and these effects were attenuated by Gap26 (a Cx43 inhibitor). Moreover, the preservation of APN expression was reversed by LY294002 (a PI3K/AKT signaling pathway inhibitor). In vivo experiments: In C57BL/6J mice, a sepsis model was established by intraperitoneal injection of LPS, and APN was injected into enterocoelia. The protein levels of Bax, Bcl2, cleaved caspase-3, and Cx43 were evaluated by Western blot analysis, and immunohistochemistry was used to detect Cx43 expression and localization in myocardial tissue. LPS upregulated Bax and cleaved caspase-3 and downregulated Bcl2 in sepsis; however, these effects were attenuated by APN. In addition, the expression of Cx43 was upregulated in septic myocardial tissue, and APN downregulated Cx43 expression in septic myocardial tissue. In conclusion, both in vitro and in vivo, the data demonstrated that APN can protect against LPS-induced apoptosis during sepsis by modifying the Cx43 and PI3K/AKT signaling pathways.
Collapse
Affiliation(s)
- Luqian Liu
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China.,Department of Pathophysiology, Shihezi University School of Medicine, Shihezi, China
| | - Meijuan Yan
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China.,Department of Pathophysiology, Shihezi University School of Medicine, Shihezi, China
| | - Rui Yang
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China.,Department of Physiology, Shihezi University School of Medicine, Shihezi, China
| | - Xuqing Qin
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China.,Department of Physiology, Shihezi University School of Medicine, Shihezi, China
| | - Ling Chen
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
| | - Li Li
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
| | - Junqiang Si
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China.,Department of Physiology, Shihezi University School of Medicine, Shihezi, China
| | - Xinzhi Li
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China.,Department of Pathophysiology, Shihezi University School of Medicine, Shihezi, China
| | - Ketao Ma
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China.,Department of Physiology, Shihezi University School of Medicine, Shihezi, China
| |
Collapse
|
21
|
Inactivation of TOPK Caused by Hyperglycemia Blocks Diabetic Heart Sensitivity to Sevoflurane Postconditioning by Impairing the PTEN/PI3K/Akt Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6657529. [PMID: 33986917 PMCID: PMC8093075 DOI: 10.1155/2021/6657529] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/26/2021] [Accepted: 04/07/2021] [Indexed: 01/14/2023]
Abstract
The cardioprotective effect of sevoflurane postconditioning (SPostC) is lost in diabetes that is associated with cardiac phosphatase and tensin homologue on chromosome 10 (PTEN) activation and phosphoinositide 3-kinase (PI3K)/Akt inactivation. T-LAK cell-originated protein kinase (TOPK), a mitogen-activated protein kinase- (MAPKK-) like serine/threonine kinase, has been shown to inactivate PTEN (phosphorylated status), which in turn activates the PI3K/Akt signaling (phosphorylated status). However, the functions of TOPK and molecular mechanism underlying SPostC cardioprotection in nondiabetes but not in diabetes remain unknown. We presumed that SPostC exerts cardioprotective effects by activating PTEN/PI3K/Akt through TOPK in nondiabetes and that impairment of TOPK/PTEN/Akt blocks diabetic heart sensitivity to SPostC. We found that in the nondiabetic C57BL/6 mice, SPostC significantly attenuated postischemic infarct size, oxidative stress, and myocardial apoptosis that was accompanied with enhanced p-TOPK, p-PTEN, and p-Akt. These beneficial effects of SPostC were abolished by either TOPK kinase inhibitor HI-TOPK-032 or PI3K/Akt inhibitor LY294002. Similarly, SPostC remarkably attenuated hypoxia/reoxygenation-induced cardiomyocyte damage and oxidative stress accompanied with increased p-TOPK, p-PTEN, and p-Akt in H9c2 cells exposed to normal glucose, which were canceled by either TOPK inhibition or Akt inhibition. However, either in streptozotocin-induced diabetic mice or in H9c2 cells exposed to high glucose, the cardioprotective effect of SPostC was canceled, accompanied by increased oxidative stress, decreased TOPK phosphorylation, and impaired PTEN/PI3K/Akt signaling. In addition, TOPK overexpression restored posthypoxic p-PTEN and p-Akt and decreased cell death and oxidative stress in H9c2 cells exposed to high glucose, which was blocked by PI3K/Akt inhibition. In summary, SPostC prevented myocardial ischemia/reperfusion injury possibly through TOPK-mediated PTEN/PI3K/Akt activation and impaired activation of this signaling pathway may be responsible for the loss of SPostC cardioprotection by SPostC in diabetes.
Collapse
|
22
|
Meng K, Cai H, Cai S, Hong Y, Zhang X. Adiponectin Modified BMSCs Alleviate Heart Fibrosis via Inhibition TGF-beta1/Smad in Diabetic Rats. Front Cell Dev Biol 2021; 9:644160. [PMID: 33829019 PMCID: PMC8019808 DOI: 10.3389/fcell.2021.644160] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 02/28/2021] [Indexed: 12/22/2022] Open
Abstract
Background: Accumulating evidence suggested that bone marrow mesenchymal stem cells (BMSCs) have therapeutic potential for diabetes and heart diseases. However, the effects of BMSC on reducing myocardial fibrosis need to be optimized. This study aimed to investigate the mechanism of adiponectin (APN) modified BMSCs on myocardial fibrosis in diabetic model in vivo and in vitro. Methods: The high-fat diet combined with streptozotocin (STZ) injection were used to induced diabetic rat model. H9c2 cells were cultured under a high glucose medium as in vitro model. The BMSCs were modified by APN plasmid or APN small interfering RNA (siRNA), then transplanted to the diabetic rats by a single tail-vein injection, or co-cultured with H9c2 cells. Results: We demonstrated that diabetic rats showed typical diabetic symptoms, such as decreased cardiac function, accumulation of pathological lesions and collagen expression. However, these impairments were significantly prevented by the APN modified BMSCs treatment while no effects on APN siRNA modified BMSCs treated diabetic rats. Moreover, we confirmed that APN modified BMSCs could attenuate the expression of TGF-beta1/smad to suppress the myocardial fibrosis in the diabetic rats and high glucose induced H9c2 cells. Conclusion: The present results for the first time showed that APN modified BMSCs exerted protection on cardiac fibrosis via inhibiting TGF-beta1/smad signal pathway in diabetic rats. Our findings suggested that APN modified BMSCs might be a novel and optimal therapy for the diabetic cardiomyopathy in future.
Collapse
Affiliation(s)
- Ke Meng
- Department of Anatomy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Emergency Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Huabo Cai
- Department of Emergency Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Simin Cai
- Department of Anatomy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Emergency Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yucai Hong
- Department of Emergency Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoming Zhang
- Department of Anatomy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Emergency Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
23
|
Luo C, Ke X, Xiong S, Sun Y, Xu Q, Zhang W, Lei Y, Ding Y, Zhen Y, Feng J, Cheng F, Chen J. Naringin attenuates high glucose-induced injuries and inflammation by modulating the leptin-JAK2/STAT3 pathway in H9c2 cardiac cells. Arch Med Sci 2021; 17:1145-1157. [PMID: 34522243 PMCID: PMC8425238 DOI: 10.5114/aoms.2019.84854] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/07/2019] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Our previous study showed that naringin (NRG) protects cardiomyocytes against high glucose (HG)-induced injuries by inhibiting p38 mitogen-activated protein kinase (MAPK). Leptin induces hypertrophy in rat cardiomyocytes via p38/MAPK activation. The present study aimed to test the hypothesis that leptin-Janus kinase 2 (JAK2)/signal transducers and activators of transcription 3 (STAT3), which are responsible for leptin's functions, are involved in HG-induced injuries and cardioprotective effects of NRG in cardiomyocytes. MATERIAL AND METHODS H9c2 cells were exposed to HG for 24 h to establish a cardiomyocyte injury model. Cells were pretreated with NRG and other drugs before exposure to HG. Protein expression was measured by western blot analysis. Cell viability was detected by Cell Counting Kit-8 assay. Apoptotic cells were assessed by Hoechst 33258 staining assay. Intracellular reactive oxygen species levels were determined by dichlorofluorescein diacetate staining. Mitochondrial membrane potential was evaluated using JC-1. An enzyme-linked immunosorbent assay was performed to determine the inflammatory cytokines. RESULTS NRG significantly attenuated HG-induced increases in leptin and Ob-R expression. Pretreatment with either a leptin antagonist (LA) or NRG markedly ameliorated HG-induced elevation of phosphorylated (p)-JAK2 and p-STAT3, respectively. Pretreatment with NRG, LA, Ob-R antagonist, or AG490 clearly alleviated HG-induced injuries and inflammation. CONCLUSIONS This study provides new evidence of the NRG protective effects of H9c2 cells against HG-induced injuries possibly via modulation of the leptin-JAK2/STAT3 pathway.
