1
|
Kumar S, Choudhary N, Faruq M, Kumar A, Saran RK, Indercanti PK, Singh V, Sait H, Jaitley S, Valis M, Kuca K, Polipalli SK, Kumar M, Singh T, Suravajhala P, Sharma R, Kapoor S. Anastrozole-mediated modulation of mitochondrial activity by inhibition of mitochondrial permeability transition pore opening: an initial perspective. J Biomol Struct Dyn 2023; 41:14063-14079. [PMID: 36815262 DOI: 10.1080/07391102.2023.2176927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/31/2023] [Indexed: 02/24/2023]
Abstract
The mitochondrial permeability transition pore (mtPTP) plays a vital role in altering the structure and function of mitochondria. Cyclophilin D (CypD) is a mitochondrial protein that regulates mtPTP function and a known drug target for therapeutic studies involving mitochondria. While the effect of aromatase inhibition on the mtPTP has been studied previously, the effect of anastrozole on the mtPTP has not been completely elucidated. The role of anastrozole in modulating the mtPTP was evaluated by docking, molecular dynamics and network-guided studies using human CypD data. The peripheral blood mononuclear cells (PBMCs) of patients with mitochondrial disorders and healthy controls were treated with anastrozole and evaluated for mitochondrial permeability transition pore (mtPTP) function and apoptosis using a flow cytometer. Spectrophotometry was employed for estimating total ATP levels. The anastrozole-CypD complex is more stable than cyclosporin A (CsA)-CypD. Anastrozole performed better than cyclosporine in inhibiting mtPTP. Additional effects included inducing mitochondrial membrane depolarization and a reduction in mitochondrial swelling and superoxide generation, intrinsic caspase-3 activity and cellular apoptosis, along with an increase in ATP levels. Anastrozole may serve as a potential therapeutic agent for mitochondrial disorders and ameliorate the clinical phenotype by regulating the activity of mtPTP. However, further studies are required to substantiate our preliminary findings.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Somesh Kumar
- Pediatrics Genetics & Research Laboratory, Department of Pediatrics, Maulana Azad Medical College & Associated LN Hospital, Delhi, India
| | - Neha Choudhary
- Centre for Computational Biology and Bioinformatics, Central University of Himachal Pradesh, Dharamsala, India
| | - Mohammed Faruq
- Institute of Genomics and Integrative Biology, Council of Scientific and Industrial Research (CSIR), Delhi, India
| | - Arun Kumar
- Department of Emergency Medicine, All India Institute of Medical Sciences (AIIMS), New Delhi, India
- Department of Zoology, Kirori Mal College, University of Delhi, Delhi, India
| | - Ravindra K Saran
- Department of Pathology, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research, Delhi, India
| | | | - Vikram Singh
- Centre for Computational Biology and Bioinformatics, Central University of Himachal Pradesh, Dharamsala, India
| | - Haseena Sait
- Pediatrics Genetics & Research Laboratory, Department of Pediatrics, Maulana Azad Medical College & Associated LN Hospital, Delhi, India
| | - Sunita Jaitley
- Department of Biomedical Sciences, Acharya Narendra Dev College, University of Delhi, Delhi, India
| | - Martin Valis
- Department of Neurology of the Medical Faculty of Charles University and University Hospital in Hradec Králové, Hradec Králové, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czech Republic
| | - Sunil K Polipalli
- Pediatrics Genetics & Research Laboratory, Department of Pediatrics, Maulana Azad Medical College & Associated LN Hospital, Delhi, India
| | - Manoj Kumar
- Department of Emergency Medicine, All India Institute of Medical Sciences (AIIMS), New Delhi, India
- Department of Microbiology, World College of Medical Science and Research, Jhajjar, Haryana, India
| | - Tejveer Singh
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | | | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Seema Kapoor
- Pediatrics Genetics & Research Laboratory, Department of Pediatrics, Maulana Azad Medical College & Associated LN Hospital, Delhi, India
| |
Collapse
|
2
|
Abstract
This review concerns the current knowledge of melatonin and alcohol-related disorders. Chronobiological effects of ethanol are related to melatonin suppression and in relation to inflammation, stress, free radical scavenging, autophagy and cancer risk. It is postulated that both alcohol- and inflammation-induced production of reactive oxygen species (ROS) alters cell membrane properties leading to tissue dysfunction and, subsequent further ROS production. Lysosomal enzymes are often used to assess the relationships between intensified inflammation states caused by alcohol abuse and oxidative stress as well as level of tissue damage estimated by the increased release of cellular enzymes into the extracellular space. Studies have established a link between alcoholism and desynchronosis (circadian disruption). Desynchronosis results from the disorganization of the body's circadian time structure and is an aspect of the pathology of chronic alcohol intoxication. The inflammatory conditions and the activity of lysosomal enzymes in acute alcohol poisoning or chronic alcohol-dependent diseases are in most cases interrelated. Inflammation can increase the activity of lysosomal enzymes, which can be regarded as a marker of lysosomal dysfunction and abnormal cellular integrity. Studies show alcohol toxicity is modulated by the melatonin (Mel) circadian rhythm. This hormone, produced by the pineal gland, is the main regulator of 24 h (sleep-wake cycle) and seasonal biorhythms. Mel exhibits antioxidant properties and may be useful in the prevention of oxidative stress reactions known to be responsible for alcohol-related diseases. Naturally produced Mel and exogenous sources in food can act in free radical reactions and activate the endogenous defense system. Mel plays an important role in the normalization of