1
|
Guzman-Lopez EG, Reina M, Perez-Gonzalez A, Francisco-Marquez M, Hernandez-Ayala LF, Castañeda-Arriaga R, Galano A. CADMA-Chem: A Computational Protocol Based on Chemical Properties Aimed to Design Multifunctional Antioxidants. Int J Mol Sci 2022; 23:13246. [PMID: 36362034 PMCID: PMC9658414 DOI: 10.3390/ijms232113246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/17/2022] [Accepted: 10/22/2022] [Indexed: 10/12/2023] Open
Abstract
A computational protocol aimed to design new antioxidants with versatile behavior is presented. It is called Computer-Assisted Design of Multifunctional Antioxidants and is based on chemical properties (CADMA-Chem). The desired multi-functionality consists of in different methods of antioxidant protection combined with neuroprotection, although the protocol can also be used to pursue other health benefits. The dM38 melatonin derivative is used as a study case to illustrate the protocol in detail. This was found to be a highly promising candidate for the treatment of neurodegeneration, in particular Parkinson's and Alzheimer's diseases. This also has the desired properties of an oral-drug, which is significantly better than Trolox for scavenging free radicals, and has chelates redox metals, prevents the ●OH production, via Fenton-like reactions, repairs oxidative damage in biomolecules (lipids, proteins, and DNA), and acts as a polygenic neuroprotector by inhibiting catechol-O-methyl transferase (COMT), acetylcholinesterase (AChE) and monoamine oxidase B (MAOB). To the best of our best knowledge, CADMA-Chem is currently the only protocol that simultaneously involves the analyses of drug-like behavior, toxicity, manufacturability, versatile antioxidant protection, and receptor-ligand binding affinities. It is expected to provide a starting point that helps to accelerate the discovery of oral drugs with the potential to prevent, or slow down, multifactorial human health disorders.
Collapse
Affiliation(s)
- Eduardo Gabriel Guzman-Lopez
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, Col. Leyes de Reforma 1A Sección, Mexico City 09310, Mexico
| | - Miguel Reina
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Adriana Perez-Gonzalez
- CONACYT-Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, Col. Leyes de Reforma 1A Sección, Mexico City 09310, Mexico
| | | | - Luis Felipe Hernandez-Ayala
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, Col. Leyes de Reforma 1A Sección, Mexico City 09310, Mexico
| | - Romina Castañeda-Arriaga
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, Col. Leyes de Reforma 1A Sección, Mexico City 09310, Mexico
| | - Annia Galano
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, Col. Leyes de Reforma 1A Sección, Mexico City 09310, Mexico
| |
Collapse
|
2
|
Jain U, Saxena K, Chauhan N. Helicobacter pylori induced reactive oxygen Species: A new and developing platform for detection. Helicobacter 2021; 26:e12796. [PMID: 33666321 DOI: 10.1111/hel.12796] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/11/2021] [Accepted: 02/10/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Gastric cancer is the third leading cause of cancer-related deaths worldwide. Approximately 70% of cases are caused by a microaerophilic gram-negative bacteria, Helicobacter pylori (H. pylori), which potentially infect almost 50% of world's population. H. pylori is mainly responsible for persistent oxidative stress in stomach and induction of chronic immune responses which ultimately result into DNA damage that eventually can lead to gastric cancer. Oxidative stress is the result of excessive release of ROS/RNS by activated neutrophils whereas bacteria itself also produce ROS in host cells. Therefore, ROS detection is an important factor for development of new strategies related to identification of H. pylori infection. METHODS The review summarizes the various available techniques for ROS detection with their advantages, disadvantages, and limitations. All of the information included in this review have been retrieved from published studies on ROS generation and its detection methods. RESULTS Precisely, 71 articles have been incorporated and evaluated for this review. The studied articles were divided into two major categories including articles on H. pylori-related pathogenesis and various ROS detection methods for example probe-based methods, immunoassays, gene expression profiling, and other techniques. The major part of probe activity is based on fluorescence, chemiluminescence, or bioluminescence and detected by complementary techniques such as LC-MS, HPLC, EPR, and redox blotting. CONCLUSION The review describes the methods for ROS detection but due to some limitations in conventional methods, there is a need of cost-effective, early and fast detection methods like biosensors to diagnose the infection at its initial stage.