Collapse
Affiliation(s)
- Changjun Luo
- Department of Cardiology, the Affiliated Liutie Central Hospital and Clinical Medical College of Guangxi Medical University, Liuzhou, Guangxi, China
| | - Xiao Ke
- Department of Cardiology, Shenzhen Sun Yat-sen Cardiovascular Hospital, Shenzhen, Guangdong, China
- Department of Cardiology, Shenzhen Center, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, Guangdong, China
| | - Si Xiong
- Department of Cardiology, the Affiliated Liutie Central Hospital and Clinical Medical College of Guangxi Medical University, Liuzhou, Guangxi, China
| | - Yun Sun
- Department of Healthcare Office, The First Affiliated Hospital, Sun Yat-sen University, Guangdong, Guangzhou, China
| | - Qing Xu
- Department of Cardiology, Huangpu Division of The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wei Zhang
- Department of Cardiology, Huangpu Division of The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yiyan Lei
- Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-sen University, Medical Imaging, the First School of Clinical Medicine, Southern Medical University, Guangdong, Guangzhou, China
| | - Yiqian Ding
- Department of Oncology, The Third People's Hospital of Dongguan City, Dongguan, Guangdong, China
| | - Yulan Zhen
- Department of Oncology, The Third People's Hospital of Dongguan City, Dongguan, Guangdong, China
| | - Jianqiang Feng
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Fei Cheng
- Department of Cardiovascular Medicine and Dongguan Cardiovascular Institute, the Third People's Hospital of Dongguan City, Dongguan, Guangdong, China
| | - Jingfu Chen
- Department of Cardiovascular Medicine and Dongguan Cardiovascular Institute, the Third People's Hospital of Dongguan City, Dongguan, Guangdong, China
| |
Collapse
|
24
|
Kurian GA, Ansari M, Prem PN. Diabetic cardiomyopathy attenuated the protective effect of ischaemic post-conditioning against ischaemia-reperfusion injury in the isolated rat heart model. Arch Physiol Biochem 2020; 129:711-722. [PMID: 33378216 DOI: 10.1080/13813455.2020.1866017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The present study was designed to investigate the efficacy of post-conditioning (POC) in the diabetic heart with myopathy (DCM) against ischaemia-reperfusion (I/R) injury in an isolated rat heart model. Present work includes three groups of male Wistar rat viz., (i) normal, (ii) diabetes mellitus (DM) and (iii) DCM and each group was subdivided into normal perfusion, I/R, and POC. Isolated heart from the rats was analysed for tissue injury, contractile function, mitochondrial function, and oxidative stress. Results demonstrated that unlike in DM heart and normal heart, POC procedure failed to recover the DCM heart from I/R induced cardiac dysfunction (measured via cardiac hemodynamics and infarct size. POC was unsuccessful in preserving mitochondrial subsarcolemmal fraction during I/R when compared with DM and normal heart. To conclude, the development of myopathy in diabetic heart abolished the cardioprotective efficacy of POC and the underlying pathology was linked with the mitochondrial dysfunction.KEY MESSAGESEarly studies reported contradicting response of diabetic heart towards post-conditioning mediated cardioprotection.Deteriorated mitochondrial function underlines the failure of post-conditioning in DCM.Efficacy of cardioprotection depends on the varying pathology of different diabetes stages.
Collapse
Affiliation(s)
- Gino A Kurian
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Mahalakshmi Ansari
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Priyanka N Prem
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| |
Collapse
|
25
|
Zhang J, Cai X, Zhang Q, Li X, Li S, Ma J, Zhu W, Liu X, Wei M, Tu W, Shen Y, Liu J, Lai X, Yu P. Hydrogen sulfide restores sevoflurane postconditioning mediated cardioprotection in diabetic rats: Role of SIRT1/Nrf2 signaling-modulated mitochondrial dysfunction and oxidative stress. J Cell Physiol 2020; 236:5052-5068. [PMID: 33325044 DOI: 10.1002/jcp.30214] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/28/2020] [Accepted: 12/01/2020] [Indexed: 02/06/2023]
Abstract
Diabetic hearts are vulnerable to myocardial ischemia/reperfusion injury (IRI), but are insensitive to sevoflurane postconditioning (SPC), activating peroxiredoxins that confer cardioprotection. Previous studies have demonstrated that hydrogen sulfide (H2 S) can suppress oxidative stress of diabetic rats through increasing the expression of silent information regulator factor 2-related enzyme 1 (SIRT1), but whether cardioprotection by SPC can be restored afterward remains unclear. Diabetic rat was subjected to IRI (30 min of ischemia followed by 120 min reperfusion). Postconditioning treatment with sevoflurane was administered for 15 min upon the onset of reperfusion. The diabetic rats were treated with GYY4137 (H2 S donor) 5 days before the experiment. Myocardial infarct size, mitochondrial structure and function, ATP content, activities of complex I-IV, marker of oxidative stress, SIRT1, nuclear factor E2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), and NADPH Oxidase-2 (Nox-2) protein expression were detected after reperfusion, and cardiac function was evaluated by echocardiography at 24 h after reperfusion. After H2 S activated SIRT1 in the impaired myocardium of diabetic rats, SPC significantly upregulated the expression of Nrf2 and its downstream mediator HO-1, thus reduced the expression of Nox-2. In addition, H2 S remarkably increased cytoplasmic and nuclear SIRT1 which was further enhanced by SPC. Furthermore, H2 S combined with SPC reduced the production of reactive oxygen species, increased the content of ATP, and maintained mitochondrial enzyme activity. Finally, myocardial infarct size and myocardium damage were decreased, and cardiac function was improved. Taken together, our study proved that H2 S could restore SPC-induced cardioprotection in diabetic rats by enhancing and promoting SIRT1/Nrf2 signaling pathway mediated mitochondrial dysfunction and oxidative stress.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xia Cai
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qin Zhang
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiaozhong Li
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Siyuan Li
- Department of Metabolism and Endocrinology, The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Jianyong Ma
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Wengen Zhu
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangdong, Guangzhou, China
| | - Xiao Liu
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.,Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangdong, Guangzhou, China
| | - Meilin Wei
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Wei Tu
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yunfeng Shen
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jianping Liu
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiaoyang Lai
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Peng Yu
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
26
|
Samidurai A, Roh SK, Prakash M, Durrant D, Salloum FN, Kukreja RC, Das A. STAT3-miR-17/20 signalling axis plays a critical role in attenuating myocardial infarction following rapamycin treatment in diabetic mice. Cardiovasc Res 2020; 116:2103-2115. [PMID: 31738412 PMCID: PMC8463091 DOI: 10.1093/cvr/cvz315] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/30/2019] [Accepted: 11/15/2019] [Indexed: 12/12/2022] Open
Abstract
AIMS Deregulation of mTOR (mammalian target of rapamycin) signalling occurs in diabetes, which exacerbates injury following myocardial infarction (MI). We therefore investigated the infarct-limiting effect of chronic treatment with rapamycin (RAPA, mTOR inhibitor) in diabetic mice following myocardial ischaemia/reperfusion (I/R) injury and delineated the potential protective mechanism. METHODS AND RESULTS Adult male diabetic (db/db) or wild-type (WT) (C57) mice were treated with RAPA (0.25 mg/kg/day, intraperitoneal) or vehicle (5% DMSO) for 28 days. The hearts from treated mice were subjected to global I/R in Langendorff mode. Cardiomyocytes, isolated from treated mice, were subjected to simulated ischaemia/reoxygenation (SI/RO) to assess necrosis and apoptosis. Myocardial infarct size was increased in diabetic heart following I/R as compared to WT. Likewise, enhanced necrosis and apoptosis were observed in isolated cardiomyocytes of diabetic mice following SI/RO. Treatment with RAPA reduced infarct size as well as cardiomyocyte necrosis and apoptosis of diabetes and WT mice. RAPA increased STAT3 phosphorylation and miRNA-17/20a expression in diabetic hearts. In addition, RAPA restored AKT phosphorylation (target of mTORC2) but suppressed S6 phosphorylation (target of mTORC1) following I/R injury. RAPA-induced cardioprotection against I/R injury as well as the induction of miR-17/20a and AKT phosphorylation were abolished in cardiac-specific STAT3-deficient diabetic mice, without alteration of S6 phosphorylation. The infarct-limiting effect of RAPA was obliterated in cardiac-specific miRNA-17-92-deficient diabetic mice. The post-I/R restoration of phosphorylation of STAT3 and AKT with RAPA were also abolished in miRNA-17-92-deficient diabetic mice. Additionally, RAPA suppressed the pro-apoptotic prolyl hydroxylase (Egln3/PHD3), a target of miRNA-17/20a in diabetic hearts, which was abrogated in miRNA-17-92-deficient diabetic mice. CONCLUSION Induction of STAT3-miRNA-17-92 signalling axis plays a critical role in attenuating MI in RAPA-treated diabetic mice. Our study indicates that chronic treatment with RAPA might be a promising pharmacological intervention for attenuating MI and improving prognosis in diabetic patients.
