1
|
Chen SY, Chang CK, Lan CY. Antimicrobial peptide LL-37 disrupts plasma membrane and calcium homeostasis in Candida albicans via the Rim101 pathway. Microbiol Spectr 2023; 11:e0255123. [PMID: 37888991 PMCID: PMC10715129 DOI: 10.1128/spectrum.02551-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 09/19/2023] [Indexed: 10/28/2023] Open
Abstract
IMPORTANCE Candida albicans is a major human fungal pathogen, and antimicrobial peptides are key components of innate immunity. Studying the interplay between C. albicans and human antimicrobial peptides would enhance a better understanding of pathogen-host interactions. Moreover, potential applications of antimicrobial peptides in antifungal therapy have aroused great interest. This work explores new mechanisms of LL-37 against C. albicans and reveals the complex connection among calcium homeostasis, oxidative stress, signaling, and possibly organelle interaction. Notably, these findings support the possible use of antimicrobial peptides to prevent and treat fungal infections.
Collapse
Affiliation(s)
- Sheng-Yuan Chen
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Che-Kang Chang
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Chung-Yu Lan
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
- Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
- School of Medicine, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
2
|
Wei Y, Qiu J, Han Z, Wang X, Zhang H, Hou X, Lv X, Mao X. Antifungal bio-coating of endotracheal tube built by overexpressing the MCP1 gene of Saccharomyces boulardii and employing hydrogel as a "house" to antagonize Candida albicans. Biomater Res 2023; 27:97. [PMID: 37798667 PMCID: PMC10557164 DOI: 10.1186/s40824-023-00443-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/01/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND For some ICU patients, an artificial airway must be established with an endotracheal tube, but Candida albicans can easily adhere to the tube surface and form a biofilm, leading to potentially life threatening fungal infections. Therefore, it is urgent to prevent and reduce C. albicans infections introduced by the endotracheal tube. However, there are few antifungal drugs effective against C. albicans, and each of these drugs may have adverse effects on human cells. Saccharomyces boulardii is regarded as an alternative strategy to inhibit the adhesion of C. albicans, but it is affected by environmental stress. We hypothesized that it is feasible to strengthen the antagonistic ability of S. boulardii via encapsulating and genetically modification. METHODS In this study, a bioactive material carrying the overexpressed MCP1 gene of Saccharomyces boulardii was constructed based on one-step photo-crosslinking. This material achieved spatial growth control of S. boulardii by encapsulating each S. boulardii cell within a hydrogel pore. The bioactive material was coated on an endotracheal tube and tested for its ability to inhibit the adhesion of C. albicans. Additionally, the material's antagonistic activity towards C. albicans was evaluated by detecting intracellular Adenosine-triphosphate content, reactive oxygen species level and the activity of antioxidative enzymes. Tissue invasion experiment was executed to further evaluate the anti-adhesion ability of S. boulardii bio-coating. RESULTS Encapsulating the overexpression of MCP1 by S. boulardii in hydrogel pores enhanced the viability of probiotics in the presence of high salt and oxidation stress. When used as the coating of an endotracheal tube, the S. boulardii bioactive material efficiently inhibited the adhesion of C. albicans by impairing the activities of superoxide dismutase and catalase and disturbing mitochondrial functions. In vivo, the S. boulardii bioactive material coating displayed good biocompatibility and reduced the host tissue invasion and virulence of C. albicans. CONCLUSIONS The integration of genetic modification and immobilization model breaks the bottleneck of previous application of microorganisms, and provides a new way to prevent fungal infections introduced by endotracheal tubes.