Collapse
Affiliation(s)
- Utkarsh Jain
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh, Noida, India
| | - Kirti Saxena
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh, Noida, India
| | - Nidhi Chauhan
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh, Noida, India
| |
Collapse
|
3
|
The solution chemistry of nitric oxide and other reactive nitrogen species. Nitric Oxide 2020; 103:31-46. [DOI: 10.1016/j.niox.2020.07.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 12/17/2022]
|
4
|
Castañeda-Arriaga R, Pérez-González A, Reina M, Galano A. Computer-designed melatonin derivatives: potent peroxyl radical scavengers with no pro-oxidant behavior. Theor Chem Acc 2020. [DOI: 10.1007/s00214-020-02641-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
5
|
Castañeda-Arriaga R, Pérez-González A, Reina M, Alvarez-Idaboy JR, Galano A. Comprehensive Investigation of the Antioxidant and Pro-oxidant Effects of Phenolic Compounds: A Double-Edged Sword in the Context of Oxidative Stress? J Phys Chem B 2018; 122:6198-6214. [PMID: 29771524 DOI: 10.1021/acs.jpcb.8b03500] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Oxidative stress (OS) is a health-threatening process that is involved, at least partially, in the development of several diseases. Although antioxidants can be used as a chemical defense against OS, they might also exhibit pro-oxidant effects, depending on environmental conditions. In this work, such a dual behavior was investigated for phenolic compounds (PhCs) within the framework of the density functional theory and based on kinetic data. Multiple reaction mechanisms were considered in both cases. The presence of redox metals, the pH, and the possibility that PhCs might be transformed into benzoquinones were identified as key aspects in the antioxidant versus pro-oxidant effects of these compounds. The main virtues of PhCs as antioxidants are their radical trapping activity, their regeneration under physiological conditions, and their behavior as OH-inactivating ligands. The main risks of PhCs as pro-oxidants are predicted to be the role of phenolate ions in the reduction of metal ions, which can promote Fenton-like reactions, and the formation of benzoquinones that might cause protein arylation at cysteine sites. Although the benefits seem to overcome the hazards, to properly design chemical strategies against OS using PhCs, it is highly recommended to carefully explore their duality in this context.
Collapse
Affiliation(s)
- Romina Castañeda-Arriaga
- Departamento de Química , Universidad Autónoma Metropolitana-Iztapalapa , San Rafael Atlixco 186 , Col. Vicentina, Iztapalapa , C.P. 09340 México City , México
| | - Adriana Pérez-González
- CONACYT-Universidad Autónoma Metropolitana-Iztapalapa , San Rafael Atlixco 186, Col. Vicentina, Iztapalapa , C.P. 09340 México City , México
| | - Miguel Reina
- Departamento de Química , Universidad Autónoma Metropolitana-Iztapalapa , San Rafael Atlixco 186 , Col. Vicentina, Iztapalapa , C.P. 09340 México City , México
| | - J Raúl Alvarez-Idaboy
- Facultad de Química, Departamento de Física y Química Teórica , Universidad Nacional Autónoma de México , C.P. 04510 México City , México
| | - Annia Galano
- Departamento de Química , Universidad Autónoma Metropolitana-Iztapalapa , San Rafael Atlixco 186 , Col. Vicentina, Iztapalapa , C.P. 09340 México City , México
| |
Collapse
|
6
|
Li X, Huang Y, Liu HW, Wu C, Bi W, Yuan Y, Liu X. Simultaneous Fe(III) reduction and ammonia oxidation process in Anammox sludge. J Environ Sci (China) 2018; 64:42-50. [PMID: 29478660 DOI: 10.1016/j.jes.2017.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 12/20/2016] [Accepted: 01/05/2017] [Indexed: 06/08/2023]
Abstract
