1
|
Saeidi Z, Giti R, Rostami M, Mohammadi F. Nanotechnology-Based Drug Delivery Systems in the Transdermal Treatment of Melanoma. Adv Pharm Bull 2023; 13:646-662. [PMID: 38022807 PMCID: PMC10676549 DOI: 10.34172/apb.2023.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 01/15/2023] [Accepted: 01/20/2023] [Indexed: 12/01/2023] Open
Abstract
The incidence rate of melanoma is dramatically increasing worldwide, raising it to the fifth most common cancer in men and the sixth in women currently. Resistance generally occurs to the agents used in chemotherapy; besides their high toxicity destroys the normal cells. This study reviewed a detailed summary of the structure, advantages, and disadvantages of nanotechnology-based drug delivery systems in the treatment of melanoma, as well as some nanocarrier applications in animal models or clinical studies. Respective databases were searched for the target keywords and 93 articles were reviewed and discussed. A close study of the liposomes, niosomes, transferosomes, ethosomes, transethosomes, cubosomes, dendrimers, cyclodextrins, solid lipid nanoparticles, and carbon nanotubes (CNTs) was conducted. It was found that these nanocarriers could inhibit metastasis and migration of melanoma cells and decrease cell viability. Conclusively, some nanocarriers like liposomes, niosomes, and transferosomes have been discussed as superior to conventional therapies for melanoma treatment.
Collapse
Affiliation(s)
- Zahra Saeidi
- Department of Pharmaceutics, School of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Rashin Giti
- Department of Prosthodontics, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Rostami
- Department of Pharmaceutics, School of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Farhad Mohammadi
- Department of Pharmaceutics, School of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
2
|
Chemistry and Biochemistry Aspects of the 4-Hydroxy-2,3-trans-nonenal. Biomolecules 2022; 12:biom12010145. [PMID: 35053293 PMCID: PMC8773729 DOI: 10.3390/biom12010145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 12/13/2022] Open
Abstract
4-hydroxy-2,3-trans-nonenal (C9H16O2), also known as 4-hydroxy-2E-nonenal (C9H16O2; HNE) is an α,β-unsaturated hydroxyalkenal. HNE is a major aldehyde, formed in the peroxidation process of ω-6 polyunsaturated fatty acids (ω-6 PUFAs), such as linoleic and arachidonic acid. HNE is not only harmful but also beneficial. In the 1980s, the HNE was regarded as a “toxic product of lipid peroxidation” and the “second toxic messenger of free radicals”. However, already at the beginning of the 21st century, HNE was perceived as a reliable marker of oxidative stress, growth modulating factor and signaling molecule. Many literature data also indicate that an elevated level of HNE in blood plasma and cells of the animal and human body is observed in the course of many diseases, including cancer. On the other hand, it is currently proven that cancer cells divert to apoptosis if they are exposed to supraphysiological levels of HNE in the cancer microenvironment. In this review, we briefly summarize the current knowledge about the biological properties of HNE.
Collapse
|
3
|
Oxidative Stress-Related Mechanisms in Melanoma and in the Acquired Resistance to Targeted Therapies. Antioxidants (Basel) 2021; 10:antiox10121942. [PMID: 34943045 PMCID: PMC8750393 DOI: 10.3390/antiox10121942] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 02/06/2023] Open
Abstract
Melanoma is a highly aggressive cancer with the poorest prognosis, representing the deadliest form of skin cancer. Activating mutations in BRAF are the most frequent genetic alterations, present in approximately 50% of all melanoma cases. The use of specific inhibitors towards mutant BRAF variants and MEK, a downstream signaling target of BRAF in the MAPK pathway, has significantly improved progression-free and overall survival in advanced melanoma patients carrying BRAF mutations. Nevertheless, despite these improvements, resistance still develops within the first year of therapy in around 50% of patients, which is a significant problem in managing BRAF-mutated advanced melanoma. Understanding these mechanisms is one of the mainstreams of the research on BRAFi/MEKi acquired resistance. Both genetic and epigenetic mechanisms have been described. Moreover, in recent years, oxidative stress has emerged as another major force involved in all the phases of melanoma development, from initiation to progression until the onsets of the metastatic phenotype and chemoresistance, and has thus become a target for therapy. In the present review, we discuss the current knowledge on oxidative stress and its signaling in melanoma, as well as the oxidative stress-related mechanisms in the acquired resistance to targeted therapies.