Collapse
Affiliation(s)
- Arun Samidurai
- Division of Cardiology, Pauley Heart Center, Department of Internal Medicine, Virginia Commonwealth University, 1101 East Marshall Street, Room 7020B, Richmond, VA 23298-0204, USA
| | - Sean K Roh
- Division of Cardiology, Pauley Heart Center, Department of Internal Medicine, Virginia Commonwealth University, 1101 East Marshall Street, Room 7020B, Richmond, VA 23298-0204, USA
| | - Meeta Prakash
- Division of Cardiology, Pauley Heart Center, Department of Internal Medicine, Virginia Commonwealth University, 1101 East Marshall Street, Room 7020B, Richmond, VA 23298-0204, USA
| | - David Durrant
- Division of Cardiology, Pauley Heart Center, Department of Internal Medicine, Virginia Commonwealth University, 1101 East Marshall Street, Room 7020B, Richmond, VA 23298-0204, USA
| | - Fadi N Salloum
- Division of Cardiology, Pauley Heart Center, Department of Internal Medicine, Virginia Commonwealth University, 1101 East Marshall Street, Room 7020B, Richmond, VA 23298-0204, USA
| | - Rakesh C Kukreja
- Division of Cardiology, Pauley Heart Center, Department of Internal Medicine, Virginia Commonwealth University, 1101 East Marshall Street, Room 7020B, Richmond, VA 23298-0204, USA
| | - Anindita Das
- Division of Cardiology, Pauley Heart Center, Department of Internal Medicine, Virginia Commonwealth University, 1101 East Marshall Street, Room 7020B, Richmond, VA 23298-0204, USA
| |
Collapse
|
27
|
Chen G, Xu C, Gillette TG, Huang T, Huang P, Li Q, Li X, Li Q, Ning Y, Tang R, Huang C, Xiong Y, Tian X, Xu J, Xu J, Chang L, Wei C, Jin C, Hill JA, Yang Y. Cardiomyocyte-derived small extracellular vesicles can signal eNOS activation in cardiac microvascular endothelial cells to protect against Ischemia/Reperfusion injury. Am J Cancer Res 2020; 10:11754-11774. [PMID: 33052245 PMCID: PMC7546010 DOI: 10.7150/thno.43163] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 08/12/2020] [Indexed: 12/14/2022] Open
Abstract
Rationale: The crosstalk between cardiac microvascular endothelial cells (CMECs) and cardiomyocytes (CMs) has emerged as a key component in the development of, and protection against, cardiac diseases. For example, activation of endothelial nitric oxide synthase (eNOS) in CMECs, by therapeutic strategies such as ischemic preconditioning, plays a critical role in the protection against myocardial ischemia/reperfusion (I/R) injury. However, much less is known about the signals produced by CMs that are able to regulate CMEC biology. Here we uncovered one such mechanism using Tongxinluo (TXL), a traditional Chinese medicine, that alleviates myocardial ischemia/reperfusion (I/R) injury by activating CMEC eNOS. The aim of our study is to identify the signals produced by CMs that can regulate CMEC biology during I/R. Methods: Ex vivo, in vivo, and in vitro settings of ischemia-reperfusion were used in our study, with the protective signaling pathways activated in CMECs identified using genetic inhibition (p70s6k1 siRNA, miR-145-5p mimics, etc.), chemical inhibitors (the eNOS inhibitor, L-NNA, and the small extracellular vesicles (sEVs) inhibitor, GW4869) and Western blot analyses. TritonX-100 at a dose of 0.125% was utilized to inactivate the eNOS activity in endothelium to investigate the role of CMEC-derived eNOS in TXL-induced cardioprotection. Results: We found that while CMEC-derived eNOS activity was required for the cardioprotection of TXL, activation of eNOS in CMECs by TXL did not occur directly. Instead, eNOS activation in CMECs required a crosstalk between CMs and CMECs through the uptake of CM-derived sEVs. We further demonstrate that TXL induced CM-sEVs contain increased levels of Long Intergenic Non-Protein Coding RNA, Regulator Of Reprogramming (Linc-ROR). Upon uptake into CMECs, linc-ROR downregulates its target miR-145-5p leading to activation of the eNOS pathway by facilitating the expression of p70s6k1 in these cells. The activation of CMEC-derived eNOS works to increase survival in both the CMECs and the CMs themselves. Conclusions: These data uncover a mechanism by which the crosstalk between CMs and CMECs leads to the increased survival of the heart after I/R injury and point to a new therapeutic target for the blunting of myocardial I/R injury.
Collapse
|
28
|
Luo J, Ao Z, Duan Z, Ao Y, Wei S, Chen W, Chen X. Effects of N-Acetylcysteine on the reproductive performance, oxidative stress and RNA sequencing of Nubian goats. Vet Med Sci 2020; 7:156-163. [PMID: 32812379 PMCID: PMC7840200 DOI: 10.1002/vms3.338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/18/2020] [Accepted: 07/20/2020] [Indexed: 12/31/2022] Open
Abstract
N-acetylcysteine (NAC) has been found to enhance the protective ability of cells to counter balance oxidative stress and inflammation. To investigate the effects of dietary NAC supplementation on the reproductive performance of goats, the reproductive performance and endometrial transcriptome of goats fed with diets with NAC (NAC group) and without NAC supplementation (control group) were compared. Results showed that the goats fed with 0.03% and 0.05% NAC had similar litter size, birth weight, nitric oxide (NO), sex hormones and amino acids levels compared with the goats of the control group. However, feeding with 0.07% NAC supplementation from day 0 to day 30 of gestation remarkably increased the litter size of goats. The goats of the 0.07% NAC group presented increased levels of NO relative to the control group, but their sex hormones and amino acids showed no differences. Comparative transcriptome analysis identified 207 differentially expressed genes (DEGs) in the endometrium between the control and the 0.07% NAC groups. These DEGs included 146 upregulated genes and 61 downregulated genes in the 0.07% NAC group. They were primarily involved in the cellular response to toxic substances, oxidoreductase activity, immune receptor activity, signalling receptor binding, cytokine-cytokine receptor interactions, PI3K-Akt signalling pathway and PPAR signalling pathway. In conclusion, results showed that dietary 0.07% NAC supplementation exerted a beneficial effect on the survival of goat embryos at the early pregnancy stage. Such positive outcome might be due to the increased NO production and affected expression of genes involved in the anti-inflammation pathways of the endometrium.
Collapse
Affiliation(s)
- Jinhong Luo
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China.,Guizhou Institute of Prataculture, Guiyang, China
| | - Zheng Ao
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China.,College of Animal Science, Guizhou University, Guiyang, China
| | - Zhiqiang Duan
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China.,College of Animal Science, Guizhou University, Guiyang, China
| | - Ye Ao
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China.,College of Animal Science, Guizhou University, Guiyang, China
| | - Shinan Wei
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China.,College of Animal Science, Guizhou University, Guiyang, China
| | - Wei Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China.,College of Animal Science, Guizhou University, Guiyang, China
| | - Xiang Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China.,College of Animal Science, Guizhou University, Guiyang, China
| |
Collapse
|
29
|
Chien CY, Wen TJ, Cheng YH, Tsai YT, Chiang CY, Chien CT. Diabetes Upregulates Oxidative Stress and Downregulates Cardiac Protection to Exacerbate Myocardial Ischemia/Reperfusion Injury in Rats. Antioxidants (Basel) 2020; 9:E679. [PMID: 32751309 PMCID: PMC7465304 DOI: 10.3390/antiox9080679] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023] Open
Abstract
Diabetes exacerbates myocardial ischemia/reperfusion (IR) injury by incompletely understood mechanisms. We explored whether diabetes diminished BAG3/Bcl-2/Nrf-2/HO-1-mediated cardioprotection and overproduced oxidative stress contributing to exaggerated IR injury. Streptozotocin-induced diabetes enhanced hyperglycemia, cardiac NADPH oxidase p22/p67 expression, malondialdehyde amount and leukocyte infiltration, altered the mesenteric expression of 4-HNE, CaSR, p-eNOS and BAG3 and impaired microvascular reactivity to the vasoconstrictor/vasodilator by a wire myography. In response to myocardial IR, diabetes further depressed BAG3/Bcl-2/Nrf-2/HO-1 expression, increased cleaved-caspase 3/poly(ADP-ribose) polymerase (PARP)/TUNEL-mediated apoptosis and exacerbated IR-induced left ventricular dysfunction characterized by further depressed microcirculation, heart rate, left ventricular systolic pressure and peak rate of pressure increase/decrease (±dp/dt) and elevated left ventricular end-diastolic pressure (LVEDP) and Evans blue-2,3,5-triphenyltetrazolium chloride-stained infarct size in diabetic hearts. Our results implicated diabetes exacerbated IR-induced myocardial dysfunction through downregulated BAG3/Bcl-2/Nrf-2/HO-1 expression, increased p22/p67/caspase 3/PARP/apoptosis-mediated oxidative injury and impaired microvascular reactivity.
Collapse
Affiliation(s)
- Chen-Yen Chien
- Department of Surgery, Mackay Memorial Hospital, Taipei 10449, Taiwan;
- Department of Medicine, Mackay Medical College, New Taipei City 25245, Taiwan
- Mackay Junior College of Medicine, Nursing and Management, New Taipei City 11260, Taiwan
| | - Ting-Jui Wen
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan; (T.-J.W.); (Y.-H.C.)
| | - Yu-Hsiuan Cheng
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan; (T.-J.W.); (Y.-H.C.)
| | - Yi-Ting Tsai
- Division of Cardiovascular Surgery, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Chih-Yao Chiang
- Division of Cardiovascular Surgery, National Defense Medical Center, Taipei 11490, Taiwan;
- Division of Cardiovascular Surgery, Heart Center, Cheng Hsin General Hospital, Taipei 11220, Taiwan
| | - Chiang-Ting Chien
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan; (T.-J.W.); (Y.-H.C.)
| |
Collapse
|
30
|
Cao C, Liu HM, Li W, Wu Y, Leng Y, Xue R, Chen R, Tang LH, Sun Q, Xia Z, Tang QZ, Shen DF, Meng QT. Role of adiponectin in diabetes myocardial ischemia-reperfusion injury and ischemic postconditioning. Acta Cir Bras 2020; 35:e202000107. [PMID: 32215448 PMCID: PMC7092667 DOI: 10.1590/s0102-865020200010000007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/22/2019] [Indexed: 11/29/2022] Open
Abstract
Purpose Patients with diabetes are vulnerable to myocardial I/R (ischaemia/reperfusion) injury, but are not responsive to IPO (ischaemic post-conditioning). We hypothesized that decreased cardiac Adiponectin (APN) is responsible for the loss of diabetic heart sensitivity to IPO cardioprotecton. Methods Diabetic rats were subjected to I/R injury (30 min of LAD occlusion followed by 120 min of reperfusion). Myocardial infarct area was determined by TTC staining. Cardiac function was monitored by a microcatheter. ANP, 15-F2t-isoprostane, nitrotyrosine and MDA were measured by assay kits. Levels of p-Akt, total-Akt and GAPDH were determined by Western Blot. Results Diabetic rats subjected to myocardial IR exhibited severe myocardial infarction and oxidative stress injury, lower APN in the plasma and cardiac p-Akt expression ( P <0.05). IPO significantly attenuated myocardial injury and up-regulated plasma APN content and cardiac p-Akt expression in non-diabetic rats but not in diabetic rats. Linear correlation analysis showed that the expression of adiponectin was positively correlated with p-Akt and negatively correlated with myocardial infarction area ( P <0.01). Conclusion Protective effect of IPO was tightly correlated with the expression of adiponectin, exacerbation of I/R injury and ineffectiveness of IPO was partially due to the decline of adiponectin and inactivation of Akt in diabetes mellitus.