In recent years, there have been a number of reports on the phenomenon in which ferric iron (Fe(III)) is reduced to ferrous iron [Fe(II)] in anaerobic environments, accompanied by simultaneous oxidation of ammonia to NO2-, NO3-, or N2. However, studies on the relevant reaction characteristics and mechanisms are rare. Recently, in research on the effect of Fe(III) on the activity of Anammox sludge, excess ammonia oxidization has also been found. Hence, in the present study, Fe(III) was used to serve as the electron acceptor instead of NO2-, and the feasibility and characteristics of Anammox coupled to Fe(III) reduction (termed Feammox) were investigated. After 160days of cultivation, the conversion rate of ammonia in the reactor was above 80%, accompanied by the production of a large amount of NO3- and a small amount of NO2-. The total nitrogen removal rate was up to 71.8%. Furthermore, quantities of Fe(II) were detected in the sludge fluorescence in situ hybridization (FISH) and denaturated gradient gel electrophoresis (DGGE) analyses further revealed that in the sludge, some Anammox bacteria were retained, and some microbes were enriched during the acclimatization process. We thus deduced that in Anammox sludge, Fe(III) reduction takes place together with ammonia oxidation to NO2- and NO3- along with the Anammox process.
Collapse
Affiliation(s)
- Xiang Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yong Huang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Heng-Wei Liu
- School of Chemistry Biology and Material Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Chuan Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Wei Bi
- School of Chemistry Biology and Material Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yi Yuan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xin Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
7
|
Castañeda-Arriaga R, Galano A. Exploring Chemical Routes Relevant to the Toxicity of Paracetamol and Its meta-Analogue at a Molecular Level. Chem Res Toxicol 2017; 30:1286-1301. [DOI: 10.1021/acs.chemrestox.7b00024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Romina Castañeda-Arriaga
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina.
Iztapalapa, C. P. 09340, México D. F., México
| | - Annia Galano
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina.
Iztapalapa, C. P. 09340, México D. F., México
| |
Collapse
|
8
|
Muñoz-Rugeles L, Galano A, Alvarez-Idaboy JR. The role of acid–base equilibria in formal hydrogen transfer reactions: tryptophan radical repair by uric acid as a paradigmatic case. Phys Chem Chem Phys 2017; 19:15296-15309. [DOI: 10.1039/c7cp01557g] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The sequential proton gain electron transfer and proton electron sequential transfer mechanisms play the most important roles in tryptophan repair by uric acid.
Collapse
Affiliation(s)
- Leonardo Muñoz-Rugeles
- Facultad de Química
- Departamento de Física y Química Teórica
- Universidad Nacional Autónoma de México
- México
- Mexico
| | - Annia Galano
- Departamento de Química
- Universidad Autónoma Metropolitana-Iztapalapa
- México
- Mexico
| | - Juan Raúl Alvarez-Idaboy
- Facultad de Química
- Departamento de Física y Química Teórica
- Universidad Nacional Autónoma de México
- México
- Mexico
| |
Collapse
|
9
|
Castañeda-Arriaga R, Domínguez-Castro A, Lee J, Alvarez-Idaboy JR, Mora-Diez N. Chemical repair of protein carbon-centred radicals: long-distance dynamic factors. CAN J CHEM 2016. [DOI: 10.1139/cjc-2016-0230] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The thermodynamic and kinetic study of the repair reactions of three damaged aliphatic amino acids (alanine, valine, and leucine) with dihydrolipoic acid (DHLA) in a polar and a nonpolar solvent is presented in this work. Two simplified protein models were explored in the most common conformations (alpha helix and beta sheet). Calculations are performed at the M06-2X-SMD/6-31++G(d,p) level of theory. DHLA has shown to be an excellent antioxidant repair agent through hydrogen-transfer reaction involving the thiol groups, with rate constants close to diffusion control in most cases. The stability of the initial protein radical is not the most important factor determining the rate of the repair reaction because stabilizing intermolecular interactions involving the protein and the antioxidant can provide additional stability to some transition states accelerating the repair of sites that would otherwise not be so quickly repaired.