Collapse
|
4
|
Berning L, Scharf L, Aplak E, Stucki D, von Montfort C, Reichert AS, Stahl W, Brenneisen P. In vitro selective cytotoxicity of the dietary chalcone cardamonin (CD) on melanoma compared to healthy cells is mediated by apoptosis. PLoS One 2019; 14:e0222267. [PMID: 31553748 PMCID: PMC6760786 DOI: 10.1371/journal.pone.0222267] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/26/2019] [Indexed: 12/12/2022] Open
Abstract
Malignant melanoma is an aggressive type of cancer and the deadliest form of skin cancer. Even though enormous efforts have been undertaken, in particular the treatment options against the metastasizing form are challenging and the prognosis is generally poor. A novel therapeutical approach is the application of secondary plant constituents occurring in food and food products. Herein, the effect of the dietary chalcone cardamonin, inter alia found in Alpinia species, was tested using human malignant melanoma cells. These data were compared to cardamonin treated normal melanocytes and dermal fibroblasts representing healthy cells. To investigate the impact of cardamonin on tumor and normal cells, it was added to monolayer cell cultures and cytotoxicity, proliferation, tumor invasion, and apoptosis were studied with appropriate cell biological and biochemical methods. Cardamonin treatment resulted in an apoptosis-mediated increase in cytotoxicity towards tumor cells, a decrease in their proliferation rate, and a lowered invasive capacity, whereas the viability of melanocytes and fibroblasts was hardly affected at such concentrations. A selective cytotoxic effect of cardamonin on melanoma cells compared to normal (healthy) cells was shown in vitro. This study along with others highlights that dietary chalcones may be a valuable tool in anticancer therapies which has to be proven in the future in vivo.
Collapse
Affiliation(s)
- Lena Berning
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Lisa Scharf
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Elif Aplak
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - David Stucki
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Claudia von Montfort
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Andreas S. Reichert
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Wilhelm Stahl
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Peter Brenneisen
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
- * E-mail:
| |
Collapse
|
5
|
Cucci MA, Compagnone A, Daga M, Grattarola M, Ullio C, Roetto A, Palmieri A, Rosa AC, Argenziano M, Cavalli R, Simile MM, Pascale RM, Dianzani C, Barrera G, Pizzimenti S. Post-translational inhibition of YAP oncogene expression by 4-hydroxynonenal in bladder cancer cells. Free Radic Biol Med 2019; 141:205-219. [PMID: 31207288 DOI: 10.1016/j.freeradbiomed.2019.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/15/2019] [Accepted: 06/07/2019] [Indexed: 12/23/2022]
Abstract
The transcriptional regulator YAP plays an important role in cancer progression and is negatively controlled by the Hippo pathway. YAP is frequently overexpressed in human cancers, including bladder cancer. Interestingly, YAP expression and activity can be inhibited by pro-oxidant conditions; moreover, YAP itself can also affect the cellular redox status through multiple mechanisms. 4-Hydroxynonenal (HNE), the most intensively studied end product of lipid peroxidation, is a pro-oxidant agent able to deplete GSH and has an anti-tumoral effect by affecting multiple signal pathways, including the down-regulation of oncogene expressions. These observations prompted us to investigate the effect of HNE on YAP expression and activity. We demonstrated that HNE inhibited YAP expression and its target genes in bladder cancer cells through a redox-dependent mechanism. Moreover, the YAP down-regulation was accompanied by an inhibition of proliferation, migration, invasion, and angiogenesis, as well as by an accumulation of cells in the G2/M phase of cell cycle and by an induction of apoptosis. We also established the YAP role in inhibiting cell viability and inducing apoptosis in HNE-treated cells by using an expression vector for YAP. Furthermore, we identified a post-translational mechanism for the HNE-induced YAP expression inhibition, involving an increase of YAP phosphorylation and ubiquitination, leading to proteasomal degradation. Our data established that HNE can post-translationally down-regulate YAP through a redox-dependent mechanism and that this modulation can contribute to determining the specific anti-cancer effects of HNE.
Collapse
Affiliation(s)
- Marie Angele Cucci
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125 Turin, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
| | - Alessandra Compagnone
- Department of Oncology, University of Turin, Via Michelangelo 27, 10125, Turin, Italy
| | - Martina Daga
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125 Turin, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
| | - Margherita Grattarola
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125 Turin, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
| | - Chiara Ullio
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125 Turin, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
| | - Antonella Roetto
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125 Turin, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
| | - Antonietta Palmieri
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125 Turin, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
| | - Arianna Carolina Rosa
- Department of Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125, Turin, Italy
| | - Monica Argenziano
- Department of Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125, Turin, Italy
| | - Roberta Cavalli
- Department of Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125, Turin, Italy
| | - Maria Maddalena Simile
- Department of Clinical and Experimental Medicine, Division of Experimental Pathology and Oncology, University of Sassari, Sassari, Italy
| | - Rosa Maria Pascale
- Department of Clinical and Experimental Medicine, Division of Experimental Pathology and Oncology, University of Sassari, Sassari, Italy
| | - Chiara Dianzani
- Department of Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125, Turin, Italy
| | - Giuseppina Barrera
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125 Turin, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
| | - Stefania Pizzimenti
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125 Turin, Regione Gonzole 10, 10043, Orbassano, Turin, Italy.