the post-stress state by its influence on neurotransmitter systems and the synchronization of circadian rhythms. Acting simultaneously on the neuroendocrine and immune systems, Mel optimizes homeostasis and provides protection against stress. Abbreviations: ROS, reactive oxygen species; Mel, melatonin; SRV, resveratrol; NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells; ANT, arylalkylamine-N-acetyltransferase; EC cells, gastrointestinal enterochromaffin cells; MT1, melatonin high-affinity nanomolecular receptor site; MT2, melatonin low-affinity nanomolecular receptor site; ROR/RZR, orphan nuclear retinoid receptors; SOD, superoxide dismutase; CAT, catalase; GPx, glutathione peroxidase; GR, glutathione reductase; GSH, reduced form of glutathione; GSSG, oxidized form of glutathione; TAC, total antioxidant capacity; ONOO∙-, peroxynitrite radical; NCAM, neural cell adhesion molecules; LPO, lipid peroxidation; α-KG, α-ketoglutarate, HIF-1α, Hypoxia-inducible factor 1-α, IL-2, interleukin-2; HPA axis, hypothalamic-pituitary-adrenal axis; Tph1, tryptophan hydroxylase 1; AA-NAT, arylalkylamine-N-acetyltransferase; AS-MT, acetylserotonin O-methyltransferase; NAG, N-acetyl-beta-D-glucosaminidase; HBA1c glycated hemoglobin; LPS, lipopolysaccharide; AAP, alanyl-aminopeptidase; β-GR, β-glucuronidase; β-GD, β-galactosidase; LAP, leucine aminopeptidase.
Collapse
Affiliation(s)
- Natalia Kurhaluk
- Department of Zoology and Animal Physiology, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk , Słupsk, Poland
| | - Halyna Tkachenko
- Department of Zoology and Animal Physiology, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk , Słupsk, Poland
| |
Collapse
|
3
|
Šileikytė J, Forte M. The Mitochondrial Permeability Transition in Mitochondrial Disorders. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3403075. [PMID: 31191798 PMCID: PMC6525910 DOI: 10.1155/2019/3403075] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/15/2019] [Accepted: 04/01/2019] [Indexed: 12/22/2022]
Abstract
Mitochondrial permeability transition pore (PTP), a (patho)physiological phenomenon discovered over 40 years ago, is still not completely understood. PTP activation results in a formation of a nonspecific channel within the inner mitochondrial membrane with an exclusion size of 1.5 kDa. PTP openings can be transient and are thought to serve a physiological role to allow quick Ca2+ release and/or metabolite exchange between mitochondrial matrix and cytosol or long-lasting openings that are associated with pathological conditions. While matrix Ca2+ and oxidative stress are crucial in its activation, the consequence of prolonged PTP opening is dissipation of the inner mitochondrial membrane potential, cessation of ATP synthesis, bioenergetic crisis, and cell death-a primary characteristic of mitochondrial disorders. PTP involvement in mitochondrial and cellular demise in a variety of disease paradigms has been long appreciated, yet the exact molecular entity of the PTP and the development of potent and specific PTP inhibitors remain areas of active investigation. In this review, we will (i) summarize recent advances made in elucidating the molecular nature of the PTP focusing on evidence pointing to mitochondrial FoF1-ATP synthase, (ii) summarize studies aimed at discovering novel PTP inhibitors, and (iii) review data supporting compromised PTP activity in specific mitochondrial diseases.
Collapse
Affiliation(s)
- Justina Šileikytė
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Michael Forte
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
4
|
Jou MJ, Peng TI, Reiter RJ. Protective stabilization of mitochondrial permeability transition and mitochondrial oxidation during mitochondrial Ca 2+ stress by melatonin's cascade metabolites C3-OHM and AFMK in RBA1 astrocytes. J Pineal Res 2019; 66:e12538. [PMID: 30415481 DOI: 10.1111/jpi.12538] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 10/29/2018] [Accepted: 11/02/2018] [Indexed: 01/02/2023]
Abstract
Cyclic 3-hydroxymelatonin (C3-OHM) and N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK) are two major cascade metabolites of melatonin. We previously showed melatonin provides multiple levels of mitochondria-targeted protection beyond as a mitochondrial antioxidant during ionomycin-induced mitochondrial Ca2+ (mCa2+ ) stress in RBA1 astrocytes. Using noninvasive laser scanning fluorescence coupled time-lapse digital imaging microscopy, this study investigated whether C3-OHM and AFMK also provide mitochondrial levels of protection during ionomycin-induced mCa2+ stress in RBA1 astrocytes. Interestingly, precise temporal and spatial dynamic live mitochondrial images revealed that C3-OHM and AFMK prevented specifically mCa2+ -mediated mitochondrial reactive oxygen species (mROS) formation and hence mROS-mediated depolarization of mitochondrial membrane potential (△Ψm ) and permanent lethal opening of the MPT (p-MPT). The antioxidative effects of AFMK, however, were less potent than that of C3-OHM. Whether C3-OHM and AFMK targeted directly the MPT was investigated under a condition of "oxidation free-Ca2+ stress" using a classic antioxidant vitamin E to remove mCa2+ -mediated mROS stress and the potential antioxidative effects of C3-OHM and AFMK. Intriguingly, two compounds still effectively postponed "oxidation free-Ca2+ stress"-mediated depolarization of △Ψm and p-MPT. Measurements using a MPT pore-specific indicator Calcein further identified that C3-OHM and AFMK, rather than inhibiting, stabilized the MPT in its transient protective opening mode (t-MPT), a critical mechanism to reduce overloaded mROS and mCa2+ . These multiple layers of mitochondrial protection provided by C3-OHM and AFMK thus crucially allow melatonin to extend its metabolic cascades of mitochondrial protection during mROS- and mCa2+ -mediated MPT-associated apoptotic stresses and may provide therapeutic benefits against astrocyte-mediated neurodegeneration in the CNS.