Collapse
Affiliation(s)
- Yunyun Wei
- School of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, 271016, China
- School of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, 271000, China
| | - Jianfeng Qiu
- School of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, 271000, China
- Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Ziqiang Han
- School of Laboratory Animal & Shandong Laboratory Animal Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250000, China
| | - Xuanyi Wang
- Department of Clinical Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Hui Zhang
- School of Laboratory Animal & Shandong Laboratory Animal Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250000, China
| | - Xinya Hou
- Department of Clinical Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Xiangwei Lv
- Department of Clinical Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Xiaolong Mao
- School of Laboratory Animal & Shandong Laboratory Animal Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250000, China.
| |
Collapse
|
3
|
The Activity of Calcium Glycerophosphate and Fluoride against Cariogenic Biofilms of Streptococcus mutans and Candida albicans Formed In Vitro. Antibiotics (Basel) 2023; 12:antibiotics12020422. [PMID: 36830332 PMCID: PMC9952171 DOI: 10.3390/antibiotics12020422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 02/25/2023] Open
Abstract
This study evaluated the effects of calcium glycerophosphate (CaGP), with or without fluoride (F), on dual-species biofilms of Streptococcus mutans and Candida albicans. The biofilms were treated three times with 0.125, 0.25, and 0.5% CaGP solutions, with or without 500 ppm F (NaF). Additionally, 500 and 1100 ppm F-solutions and artificial saliva served as controls. After the final treatment, the microbial viability and biofilm structure, metabolic activity, total biomass production, and the composition of the extracellular matrix composition were analyzed. Regardless of the presence of F, 0.25 and 0.5% CaGP promoted a higher biomass production and metabolic activity increase than the controls (p < 0.05). F-free CaGP solutions reduced bacterial cell population significantly more than the 500 ppm F group or the negative control (p < 0.05). All the groups reduced the proteins, and 0.5% CaGP combined with F led to the highest reduction in the carbohydrate and nucleic acids content of the extracellular matrix (p < 0.05). It can be concluded that CaGP alone affected the number of bacterial cells and, when combined with F, reduced its production of biomass, metabolic activity, and the expression of the extracellular matrix components.
Collapse
|
4
|
Phosphate Starvation by Energy Metabolism Disturbance in Candida albicansvip1Δ/Δ Induces Lipid Droplet Accumulation and Cell Membrane Damage. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030686. [PMID: 35163951 PMCID: PMC8839741 DOI: 10.3390/molecules27030686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/11/2022] [Accepted: 01/15/2022] [Indexed: 11/17/2022]
Abstract
Phosphorus in the form of phosphate (Pi) is an essential element for metabolic processes, including lipid metabolism. In yeast, the inositol polyphosphate kinase vip1 mediated synthesis of inositol heptakisphosphate (IP7) regulates the phosphate-responsive (PHO) signaling pathway, which plays an important role in response to Pi stress. The role of vip1 in Pi stress and lipid metabolism of Candida albicans has not yet been studied. We found that when vip1Δ/Δ was grown in glucose medium, if Pi was supplemented in the medium or mitochondrial Pi transporter was overexpressed in the strain, the lipid droplet (LD) content was reduced and membrane damage was alleviated. However, further studies showed that neither the addition of Pi nor the overexpression of the Pi transporter affected the energy balance of vip1Δ/Δ. In addition, the LD content of vip1Δ/Δ grown in Pi limitation medium PNMC was lower than that grown in SC, and the metabolic activity of vip1Δ/Δ grown in PNMC was also lower than that grown in SC medium. This suggests that the increase in Pi demand by a high energy metabolic rate is the cause of LD accumulation in vip1Δ/Δ. In addition, in the vip1Δ/Δ strains, the core transcription factor PHO4 in the PHO pathway was transported to the vacuole and degraded, which reduced the pathway activity. However, this does not mean that knocking out vip1 completely blocks the activation of the PHO pathway, because the LD content of vip1Δ/Δ grown in the medium with β-glycerol phosphate as the Pi source was significantly reduced. In summary, the increased Pi demand and the decreased PHO pathway activity in vip1Δ/Δ ultimately lead to LD accumulation and cell membrane damage.