Collapse
Affiliation(s)
- Romina Castañeda-Arriaga
- Facultad de Química, Departamento de Física y Química Teórica, Universidad Nacional Autónoma de México, México DF 04510, México
- Department of Chemistry, Thompson Rivers University, Kamloops, BC V2C 0C8, Canada
| | | | - JinGyu Lee
- Department of Chemistry, Thompson Rivers University, Kamloops, BC V2C 0C8, Canada
| | - J. Raul Alvarez-Idaboy
- Facultad de Química, Departamento de Física y Química Teórica, Universidad Nacional Autónoma de México, México DF 04510, México
| | - Nelaine Mora-Diez
- Department of Chemistry, Thompson Rivers University, Kamloops, BC V2C 0C8, Canada
| |
Collapse
|
10
|
Nathanael JG, Hancock AN, Wille U. Reaction of Amino Acids, Di- and Tripeptides with the Environmental Oxidant NO3.: A Laser Flash Photolysis and Computational Study. Chem Asian J 2016; 11:3188-3195. [DOI: 10.1002/asia.201600994] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/02/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Joses G. Nathanael
- School of Chemistry, Bio21 Institute; The University of Melbourne; Parkville Victoria 3010 Australia
| | - Amber N. Hancock
- School of Chemistry, Bio21 Institute; The University of Melbourne; Parkville Victoria 3010 Australia
| | - Uta Wille
- School of Chemistry, Bio21 Institute; The University of Melbourne; Parkville Victoria 3010 Australia
| |
Collapse
|
11
|
Tryptophan versus nitric oxide, nitrogen dioxide and carbonate radicals: differences in reactivity and implications for oxidative damage to proteins. Theor Chem Acc 2016. [DOI: 10.1007/s00214-016-1913-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
12
|
Castañeda-Arriaga R, Mora-Diez N, Alvarez-Idaboy JR. Modelling the chemical repair of protein carbon-centered radicals formed via oxidative damage with dihydrolipoic acid. RSC Adv 2015. [DOI: 10.1039/c5ra20618a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Dihydrolipoic acid repairs carbon-centred radicals at diffusion-controlled rates via HAT mechanism.
Collapse
Affiliation(s)
- Romina Castañeda-Arriaga
- Facultad de Química
- Departamento de Física y Química Teórica
- Universidad Nacional Autónoma de México
- México DF 04510
- México
| | | | - J. Raul Alvarez-Idaboy
- Facultad de Química
- Departamento de Física y Química Teórica
- Universidad Nacional Autónoma de México
- México DF 04510
- México
| |
Collapse
|
13
|
Carmona U, Li L, Zhang L, Knez M. Ferritin light-chain subunits: key elements for the electron transfer across the protein cage. Chem Commun (Camb) 2014; 50:15358-61. [DOI: 10.1039/c4cc07996e] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using an external electron acceptor and donor and Pt nanoparticles as the enzyme-mimetic electron source, the electron transfer across the protein cage was identified as the first specific functionality of the light-chain subunit of ferritin.
Collapse
Affiliation(s)
| | - Le Li
- CIC nanoGUNE
- 20018 Donostia-San Sebastian, Spain
| | | | - Mato Knez
- CIC nanoGUNE
- 20018 Donostia-San Sebastian, Spain
- IKERBASQUE
- Basque Foundation for Science
- 48013 Bilbao, Spain
| |
Collapse
|