| |
Collapse
|
6
|
Gasparovic AC, Milkovic L, Sunjic SB, Zarkovic N. Cancer growth regulation by 4-hydroxynonenal. Free Radic Biol Med 2017; 111:226-234. [PMID: 28131901 DOI: 10.1016/j.freeradbiomed.2017.01.030] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/16/2017] [Accepted: 01/18/2017] [Indexed: 02/07/2023]
Abstract
While reactive oxygen species (ROS) gain their carcinogenic effects by DNA mutations, if generated in the vicinity of genome, lipid peroxidation products, notably 4-hydroxynonenal (HNE), have much more complex modes of activities. Namely, while ROS are short living and have short efficiency distance range (in nm or µm) HNE has strong binding affinity for proteins, thus forming relatively stable adducts. Hence, HNE can diffuse from the site or origin changing structure and function of respective proteins. Consequently HNE can influence proliferation, differentiation and apoptosis of cancer cells on one hand, while on the other it can affect genome functionality, too. Although HNE is considered to be important factor of carcinogenesis due to its ability to covalently bind to DNA, it might also be cytotoxic for cancer cells, as well as it can modulate their growth. In addition to direct cytotoxicity, HNE is also involved in activity mechanisms by which several cytostatic drugs and radiotherapy exhibit their anticancer effects. Complementary to that, the metabolic pathway for HNE detoxification through RLIP76, which is enhanced in cancer, may be a target for anti-cancer treatments. In addition, some cancer cells can undergo apoptosis or necrosis, if exposed to supraphysiological HNE levels in the cancer microenvironment, especially if challenged additionally by pro-oxidative cytostatics and/or inflammation. These findings could explain previously observed disappearance of HNE from invading cancer cells, which is associated with the increase of HNE in non-malignant cells close to invading cancer utilizing cardiolipin as the source of cancer-inhibiting HNE.
Collapse
Affiliation(s)
| | | | | | - Neven Zarkovic
- Rudjer Boskovic Institute, Bijenicka 54, Zagreb, Croatia.
| |
Collapse
|
7
|
Rigon RB, Oyafuso MH, Fujimura AT, Gonçalez ML, do Prado AH, Gremião MPD, Chorilli M. Nanotechnology-Based Drug Delivery Systems for Melanoma Antitumoral Therapy: A Review. BIOMED RESEARCH INTERNATIONAL 2015; 2015:841817. [PMID: 26078967 PMCID: PMC4442269 DOI: 10.1155/2015/841817] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 04/06/2015] [Accepted: 04/07/2015] [Indexed: 12/11/2022]
Abstract
Melanoma (MEL) is a less common type of skin cancer, but it is more aggressive with a high mortality rate. The World Cancer Research Fund International (GLOBOCAN 2012) estimates that there were 230,000 new cases of MEL in the world in 2012. Conventional MEL treatment includes surgery and chemotherapy, but many of the chemotherapeutic agents used present undesirable properties. Drug delivery systems are an alternative strategy by which to carry antineoplastic agents. Encapsulated drugs are advantageous due to such properties as high stability, better bioavailability, controlled drug release, a long blood circulation time, selective organ or tissue distribution, a lower total required dose, and minimal toxic side effects. This review of scientific research supports applying a nanotechnology-based drug delivery system for MEL therapy.