Collapse
Affiliation(s)
- Mei-Jie Jou
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Department of Neurology, Chang Gung Memorial Hospital, Keelung Branch, Keelung, Taiwan
| | - Tsung-I Peng
- Department of Neurology, Chang Gung Memorial Hospital, Keelung Branch, Keelung, Taiwan
- Department of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas
| |
Collapse
|
5
|
Vercesi AE, Castilho RF, Kowaltowski AJ, de Oliveira HCF, de Souza-Pinto NC, Figueira TR, Busanello ENB. Mitochondrial calcium transport and the redox nature of the calcium-induced membrane permeability transition. Free Radic Biol Med 2018; 129:1-24. [PMID: 30172747 DOI: 10.1016/j.freeradbiomed.2018.08.034] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/16/2018] [Accepted: 08/28/2018] [Indexed: 12/16/2022]
Abstract
Mitochondria possess a Ca2+ transport system composed of separate Ca2+ influx and efflux pathways. Intramitochondrial Ca2+ concentrations regulate oxidative phosphorylation, required for cell function and survival, and mitochondrial redox balance, that participates in a myriad of signaling and damaging pathways. The interaction between Ca2+ accumulation and redox imbalance regulates opening and closing of a highly regulated inner membrane pore, the membrane permeability transition pore (PTP). In this review, we discuss the regulation of the PTP by mitochondrial oxidants, reactive nitrogen species, and the interactions between these species and other PTP inducers. In addition, we discuss the involvement of mitochondrial redox imbalance and PTP in metabolic conditions such as atherogenesis, diabetes, obesity and in mtDNA stability.
Collapse
Affiliation(s)
- Anibal E Vercesi
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brazil.
| | - Roger F Castilho
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Alicia J Kowaltowski
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Helena C F de Oliveira
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas, SP, Brazil
| | - Nadja C de Souza-Pinto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Tiago R Figueira
- Escola de Educação Física e Esporte de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Estela N B Busanello
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brazil
| |
Collapse
|
6
|
Wiczer BM, Marcu R, Hawkins BJ. KB-R7943, a plasma membrane Na(+)/Ca(2+) exchanger inhibitor, blocks opening of the mitochondrial permeability transition pore. Biochem Biophys Res Commun 2014; 444:44-9. [PMID: 24434143 DOI: 10.1016/j.bbrc.2014.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 01/07/2014] [Indexed: 01/13/2023]
Abstract
The isothiourea derivative, KB-R7943, inhibits the reverse-mode of the plasma membrane sodium/calcium exchanger and protects against ischemia/reperfusion injury. The mechanism through which KB-R7943 confers protection, however, remains controversial. Recently, KB-R7943 has been shown to inhibit mitochondrial calcium uptake and matrix overload, which may contribute to its protective effects. While using KB-R7943 for this purpose, we find here no evidence that KB-R7943 directly blocks mitochondrial calcium uptake. Rather, we find that KB-R7943 inhibits opening of the mitochondrial permeability transition pore in permeabilized cells and isolated liver mitochondria. Furthermore, we find that this observation correlates with protection against calcium ionophore-induced mitochondrial membrane potential depolarization and cell death, without detrimental effects to basal mitochondrial membrane potential or complex I-dependent mitochondrial respiration. Our data reveal another mechanism through which KB-R7943 may protect against calcium-induced injury, as well as a novel means to inhibit the mitochondrial permeability transition pore.
Collapse
Affiliation(s)
- Brian M Wiczer
- Department of Anesthesiology and Pain Medicine, Mitochondria and Metabolism Center, University of Washington, Seattle, WA, United States
| | - Raluca Marcu
- Department of Anesthesiology and Pain Medicine, Mitochondria and Metabolism Center, University of Washington, Seattle, WA, United States
| | - Brian J Hawkins
- Department of Anesthesiology and Pain Medicine, Mitochondria and Metabolism Center, University of Washington, Seattle, WA, United States.
| |
Collapse
|