Collapse
Affiliation(s)
| | | | - Wei Li
- Renmin Hospital of Wuhan University, China
| | - Yang Wu
- Renmin Hospital of Wuhan University, China
| | - Yan Leng
- Renmin Hospital of Wuhan University, China
| | - Rui Xue
- Hubei University of Medicine, China
| | - Rong Chen
- Renmin Hospital of Wuhan University, China
| | | | - Qian Sun
- Renmin Hospital of Wuhan University, China
| | | | | | | | | |
Collapse
|
31
|
Adiponectin Facilitates Postconditioning Cardioprotection through Both AMPK-Dependent Nuclear and AMPK-Independent Mitochondrial STAT3 Activation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4253457. [PMID: 32190173 PMCID: PMC7073496 DOI: 10.1155/2020/4253457] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/07/2020] [Accepted: 02/13/2020] [Indexed: 01/21/2023]
Abstract
Myocardial ischemic postconditioning- (IPo-) mediated cardioprotection against myocardial ischemia-reperfusion (IR) injury needs the activation of signal transducer and activator of transcription 3 (STAT3), which involves adiponectin (APN). APN confers its biological effects through AMP-activated protein kinase- (AMPK-) dependent and AMPK-independent pathways. However, the role of AMPK in APN-mediated STAT3 activation in IPo cardioprotection is unknown. We hypothesized that APN-mediated STAT3 activation in IPo is AMPK-independent and that APN through AMPK-dependent STAT3 activation facilitates IPo cardioprotection. Here, Sprague-Dawley rats were subjected to myocardial IR without or with IPo and/or APN. APN or IPo significantly improved postischemic cardiac function and reduced myocardial injury and oxidative stress, and their combination further attenuated postischemic myocardial injuries. APN or its combination with IPo but not IPo alone significantly increased AMPK activation and both nuclear and mitochondrial STAT3 activation, while IPo significantly enhanced mitochondrial but not nuclear STAT3 activation. In primarily isolated cardiomyocytes, recombined globular APN (gAd), hypoxic postconditioning (HPo), or their combination significantly attenuated hypoxia/reoxygenation-induced cell injury and increased nuclear and/or mitochondrial STAT3 activation. STAT3 inhibition had no impact on gAd or gAd in combination with HPo-induced AMPK activation but abolished their cellular protective effects. AMPK inhibition did not affect HPo cardioprotection but abolished gAd cardioprotection and disabled gAd to facilitate/enhance HPo cardioprotection and STAT3 activation. These results suggest that APN confers cardioprotection through AMPK-dependent and AMPK-independent STAT3 activation, while IPo confers cardioprotection through AMPK-independent mitochondrial STAT3 activation. Joint use of APN and IPo synergistically attenuated myocardial IR injury by activating STAT3 via distinct signaling pathways.
Collapse
|
32
|
Cai Y, Ying F, Liu H, Ge L, Song E, Wang L, Zhang D, Hoi Ching Tang E, Xia Z, Irwin MG. Deletion of Rap1 protects against myocardial ischemia/reperfusion injury through suppressing cell apoptosis via activation of STAT3 signaling. FASEB J 2020; 34:4482-4496. [PMID: 32020680 DOI: 10.1096/fj.201901592rr] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 12/28/2019] [Accepted: 01/14/2020] [Indexed: 12/21/2022]
Abstract
Ischemic heart disease is a leading cause of morbidity and mortality. Repressor activator protein 1 (Rap1), an established telomere-associated protein, is a novel modulator of hypoxia-induced apoptosis. This study aimed to explore the potential direct role of Rap1 in myocardial ischemia/reperfusion injury (I/RI) and to determine the underlying molecular mechanism. In a mouse model of myocardial I/RI (30-min of left descending coronary artery ligation followed by 2-h reperfusion), Rap1 deficiency significantly reduced myocardial infarct size (IS) and improved cardiac systolic/diastolic function. This was associated with a reduction in apoptosis in the post-ischemic myocardium. In H9C2 and primary cardiomyocytes, Rap1 knockdown or knockout significantly suppressed hypoxia/reoxygenation (H/R)-induced cell injury and apoptosis through increasing the phosphorylation/activation of STAT3 at site Ser727 and translocation of STAT3 to the nucleus. We surmise this since Stattic (selective STAT3 inhibitor) pretreatment canceled the abovementioned protective effect. Furthermore, co-immunoprecipitation assay revealed a direct interaction between Rap1 and STAT3, but not JAK2, suggesting that the association of Rap1 with STAT3 may contribute to the reduced activity of STAT3 (Ser727 ) upon H/R stimulation. In conclusion, Rap1 deficiency protects the heart from ischemic damage through STAT3-dependent reduction of cardiomyocyte apoptosis, which may yield viable target for pharmacological intervention in ischemic heart disease.
Collapse
Affiliation(s)
- Yin Cai
- Department of Anaesthesiology, The University of Hong Kong, Hong Kong SAR, China
| | - Fan Ying
- Department of Anaesthesiology, The University of Hong Kong, Hong Kong SAR, China
| | - Hao Liu
- Department of Anaesthesiology, The University of Hong Kong, Hong Kong SAR, China.,Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Liang Ge
- Department of Anesthesiology, The First Hospital, Jilin University, Changchun, China
| | - Erfei Song
- The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Lin Wang
- Department of Anaesthesiology, The University of Hong Kong, Hong Kong SAR, China
| | - Dengwen Zhang
- Department of Anesthesiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong, China
| | - Eva Hoi Ching Tang
- Department of Pharmacology and Pharmacy and School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Zhengyuan Xia
- Department of Anaesthesiology, The University of Hong Kong, Hong Kong SAR, China
| | - Michael G Irwin
- Department of Anaesthesiology, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
33
|
Inhibition of Xanthine Oxidoreductase Enhances the Potential of Tyrosine Kinase Inhibitors against Chronic Myeloid Leukemia. Antioxidants (Basel) 2020; 9:antiox9010074. [PMID: 31952182 PMCID: PMC7022995 DOI: 10.3390/antiox9010074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/13/2020] [Accepted: 01/13/2020] [Indexed: 12/28/2022] Open
Abstract
Chronic myeloid leukemia (CML) is characterized by the expression of the oncogenic kinase BCR-ABL. Although tyrosine kinase inhibitors (TKIs) against BCR-ABL represent the standard therapeutic option for CML, resistances to TKIs can be a serious problem. Thus, the search for novel therapeutic approaches is still needed. CML cells show an increased ROS production, which is required for maintaining the BCR-ABL signaling cascade active. In line with that, reducing ROS levels could be an interesting therapeutic strategy for the clinical management of resistant CML. To analyze the therapeutic potential of xanthine oxidoreductase (XOR) in CML, we tested the effect of XOR inhibitor allopurinol. Here, we show for the first time the therapeutic potential of allopurinol against BCR-ABL-positive CML cells. Allopurinol reduces the proliferation and clonogenic ability of the CML model cell lines K562 and KCL22. More importantly, the combination of allopurinol with imatinib or nilotinib reduced cell proliferation in a synergistic manner. Moreover, the co-treatment arms hampered cell clonogenic capacity and induced cell death more strongly than each single-agent arm. The reduction of intracellular ROS levels and the attenuation of the BCR-ABL signaling cascade may explain these effects. Finally, the self-renewal potential of primary bone marrow cells from CML patients was also severely reduced especially by the combination of allopurinol with TKIs. In summary, here we show that XOR inhibition is an interesting therapeutic option for CML, which can enhance the effectiveness of the TKIs currently used in clinics.
Collapse
|
34
|
The Association of Ascorbic Acid, Deferoxamine and N-Acetylcysteine Improves Cardiac Fibroblast Viability and Cellular Function Associated with Tissue Repair Damaged by Simulated Ischemia/Reperfusion. Antioxidants (Basel) 2019; 8:antiox8120614. [PMID: 31817022 PMCID: PMC6943610 DOI: 10.3390/antiox8120614] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/18/2019] [Accepted: 11/26/2019] [Indexed: 12/16/2022] Open
Abstract
Acute myocardial infarction is one of the leading causes of death worldwide and thus, an extensively studied disease. Nonetheless, the effects of ischemia/reperfusion injury elicited by oxidative stress on cardiac fibroblast function associated with tissue repair are not completely understood. Ascorbic acid, deferoxamine, and N-acetylcysteine (A/D/N) are antioxidants with known cardioprotective effects, but the potential beneficial effects of combining these antioxidants in the tissue repair properties of cardiac fibroblasts remain unknown. Thus, the aim of this study was to evaluate whether the pharmacological association of these antioxidants, at low concentrations, could confer protection to cardiac fibroblasts against simulated ischemia/reperfusion injury. To test this, neonatal rat cardiac fibroblasts were subjected to simulated ischemia/reperfusion in the presence or absence of A/D/N treatment added at the beginning of simulated reperfusion. Cell viability was assessed using trypan blue staining, and intracellular reactive oxygen species (ROS) production was assessed using a 2′,7′-dichlorofluorescin diacetate probe. Cell death was measured by flow cytometry using propidium iodide. Cell signaling mechanisms, differentiation into myofibroblasts and pro-collagen I production were determined by Western blot, whereas migration was evaluated using the wound healing assay. Our results show that A/D/N association using a low concentration of each antioxidant increased cardiac fibroblast viability, but that their separate administration did not provide protection. In addition, A/D/N association attenuated oxidative stress triggered by simulated ischemia/reperfusion, induced phosphorylation of pro-survival extracellular-signal-regulated kinases 1/2 (ERK1/2) and PKB (protein kinase B)/Akt, and decreased phosphorylation of the pro-apoptotic proteins p38- mitogen-activated protein kinase (p38-MAPK) and c-Jun-N-terminal kinase (JNK). Moreover, treatment with A/D/N also reduced reperfusion-induced apoptosis, evidenced by a decrease in the sub-G1 population, lower fragmentation of pro-caspases 9 and 3, as well as increased B-cell lymphoma-extra large protein (Bcl-xL)/Bcl-2-associated X protein (Bax) ratio. Furthermore, simulated ischemia/reperfusion abolished serum-induced migration, TGF-β1 (transforming growth factor beta 1)-mediated cardiac fibroblast-to-cardiac myofibroblast differentiation, and angiotensin II-induced pro-collagen I synthesis, but these effects were prevented by treatment with A/D/N. In conclusion, this is the first study where a pharmacological combination of A/D/N, at low concentrations, protected cardiac fibroblast viability and function after simulated ischemia/reperfusion, and thereby represents a novel therapeutic approach for cardioprotection.