Collapse
Affiliation(s)
- Roberta Balansin Rigon
- School of Pharmaceutical Sciences, Department of Drug and Medicines, São Paulo State University, 14801-902 Araraquara, SP, Brazil
| | - Márcia Helena Oyafuso
- School of Pharmaceutical Sciences, Department of Drug and Medicines, São Paulo State University, 14801-902 Araraquara, SP, Brazil
| | - Andressa Terumi Fujimura
- School of Pharmaceutical Sciences, Department of Drug and Medicines, São Paulo State University, 14801-902 Araraquara, SP, Brazil
| | - Maíra Lima Gonçalez
- School of Pharmaceutical Sciences, Department of Drug and Medicines, São Paulo State University, 14801-902 Araraquara, SP, Brazil
| | - Alice Haddad do Prado
- School of Pharmaceutical Sciences, Department of Drug and Medicines, São Paulo State University, 14801-902 Araraquara, SP, Brazil
| | - Maria Palmira Daflon Gremião
- School of Pharmaceutical Sciences, Department of Drug and Medicines, São Paulo State University, 14801-902 Araraquara, SP, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, Department of Drug and Medicines, São Paulo State University, 14801-902 Araraquara, SP, Brazil
| |
Collapse
|
8
|
Nafee N, Hirosue M, Loretz B, Wenz G, Lehr CM. Cyclodextrin-based star polymers as a versatile platform for nanochemotherapeutics: Enhanced entrapment and uptake of idarubicin. Colloids Surf B Biointerfaces 2015; 129:30-8. [DOI: 10.1016/j.colsurfb.2015.03.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 02/22/2015] [Accepted: 03/03/2015] [Indexed: 12/20/2022]
|
9
|
Drug delivery nanoparticles in skin cancers. BIOMED RESEARCH INTERNATIONAL 2014; 2014:895986. [PMID: 25101298 PMCID: PMC4102061 DOI: 10.1155/2014/895986] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 04/28/2014] [Indexed: 12/17/2022]
Abstract
Nanotechnology involves the engineering of functional systems at nanoscale, thus being attractive for disciplines ranging from materials science to biomedicine. One of the most active research areas of the nanotechnology is nanomedicine, which applies nanotechnology to highly specific medical interventions for prevention, diagnosis, and treatment of diseases, including cancer disease. Over the past two decades, the rapid developments in nanotechnology have allowed the incorporation of multiple therapeutic, sensing, and targeting agents into nanoparticles, for detection, prevention, and treatment of cancer diseases. Nanoparticles offer many advantages as drug carrier systems since they can improve the solubility of poorly water-soluble drugs, modify pharmacokinetics, increase drug half-life by reducing immunogenicity, improve bioavailability, and diminish drug metabolism. They can also enable a tunable release of therapeutic compounds and the simultaneous delivery of two or more drugs for combination therapy. In this review, we discuss the recent advances in the use of different types of nanoparticles for systemic and topical drug delivery in the treatment of skin cancer. In particular, the progress in the treatment with nanocarriers of basal cell carcinoma, squamous cell carcinoma, and melanoma has been reported.
Collapse
|
10
|
Pal HC, Sharma S, Strickland LR, Katiyar SK, Ballestas ME, Athar M, Elmets CA, Afaq F. Fisetin inhibits human melanoma cell invasion through promotion of mesenchymal to epithelial transition and by targeting MAPK and NFκB signaling pathways. PLoS One 2014; 9:e86338. [PMID: 24466036 PMCID: PMC3900533 DOI: 10.1371/journal.pone.0086338] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 12/06/2013] [Indexed: 11/19/2022] Open
Abstract
Malignant melanoma is responsible for approximately 75% of skin cancer-related deaths. BRAF plays an important role in regulating the mitogen-activated protein kinase (MAPK) signaling cascade in melanoma with activating mutations in the serine/threonine kinase BRAF occurring in 60-70% of malignant melanomas. The BRAF-MEK-ERK (MAPK) pathway is a key regulator of melanoma cell invasion. In addition, activation of NFκB via the MAPK pathway is regulated through MEK-induced activation of IKK. These pathways are potential targets for prevention and treatment of melanoma. In this study, we investigated the effect of fisetin, a phytochemical present in fruits and vegetables, on melanoma cell invasion and epithelial-mesenchymal transition, and delineated the underlying molecular mechanism. Treatment of multiple human malignant melanoma cell lines with fisetin (5-20 µM) resulted in inhibition of cell invasion. BRAF mutated melanoma cells were more sensitive to fisetin treatment, and this was associated with a decrease in the phosphorylation of MEK1/2 and ERK1/2. In addition, fisetin inhibited the activation of IKK leading to a reduction in the activation of the NFκB signaling pathway. Treatment of cells with an inhibitor of MEK1/2 (PD98059) or of NFκB (caffeic acid phenethyl ester) also reduced melanoma cell invasion. Furthermore, treatment of fisetin promoted mesenchymal to epithelial transition in melanoma cells, which was associated with a decrease in mesenchymal markers (N-cadherin, vimentin, snail and fibronectin) and an increase in epithelial markers (E-cadherin and desmoglein). Employing three dimensional skin equivalents consisting of A375 cells admixed with normal human keratinocytes embedded onto a collagen-constricted fibroblast matrix, we found that treatment of fisetin reduced the invasive potential of melanoma cells into the dermis and increased the expression of E-cadherin with a concomitant decrease in vimentin. These results indicate that fisetin inhibits melanoma cell invasion through promotion of mesenchymal to epithelial transition and by targeting MAPK and NFκB signaling pathways.
Collapse
Affiliation(s)
- Harish Chandra Pal
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Samriti Sharma
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Leah Ray Strickland
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Santosh K. Katiyar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Mary E. Ballestas
- Department of Pediatrics Infectious Disease, Children's of Alabama, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Mohammad Athar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Craig A. Elmets
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Farrukh Afaq
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|