Collapse
|
35
|
Hyperglycemia-Induced Oxidative Stress Abrogates Remifentanil Preconditioning-Mediated Cardioprotection in Diabetic Rats by Impairing Caveolin-3-Modulated PI3K/Akt and JAK2/STAT3 Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9836302. [PMID: 31583053 PMCID: PMC6748204 DOI: 10.1155/2019/9836302] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 06/09/2019] [Accepted: 07/22/2019] [Indexed: 12/30/2022]
Abstract
Diabetic hearts are more vulnerable to ischemia/reperfusion (I/R) injury and less responsive to remifentanil preconditioning (RPC), but the underlying mechanisms are incompletely understood. Caveolin-3 (Cav-3), the dominant isoform of cardiomyocyte caveolae, is reduced in diabetic hearts in which oxidative stress is increased. This study determined whether the compromised RPC in diabetes was an independent manifestation of hyperglycemia-induced oxidative stress or linked to impaired Cav-3 expression with associated signaling abnormality. RPC significantly attenuated postischemic infarction, cardiac dysfunction, myocardial apoptosis, and 15-F2t-isoprostane production (a specific marker of oxidative stress), accompanied with increased Cav-3 expression and enhanced Akt and STAT3 activation in control but not in diabetic rats. Pretreatment with the antioxidant N-acetylcysteine (NAC) attenuated hyperglycemia-induced reduction of Cav-3 expression and Akt and STAT3 activation and restored RPC-mediated cardioprotection in diabetes, which was abolished by cardiac-specific knockdown of Cav-3 by AAV9-shRNA-Cav-3, PI3K/Akt inhibitor wortmannin, or JAK2/STAT3 inhibitor AG490, respectively. Similarly, NAC could restore RPC protection from high glucose and hypoxia/reoxygenation-induced injury evidenced by decreased levels of LDH release, 15-F2t-isoprostane, O2 -, and JC-1 monomeric cells, which were reversed by caveolae disrupter methyl-β-cyclodextrin, wortmannin, or AG490 in isolated primary cardiomyocytes or siRNAs of Cav-3, Akt, or STAT3 in H9C2 cells. Either methyl-β-cyclodextrin or Cav-3 knockdown reduced Akt and STAT3 activation. Further, the inhibition of Akt activation by a selective inhibitor or siRNA reduced STAT3 activation and vice versa, but they had no effects on Cav-3 expression. Thus, hyperglycemia-induced oxidative stress abrogates RPC cardioprotection by impairing Cav-3-modulated PI3K/Akt and JAK2/STAT3 signaling. Antioxidant treatment with NAC could restore RPC-induced cardioprotection in diabetes by improving Cav-3-dependent Akt and STAT3 activation and by facilitating the cross talk between PI3K/Akt and JAK2/STAT3 signaling pathways.
Collapse
|
36
|
Co-exposure to endocrine disruptors: effect of bisphenol A and soy extract on glucose homeostasis and related metabolic disorders in male mice. Endocr Regul 2019; 52:76-84. [PMID: 29715189 DOI: 10.2478/enr-2018-0009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES Bisphenol A (BPA) is a xenoestrogen, which is commonly used as a monomer of polycarbonate plastics food containers and epoxy resins. Little is known about the interaction effects between xeno- and phyto- estrogens on glucose homeostasis or other metabolic disorders. The aim of this study was to examine effects of individual or combined exposure to low doses of BPA and soy extract on glucose metabolism in mice with the goal to establish its potential mechanisms. METHODS Fifty-four male mice were randomly divided into six groups. Mice were treated with soy extract at 60 or 150 mg/kg by daily gavage with or without subcutaneously administration of BPA (100 μg/kg/day) for four weeks at the same time, while the control group received a vehicle. Serum levels of fasting glucose, insulin, adiponectin, testosterone, malondialdehyde (MDA), and total antioxidant capacity (TAC) were measured. Homeostatic model assessment-β cell function (HOMA-β) index was also determined. RESULTS BPA exposure induced hyperglycemia and significantly reduced HOMA-β, serum levels of insulin, adiponectin, testosterone, and TAC and noticeably enhanced MDA in BPA group compared to control one. While treatment with soy extract in high dose (150 mg/kg) significantly decreased the levels of fasting blood glucose and MDA and notably improved the serum levels of insulin, HOMA-β, and TAC compared to BPA group. CONCLUSION Soy extract may protect against some adverse effects of BPA. These findings represent the first report suggesting a potential effect between soy extract and BPA in low doses, however, further studies are needed to confirm these results.
Collapse
|
37
|
Up-regulation of ANXA1 suppresses polymorphonuclear neutrophil infiltration and myeloperoxidase activity by activating STAT3 signaling pathway in rat models of myocardial ischemia-reperfusion injury. Cell Signal 2019; 62:109325. [PMID: 31132398 DOI: 10.1016/j.cellsig.2019.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 12/18/2022]
Abstract
Myocardial ischemia-reperfusion injury (MIRI) is recognized as a major cause of morbidity and mortality which is commonly associated with coronary artery disease. In recent studies, annexin A1 gene (ANXA1) has been discovered to be involved in the treatment for MIRI. In this study, the primary focus was on the molecular mechanism of ANXA1 in polymorphonuclear neutrophil (PMN) infiltration and myeloperoxidase (MPO) activity in rats with MIRI. Initially, microarray analysis was carried out in order to identify differentially expressed genes. Moreover, a rat model of MIRI was established for evaluating the expression of ANXA1, signal transducer and activator of transcription 3 (STAT3) and vascular endothelial growth factor (VEGF) in myocardial tissues. Following this, the ANXA1 vector, siRNA-ANXA1, and Stattic (inhibitor of STAT3 signaling pathway) were utilized for analyzing the regulatory role of ANXA1 in physiological indexes, hemodynamic parameters, inflammatory factors, myocardial infarct size, MPO activity, PMN infiltration, and apoptosis of PMNs. Furthermore, the relationship between ANXA1 and STAT3 signaling pathway was analyzed. Initially, a reduction in the expression of ANXA1, STAT3 and VEGF in myocardial tissues of MIRI rats was found. To elaborate, overexpressed ANXA1 inhibited levels of inflammatory factors, the activation of PMN infiltration, reduced the degree of PMN infiltration, and decreased the apoptosis of PMNs. More importantly, down-regulated ANXA1 inhibited the activation of STAT3 signaling pathway, which thereby suppressed VEGF expression. With this all taken into account, the present study presents that up-regulated ANXA1 inhibits PMN infiltration and MPO activity by activation of STAT3 signaling pathway in rats with MIRI.
Collapse
|
38
|
Sun H, Shi K, Xie D, Zhang H, Yu B. Long noncoding RNA C2dat1 protects H9c2 cells against hypoxia injury by downregulating miR-22. J Cell Physiol 2019; 234:20623-20633. [PMID: 31004350 DOI: 10.1002/jcp.28667] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/27/2019] [Accepted: 04/02/2019] [Indexed: 11/07/2022]
Abstract
Myocardial ischemia is accompanied with hypoxia injury in myocardial cells. Long noncoding RNAs (lncRNA) CAMK2D-associated transcript 1 (C2dat1) C2dat1) has been linked with several ischemic diseases. However, the investigation regarding its role in myocardial ischemia is relatively rare. The aim of this study was to examine the role of C2dat1 in hypoxia response in H9c2 cells. H9c2 cells were subjected to hypoxia to evoke cell damage. Expressions of C2dat1, miR-22, and VEGF in H9c2 cells were altered by transfection, and then cell survival, migration, and invasion were respectively assessed posttransfection. Regulatory relationship between C2dat1, miR-22, and VEGF, as well as the involvement of PI3K/AKT/mTOR and JAK/STAT3 pathways in H9c2 cells injury was then studied. C2dat1 upregulation ameliorated hypoxia injury in H9c2 cells due to the increased viability, migration, and invasion, as well as the decreased apoptosis. miR-22 was negatively regulated by C2dat1. The effects of C2dat1 on H9c2 cells injured by hypoxia were attenuated when miR-22 was overexpressed. VEGF was a target gene of miR-22, and VEGF exerted similar protective effects to C2dat1. Finally, we found that silence of C2dat1 deactivated PI3K/AKT/mTOR and JAK/STAT3 pathways via regulating miR-22 and its downstream gene VEGF. C2dat1-miR-22-VEGF axis could regulate hypoxia injury in H9c2 cells. C2dat1 alleviated hypoxia injury possibly via downregulating miR-22, then upregulating VEGF, which further enhancing the activation of PI3K/AKT/mTOR and JAK/STAT3 pathways.
Collapse
Affiliation(s)
- Huan Sun
- Department of Cardiology, Jilin Provincial Molecular Biology Research Center for Precision Medicine of Major Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Kaiyao Shi
- Department of Cardiology, Jilin Provincial Molecular Biology Research Center for Precision Medicine of Major Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Di Xie
- Department of Cardiology, Jilin Provincial Molecular Biology Research Center for Precision Medicine of Major Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Hongli Zhang
- Department of Cardiology, Jilin Provincial Molecular Biology Research Center for Precision Medicine of Major Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Bo Yu
- Department of Cardiology, Jilin Provincial Molecular Biology Research Center for Precision Medicine of Major Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
39
|
miR-181c-5p Exacerbates Hypoxia/Reoxygenation-Induced Cardiomyocyte Apoptosis via Targeting PTPN4. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1957920. [PMID: 31178952 PMCID: PMC6501226 DOI: 10.1155/2019/1957920] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 11/17/2022]
Abstract
Background Activation of cell apoptosis is a major form of cell death during myocardial ischemia/reperfusion injury (I/RI). Therefore, examining ways to control cell apoptosis has important clinical significance for improving postischemic recovery. Clinical evidence demonstrated that miR-181c-5p was significantly upregulated in the early phase of myocardial infarction. However, whether or not miR-181c-5p mediates cardiac I/RI through cell apoptosis pathway is unknown. Thus, the present study is aimed at investigating the role and the possible mechanism of miR-181c-5p in apoptosis during I/R injury by using H9C2 cardiomyocytes. Methods and Results The rat origin H9C2 cardiomyocytes were subjected to hypoxia/reoxygenation (H/R, 6 hours hypoxia followed by 6 hours reoxygenation) to induce cell injury. The results showed that H/R significantly increased the expression of miR-181c-5p but not miR-181c-3p in H9C2 cells. In line with this, in an in vivo rat cardiac I/RI model, miR-181c-5p expression was also significantly increased. The overexpression of miR-181c-5p by its agomir transfection significantly aggravated H/R-induced cell injury (increased lactate dehydrogenase level and reduced cell viability) and exacerbated H/R-induced cell apoptosis (greater cleaved caspases 3 expression, Bax/Bcl-2 and more TUNEL-positive cells). In contrast, inhibition of miR-181c-5p in vitro had the opposite effect. By using computational prediction algorithms, protein tyrosine phosphatase nonreceptor type 4 (PTPN4) was predicted as a potential target gene of miR-181c-5p and was verified by the luciferase reporter assay. The overexpression of miR-181c-5p significantly attenuated the mRNA and protein expression of PTPN4 in H9C2 cardiomyocytes. Moreover, knockdown of PTPN4 significantly aggravated H/R-induced enhancement of LDH level, cleaved caspase 3 expression, and apoptotic cell death, which mimicked the proapoptotic effects of miR-181c-5p in H9C2 cardiomyocytes. Conclusions These findings suggested that miR-181c-5p exacerbates H/R-induced cardiomyocyte injury and apoptosis via targeting PTPN4 and that miR-181c-5p/PTPN4 signaling may yield novel strategies to combat myocardial I/R injury.
Collapse
|
40
|
Oxidative Stress and Inflammation Interaction in Ischemia Reperfusion Injury: Role of Programmed Cell Death. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6780816. [PMID: 31089413 PMCID: PMC6476075 DOI: 10.1155/2019/6780816] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 01/17/2019] [Indexed: 12/21/2022]
|
41
|
Liu Q, Li Z, Liu Y, Xiao Q, Peng X, Chen Q, Deng R, Gao Z, Yu F, Zhang Y. Hydromorphine postconditioning protects isolated rat heart against ischemia-reperfusion injury via activating P13K/Akt/eNOS signaling. Cardiovasc Ther 2019; 36:e12481. [PMID: 30597772 DOI: 10.1111/1755-5922.12481] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 12/28/2018] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Myocardial ischemia/reperfusion injury (myocardial I/R injury) has a high disability rate and mortality. Novel treatments for myocardial I/R injury are necessary. AIM In order to explore the protective effect of hydromorphine on myocardial I/R injury, we illuminate the underlying mechanism of the protective effect. RESULTS Hydromorphine significantly reduced myocardial infarct size (IFN/AAR), CKMB (Creatine Kinase MB) and TN-T (Troponin T) release, and improved cardiac function compared with I/R group. However, these advantageous effects were partly suppressed in the presence of hydromorphine. Myocardial I/R injury significantly decreased the phosphorylation of Akt and eNOS, and down-regulated total nitric oxide and nitrotyrosine content, while these inhibitory effects were partly abolished by hydromorphine. Conversely, the activated effects of hydromorphine on the phosphorylation of Akt and eNOS, and NO release were totally reversed by LY294002, which, used individually, show the same influence on reperfusion injury. CONCLUSIONS These findings suggest that hydromorphine postconditioning may protect isolated rat heart against reperfusion injury via activating P13K/Akt/eNOS signaling.
Collapse
Affiliation(s)
- Qing Liu
- Department of Anesthesiology, Affiliated traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Zhengfen Li
- Department of Anesthesiology, Affiliated traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Yuexin Liu
- Department of Anesthesiology, Affiliated traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Qiuxia Xiao
- Department of Anesthesiology, Affiliated traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Xuan Peng
- Department of Anesthesiology, Affiliated traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Qi Chen
- Department of Anesthesiology, Affiliated traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Rui Deng
- Department of Anesthesiology, Affiliated traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Zhiwei Gao
- Department of Anesthesiology, Affiliated traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Fengxu Yu
- Department of Cardio-thoracic Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Ying Zhang
- Department of Anesthesiology, Affiliated traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
42
|
Wang TT, Shi MM, Liao XL, Li YQ, Yuan HX, Li Y, Liu X, Ning DS, Peng YM, Yang F, Mo ZW, Jiang YM, Xu YQ, Li H, Wang M, Ou ZJ, Xia Z, Ou JS. Overexpression of inducible nitric oxide synthase in the diabetic heart compromises ischemic postconditioning. J Mol Cell Cardiol 2019; 129:144-153. [PMID: 30797815 DOI: 10.1016/j.yjmcc.2019.02.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/21/2019] [Accepted: 02/18/2019] [Indexed: 01/07/2023]
Abstract
Ischemia postconditioning (PTC) can reduce myocardial ischemia/reperfusion injury. However, the effectiveness of PTC cardioprotection is reduced or lost in diabetes and the mechanisms are largely unclear. Hyperglycemia can induce overexpression of inducible nitric oxide synthesis (iNOS) in the myocardium of diabetic subjects. However, it is unknown whether or not iNOS especially its overexpression plays an important role in the loss of cardioprotection of PTC in diabetes. C57BL6 and iNOS-/- mice were treated with streptozotocin to induce diabetes. Part of diabetic C57BL6 mice were also treated with an iNOS specific inhibitor, 1400 W. Mice were subjected to myocardial ischemia/ reperfusion with/without PTC. The hemodynamic parameters, plasma levels of cardiac troponin T (cTnT), TNF-α, IL-6 and nitric oxide (NO) were monitored. The myocardial infarct size, superoxide anion (O2-) generation, nitrotyrosine production and apoptosis were measured. The expression of phosphorylated Akt, endothelial NOS (eNOS), iNOS and Erk1/2 in ischemic heart were detected by immunoblot analysis. In diabetic C57BL6 and iNOS-/- mice, the post-ischemic hemodynamics were impaired, the cTnT, TNF-α, IL-6 level, myocardial infarct size, apoptotic index, O2- and nitrotyrosine generation were increased and the Akt/eNOS signal pathways were inhibited. PTC improved hemodynamic parameters, reduced cTnT level, myocardial infarct size, apoptotic index, O2- and nitrotyrosine generation and activated Akt/eNOS and Erk1/2 signal pathways in both non-diabetic C57BL6 and iNOS-/- mice as well as diabetic iNOS-/- mice, but not in diabetic C57BL6 mice. PTC also increased NO production in both non-diabetic and diabetic C57BL6 and iNOS-/- mice, and enhanced iNOS expression in non-diabetic C57BL6 mice. 1400 W restored the cardioprotection of PTC in diabetic C57BL6 mice. Our data demonstrated that PTC reduced myocardial ischemia/reperfusion injury in non-diabetic mice but not C57BL6 diabetic mice. Deletion of iNOS restored the cardioprotection of PTC in diabetic mice. Our findings suggest that iNOS plays a key role in the reduction of cardioprotection of PTC in diabetes and may provide a therapeutic target for diabetic patients.
Collapse
Affiliation(s)
- Tian-Tian Wang
- Division of Cardiac Surgery, Heart center, The First Affiliated Hospital, Sun Yat-sen University, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, PR China; National and Guangdong Province Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, PR China
| | - Mao-Mao Shi
- Division of Cardiac Surgery, Heart center, The First Affiliated Hospital, Sun Yat-sen University, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, PR China; National and Guangdong Province Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, PR China
| | - Xiao-Long Liao
- Division of Cardiac Surgery, Heart center, The First Affiliated Hospital, Sun Yat-sen University, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, PR China
| | - Yu-Quan Li
- Division of Cardiac Surgery, Heart center, The First Affiliated Hospital, Sun Yat-sen University, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, PR China; National and Guangdong Province Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, PR China
| | - Hao-Xiang Yuan
- Division of Cardiac Surgery, Heart center, The First Affiliated Hospital, Sun Yat-sen University, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, PR China; National and Guangdong Province Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, PR China
| | - Yan Li
- Division of Cardiac Surgery, Heart center, The First Affiliated Hospital, Sun Yat-sen University, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, PR China; National and Guangdong Province Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, PR China
| | - Xiang Liu
- Division of Cardiac Surgery, Heart center, The First Affiliated Hospital, Sun Yat-sen University, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, PR China; National and Guangdong Province Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, PR China
| | - Da-Sheng Ning
- Division of Cardiac Surgery, Heart center, The First Affiliated Hospital, Sun Yat-sen University, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, PR China; National and Guangdong Province Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, PR China
| | - Yue-Ming Peng
- Division of Cardiac Surgery, Heart center, The First Affiliated Hospital, Sun Yat-sen University, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, PR China; National and Guangdong Province Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, PR China
| | - Fan Yang
- Division of Cardiac Surgery, Heart center, The First Affiliated Hospital, Sun Yat-sen University, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, PR China; National and Guangdong Province Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, PR China
| | - Zhi-Wei Mo
- Division of Cardiac Surgery, Heart center, The First Affiliated Hospital, Sun Yat-sen University, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, PR China; National and Guangdong Province Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, PR China
| | - Yu-Mei Jiang
- Department of Extracorporeal circulation, Heart center, The First Affiliated Hospital, Sun Yat-sen University, PR China
| | - Ying-Qi Xu
- Division of Cardiac Surgery, Heart center, The First Affiliated Hospital, Sun Yat-sen University, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, PR China
| | - Haobo Li
- Department of Anaesthesiology, The University of Hong Kong, Hong Kong, China
| | - Min Wang
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, PR China
| | - Zhi-Jun Ou
- Division of Hypertension and Vascular Diseases, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, PR China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, PR China; National and Guangdong Province Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, PR China.
| | - Zhengyuan Xia
- Department of Anaesthesiology, The University of Hong Kong, Hong Kong, China.
| | - Jing-Song Ou
- Division of Cardiac Surgery, Heart center, The First Affiliated Hospital, Sun Yat-sen University, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, PR China; National and Guangdong Province Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, PR China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou 510080, PR China.
| |
Collapse
|
43
|
Abstract
Diabetes is a global epidemic and a leading cause of death with more than 422 million patients worldwide out of whom around 392 million alone suffer from type 2 diabetes (T2D). Sodium-glucose cotransporter 2 inhibitors (SGLT2i) are novel and effective drugs in managing glycemia of T2D patients. These inhibitors gained recent clinical and basic research attention due to their clinically observed cardiovascular protective effects. Although interest in the study of various SGLT isoforms and the effect of their inhibition on cardiovascular function extends over the past 20 years, an explanation of the effects observed clinically based on available experimental data is not forthcoming. The remarkable reduction in cardiovascular (CV) mortality (38%), major CV events (14%), hospitalization for heart failure (35%), and death from any cause (32%) observed over a period of 2.6 years in patients with T2D and high CV risk in the EMPA-REG OUTCOME trial involving the SGLT2 inhibitor empagliflozin (Empa) have raised the possibility that potential novel, more specific mechanisms of SGLT2 inhibition synergize with the known modest systemic improvements, such as glycemic, body weight, diuresis, and blood pressure control. Multiple studies investigated the direct impact of SGLT2i on the cardiovascular system with limited findings and the pathophysiological role of SGLTs in the heart. The direct impact of SGLT2i on cardiac homeostasis remains controversial, especially that SGLT1 isoform is the only form expressed in the capillaries and myocardium of human and rodent hearts. The direct impact of SGLT2i on the cardiovascular system along with potential lines of future research is summarized in this review.
Collapse
|
44
|
Pipicz M, Demján V, Sárközy M, Csont T. Effects of Cardiovascular Risk Factors on Cardiac STAT3. Int J Mol Sci 2018; 19:ijms19113572. [PMID: 30424579 PMCID: PMC6274853 DOI: 10.3390/ijms19113572] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/01/2018] [Accepted: 11/08/2018] [Indexed: 12/14/2022] Open
Abstract
Nuclear, mitochondrial and cytoplasmic signal transducer and activator of transcription 3 (STAT3) regulates many cellular processes, e.g., the transcription or opening of mitochondrial permeability transition pore, and its activity depends on the phosphorylation of Tyr705 and/or Ser727 sites. In the heterogeneous network of cardiac cells, STAT3 promotes cardiac muscle differentiation, vascular element formation and extracellular matrix homeostasis. Overwhelming evidence suggests that STAT3 is beneficial for the heart, plays a role in the prevention of age-related and postpartum heart failure, protects the heart against cardiotoxic doxorubicin or ischaemia/reperfusion injury, and is involved in many cardioprotective strategies (e.g., ischaemic preconditioning, perconditioning, postconditioning, remote or pharmacological conditioning). Ischaemic heart disease is still the leading cause of death worldwide, and many cardiovascular risk factors contribute to the development of the disease. This review focuses on the effects of various cardiovascular risk factors (diabetes, aging, obesity, smoking, alcohol, depression, gender, comedications) on cardiac STAT3 under non-ischaemic baseline conditions, and in settings of ischaemia/reperfusion injury with or without cardioprotective strategies.
Collapse
Affiliation(s)
- Márton Pipicz
- Metabolic Diseases and Cell Signaling (MEDICS) Research Group, Department of Biochemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér. 9., H-6720 Szeged, Hungary.
| | | | | | | |
Collapse
|
45
|
Liu X, Wang L, Cai J, Liu K, Liu M, Wang H, Zhang H. N-acetylcysteine alleviates H2O2-induced damage via regulating the redox status of intracellular antioxidants in H9c2 cells. Int J Mol Med 2018; 43:199-208. [PMID: 30387809 PMCID: PMC6257848 DOI: 10.3892/ijmm.2018.3962] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 10/23/2018] [Indexed: 01/15/2023] Open
Abstract
N-acetylcysteine (NAC) is a thiol-containing antioxidant that modulates the intracellular redox state. NAC can scavenge reactive oxygen species (ROS) and maintain reduced glutathione (GSH) levels, in order to protect cardiomyocytes from oxidative stress. The present study aimed to determine whether NAC protects cardiomyocytes from oxidative damage by regulating the redox status of intracellular antioxidant proteins. The results revealed that NAC pretreatment increased cell viability and inhibited the activation of caspase-3, -8 and -9 during hydrogen peroxide (H2O2)-induced oxidative stress in H9c2 cells. Furthermore, decreased ROS levels, and increased total and reduced GSH levels were detected in response to NAC pretreatment. Non-reducing redox western blotting was performed to detect the redox status of intracellular antioxidant proteins, including thioredoxin 1 (Trx1), peroxiredoxin 1 (Prx1), GSH reductase (GSR), and phosphatase and tensin homolog (PTEN). The results revealed that the reduced form of Trx1 was markedly increased, and the oxidized forms of Prx1, GSR and PTEN were decreased following NAC pretreatment. Furthermore, NAC pretreatment decreased H2O2-induced phosphorylation of apoptosis signal-regulating kinase 1, which depends on the redox state of Trx1, and increased H2O2-induced phosphorylation of protein kinase B, which is essential to cell survival. To the best of our knowledge, the present study is the first to reveal that NAC pretreatment may alleviate oxidation of intracellular antioxidant proteins to inhibit oxidative stress-induced cardiomyocyte apoptosis.
Collapse
Affiliation(s)
- Xiehong Liu
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, P.R. China
| | - Li Wang
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, P.R. China
| | - Jiaodi Cai
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, P.R. China
| | - Ke Liu
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, P.R. China
| | - Meidong Liu
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, P.R. China
| | - Hao Wang
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, P.R. China
| | - Huali Zhang
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, P.R. China
| |
Collapse
|
46
|
Cheng X, Hu J, Wang Y, Ye H, Li X, Gao Q, Li Z. Effects of Dexmedetomidine Postconditioning on Myocardial Ischemia/Reperfusion Injury in Diabetic Rats: Role of the PI3K/Akt-Dependent Signaling Pathway. J Diabetes Res 2018; 2018:3071959. [PMID: 30402501 PMCID: PMC6196799 DOI: 10.1155/2018/3071959] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 07/17/2018] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVE The present study was designed to determine whether dexmedetomidine (DEX) exerts cardioprotection against myocardial I/R injury in diabetic hearts and the mechanisms involved. METHODS A total of 30 diabetic rats induced by high-glucose-fat diet and streptozotocin (STZ) were randomly assigned to five groups: diabetic sham-operated group (DM-S), diabetic I/R group (DM-I/R), diabetic DEX group (DM-D), diabetic DEX + Wort group (DM-DW), and diabetic Wort group (DM-W). Another 12 age-matched male normal SD rats were randomly divided into two groups: sham-operated group (S) and I/R group (I/R). All rats were subjected to 30 min myocardial ischemia followed by 120 min reperfusion except sham groups. Plasmas were collected to measure the malondialdehyde (MDA), creatine kinase isoenzymes (CK-MB), and lactate dehydrogenase (LDH) levels and superoxide dismutase (SOD) activity at the end of reperfusion. Pathologic changes in myocardial tissues were observed by H-E staining. The total and phosphorylated form of Akt and GSK-3β protein expressions were measured by western blot. The ratio of Bcl-2/Bax at mRNA level was detected by reverse transcription-polymerase chain reaction (RT-PCR). RESULTS DEX significantly reduced plasma CK-MB, MDA concentration, and LDH level and increased SOD activity caused by I/R. The phosphorylation of Akt and GSK-3β was increased, Bcl-2 mRNA and the Bcl-2/Bax ratio was increased, and Bax mRNA was decreased in the DEX group as compared to the I/R group, while posttreatment with Wort attenuated the effects induced by DEX. CONCLUSION The results of this study suggest that DEX postconditioning may increase the phosphorylation of GSK-3β by activating the PI3K/Akt signaling pathway and may inhibit apoptosis and oxidative stress of the myocardium, thus exerting protective effects in diabetic rat hearts suffering from I/R injury.
Collapse
Affiliation(s)
- Xiangyang Cheng
- Department of Anesthesiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, China
| | - Jing Hu
- Department of Anesthesiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, China
| | - Ya Wang
- Department of Physiology, Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Hongwei Ye
- Department of Physiology, Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Xiaohong Li
- Department of Anesthesiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, China
| | - Qin Gao
- Department of Physiology, Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Zhenghong Li
- Department of Physiology, Bengbu Medical College, Bengbu, Anhui 233030, China
| |
Collapse
|
47
|
Dludla PV, Dias SC, Obonye N, Johnson R, Louw J, Nkambule BB. A Systematic Review on the Protective Effect of N-Acetyl Cysteine Against Diabetes-Associated Cardiovascular Complications. Am J Cardiovasc Drugs 2018; 18:283-298. [PMID: 29623672 DOI: 10.1007/s40256-018-0275-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Heart failure is the leading cause of death in patients with diabetes. No treatment currently exists to specifically protect these patients at risk of developing cardiovascular complications. Accelerated oxidative stress-induced tissue damage due to persistent hyperglycemia is one of the major factors implicated in deteriorated cardiac function within a diabetic state. N-acetyl cysteine (NAC), through its enhanced capacity to endogenously synthesize glutathione, a potent antioxidant, has displayed abundant health-promoting properties and has a favorable safety profile. OBJECTIVE An increasing number of experimental studies have reported on the strong ameliorative properties of NAC. We systematically reviewed the data on the cardioprotective potential of this compound to provide an informative summary. METHODS Two independent reviewers systematically searched major databases, including PubMed, Cochrane Library, Google scholar, and Embase for available studies reporting on the ameliorative effects of NAC as a monotherapy or in combination with other therapies against diabetes-associated cardiovascular complications. We used the ARRIVE and JBI appraisal guidelines to assess the quality of individual studies included in the review. A meta-analysis could not be performed because the included studies were heterogeneous and data from randomized clinical trials were unavailable. RESULTS Most studies support the ameliorative potential of NAC against a number of diabetes-associated complications, including oxidative stress. We discuss future prospects, such as identification of additional molecular mechanisms implicated in diabetes-induced cardiac damage, and highlight limitations, such as insufficient studies reporting on the comparative effect of NAC with common glucose-lowering therapies. Information on the comparative analysis of NAC, in terms of dose selection, administration mode, and its effect on different cardiovascular-related markers is important for translation into clinical studies. CONCLUSIONS NAC exhibits strong potential for the protection of the diabetic heart at risk of myocardial infarction through inhibition of oxidative stress. The effect of NAC in preventing both ischemia and non-ischemic-associated cardiac damage is also of interest. Consistency in dose selection in most studies reported remains important in dose translation for clinical relevance.
Collapse
|
48
|
Lahnwong C, Chattipakorn SC, Chattipakorn N. Potential mechanisms responsible for cardioprotective effects of sodium-glucose co-transporter 2 inhibitors. Cardiovasc Diabetol 2018; 17:101. [PMID: 29991346 PMCID: PMC6038192 DOI: 10.1186/s12933-018-0745-5] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 07/06/2018] [Indexed: 02/07/2023] Open
Abstract
Diabetes mellitus currently affects over 350 million patients worldwide and is associated with many deaths from cardiovascular complications. Sodium-glucose co-transporter 2 (SGLT-2) inhibitors are a novel class of antidiabetic drugs with cardiovascular benefits beyond other antidiabetic drugs. In the EMPA-REG OUTCOME trial, empagliflozin significantly decreases the mortality rate from cardiovascular causes [38% relative risk reduction (RRR)], the mortality rate from all-causes (32% RRR) and the rate of heart failure hospitalization (35% RRR) in diabetic patients with established cardiovascular diseases. The possible mechanisms of SGLT-2 inhibitors are proposed to be systemic effects by hemodynamic and metabolic actions. However, the direct mechanisms are not fully understood. In this review, reports concerning the effects of SGLT-2 inhibitors in models of diabetic cardiomyopathy, heart failure and myocardial ischemia from in vitro, in vivo as well as clinical reports are comprehensively summarized and discussed. By current evidences, it may be concluded that the direct effects of SGLT-2 inhibitors are potentially mediated through their ability to reduce cardiac inflammation, oxidative stress, apoptosis, mitochondrial dysfunction and ionic dyshomeostasis.
Collapse
Affiliation(s)
- Charshawn Lahnwong
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
49
|
Wang B, Guo H, Li X, Yue L, Liu H, Zhao L, Bai H, Liu X, Wu X, Qu Y. Adiponectin Attenuates Oxygen-Glucose Deprivation-Induced Mitochondrial Oxidative Injury and Apoptosis in Hippocampal HT22 Cells via the JAK2/STAT3 Pathway. Cell Transplant 2018; 27:1731-1743. [PMID: 29947255 PMCID: PMC6300778 DOI: 10.1177/0963689718779364] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Ischemic stroke is among the leading causes of morbidity and mortality worldwide. Improving the tolerance of neurons to ischemia and reperfusion injury could be a feasible strategy against ischemia. Adiponectin (APN) is a major adipokine that regulates glucose and lipid metabolism and plays an important role in the protection of the cerebral nervous system. We aimed to investigate the effects of APN on oxygen and glucose deprivation (OGD)-induced neuronal injury in hippocampal neuronal HT22 cells. APN displayed neuroprotective effects against OGD, evidenced by increased cell viability and decreased lactate dehydrogenase release and apoptotic rate. Additionally, APN also maintained mitochondrial ultrastructure and transmembrane potential, attenuated reactive oxygen species and malondialdehyde, and increased superoxide dismutase and glutathione peroxidase activity. Moreover, APN promoted Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) phosphorylation, enhanced STAT3 nuclear translocation, increased the Bcl-2/Bax ratio, and decreased cleaved caspase-3. The aforementioned APN-induced effects were almost reversed by a JAK2 inhibitor, AG490. APN may attenuate OGD-induced hippocampal HT22 neuronal impairment by protecting cells against mitochondrial oxidative stress and apoptosis, mediated by JAK2/STAT3 signaling.
Collapse
Affiliation(s)
- Bodong Wang
- 1 Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China.,2 Department of Neurosurgery, General Hospital of Jinan Military Command, Jinan, Shandong, China
| | - Hao Guo
- 1 Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xia Li
- 1 Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Liang Yue
- 1 Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China.,3 Department of Neurosurgery, Xi'an Aerospace General Hospital, Xi'an, China
| | - Haixiao Liu
- 1 Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Lei Zhao
- 1 Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Hao Bai
- 1 Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xunyuan Liu
- 1 Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xun Wu
- 1 Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yan Qu
- 1 Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
50
|
Chen J, Zhang W, Xu Q, Zhang J, Chen W, Xu Z, Li C, Wang Z, Zhang Y, Zhen Y, Feng J, Chen J, Chen J. Ang-(1-7) protects HUVECs from high glucose-induced injury and inflammation via inhibition of the JAK2/STAT3 pathway. Int J Mol Med 2018; 41:2865-2878. [PMID: 29484371 DOI: 10.3892/ijmm.2018.3507] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 01/23/2018] [Indexed: 11/06/2022] Open
Abstract
Angiotensin (Ang)‑1‑7, which is catalyzed by angiotensin‑converting enzyme 2 (ACE2) from angiotensin‑II (Ang‑II), exerts multiple biological and pharmacological effects, including cardioprotective effects and endothelial protection. The Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) pathway has been demonstrated to be involved in diabetes‑associated cardiovascular complications. The present study hypothesized that Ang‑(1‑7) protects against high glucose (HG)‑induced endothelial cell injury and inflammation by inhibiting the JAK2/STAT3 pathway in human umbilical vein endothelial cells (HUVECs). HUVECs were treated with 40 mmol/l glucose (HG) for 24 h to establish a model of HG‑induced endothelial cell injury and inflammation. Protein expression levels of p‑JAK2, t‑JAK2, p‑STAT3, t‑STAT3, NOX‑4, eNOS and cleaved caspase‑3 were tested by western blotting. CCK‑8 assay was performed to assess cell viability of HUVECs. Apoptotic cell death was analyzed by Hoechst 33258 staining. Mitochondrial membrane potential (MMP) was obtained using JC‑1. Superoxide dismutase (SOD) activity was tested by SOD assay kit. Interleukin (IL)‑1β, IL‑10, IL‑12 and TNF‑α levels in culture media were tested by ELISA. The findings demonstrated that exposure of HUVECs to HG for 24 h induced injury and inflammation. This injury and inflammation were significantly ameliorated by pre‑treatment of cells with either Ang‑(1‑7) or AG490, an inhibitor of the JAK2/STAT3 pathway, prior to exposure of the cells to HG. Exposure of the cells to HG also increased the phosphorylation of JAK2/STAT3 (p‑JAK2 and p‑STAT3). Increased activation of the JAK2/STAT3 pathway was attenuated by pre‑treatment with Ang‑(1‑7). To the best of our knowledge, the findings from the present study provided the first evidence that Ang‑(1‑7) protects against HG‑induced injury and inflammation by inhibiting activation of the JAK2/STAT3 pathway in HUVECs.
Collapse
Affiliation(s)
- Jianfang Chen
- Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Wei Zhang
- Department of Cardiology, Huangpu Division of The First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510700, P.R. China
| | - Qing Xu
- Department of Cardiology, Huangpu Division of The First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510700, P.R. China
| | - Jihua Zhang
- Department of Endocrinology, Shanxian Central Hospital of Shandong Province, Shanxian, Shangdong 274300, P.R. China
| | - Wei Chen
- Department of Cardiology, The People's Hospital of Baoan Shenzhen, Shenzhen, Guangdong 518100, P.R. China
| | - Zhengrong Xu
- Department of Cardiology, The People's Hospital of Baoan Shenzhen, Shenzhen, Guangdong 518100, P.R. China
| | - Chaosheng Li
- Department of Cardiology, The People's Hospital of Baoan Shenzhen, Shenzhen, Guangdong 518100, P.R. China
| | - Zhenhua Wang
- Department of Cardiology, The People's Hospital of Baoan Shenzhen, Shenzhen, Guangdong 518100, P.R. China
| | - Yao Zhang
- Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Yulan Zhen
- Department of Oncology, The Third People's Hospital of Dongguan City, Dongguan, Guangdong 523326, P.R. China
| | - Jianqiang Feng
- Department of Physiology, Zhongshan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Jun Chen
- Department of Cardiology, The People's Hospital of Baoan Shenzhen, Shenzhen, Guangdong 518100, P.R. China
| | - Jingfu Chen
- Department of Cardiovascular Medicine and Dongguan Cardiovascular Institute, The Third People's Hospital of Dongguan City, Dongguan, Guangdong 523326, P.R. China
| |
Collapse
|