Collapse
|
5
|
Peng L, Du J, Zhang R, Zhu N, Zhao H, Zhao Q, Yu Q, Li M. The Transient Receptor Potential Channel Yvc1 Deletion Recovers the Growth Defect of Calcineurin Mutant Under Endoplasmic Reticulum Stress in Candida albicans. Front Microbiol 2021; 12:752670. [PMID: 34917046 PMCID: PMC8669648 DOI: 10.3389/fmicb.2021.752670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/07/2021] [Indexed: 11/24/2022] Open
Abstract
Transient receptor potential (TRP) channel Yvc1 was related with hyphal growth, oxidative stress response, and pathogenicity. Calcineurin subunit Cnb1 was activated immediately in yeasts when exposed to severe stimulation. However, the relationship between Yvc1 and Cnb1-governed calcium ions and endoplasmic reticulum (ER) stress response remains unrevealed. In this study, we found that the mutant cnb1Δ/Δ was sensitive to TN, which was related with the overexpression of membrane calcium ion channels that could increase the cytosol calcium concentration. However, the growth of the cnb1Δ/Δyvc1Δ/Δ mutant was recovered and its cell vitality was better than the cnb1Δ/Δ strain. Meanwhile, the cellular calcium concentration was decreased and its fluctuation was weakened under ER stress in the cnb1Δ/Δyvc1Δ/Δ strain. To verify the regulation role of Yvc1 in the calcium concentration, we found that the addition of CaCl2 led to the worse viability, while the growth state was relieved under the treatment of EGTA in the cnb1Δ/Δ strain. In conclusion, the deletion of YVC1 could reduce the cellular calcium and relieve the ER stress sensitivity of the cnb1Δ/Δ strain. Thereby, our findings shed a novel light on the relationship between the Yvc1-governed cellular calcium concentration and ER stress response in C. albicans.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Mingchun Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
6
|
Mao X, Yang L, Yu D, Ma T, Ma C, Wang J, Yu Q, Li M. The Vacuole and Mitochondria Patch (vCLAMP) Protein Vam6 is Crucial for Autophagy in Candida albicans. Mycopathologia 2021; 186:477-486. [PMID: 34057669 DOI: 10.1007/s11046-021-00565-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/24/2021] [Indexed: 11/24/2022]
Abstract
Vacuole and mitochondria patches (vCLAMPs) are involved in the stress resistance of yeast, but their exact role in autophagy remains so far unclear. This study, for the first time, investigated the role of the vCLAMP core protein Vam6 in autophagy of Candida albicans. The experiments demonstrated that the deletion of VAM6 led to a growth defect under nitrogen starvation. Also, western blotting revealed that the vam6Δ/Δ mutant attenuated degradation of Atg8 (an autophagy indicator), Lap41 (an indicator of the cytoplasm to vacuole targeting pathway), and Csp37 (a mitophagy indicator). Moreover, the activity of carboxypeptidase Y and the levels of the vacuolar phospholipase Atg15 were significantly decreased in the mutant, which confirmed the defect of autophagy caused by deletion of VAM6. Overall, these results revealed that Vam6 is essential in maintaining the autophagic process under nitrogen starvation, and this provided new insights into the correlation between vCLAMPs and autophagy.
Collapse
Affiliation(s)
- Xiaolong Mao
- Ministry of Education Key Laboratory of Molecular Microbiology and Technology, Department of Microbiology, College of LifeSciences, Nankai University, No. 94, Weijin Road, Tianjin, 300071, China
| | - Li Yang
- Ministry of Education Key Laboratory of Molecular Microbiology and Technology, Department of Microbiology, College of LifeSciences, Nankai University, No. 94, Weijin Road, Tianjin, 300071, China
| | - Dixiong Yu
- Ministry of Education Key Laboratory of Molecular Microbiology and Technology, Department of Microbiology, College of LifeSciences, Nankai University, No. 94, Weijin Road, Tianjin, 300071, China
| | - Tianyu Ma
- Ministry of Education Key Laboratory of Molecular Microbiology and Technology, Department of Microbiology, College of LifeSciences, Nankai University, No. 94, Weijin Road, Tianjin, 300071, China
| | - Congcong Ma
- Ministry of Education Key Laboratory of Molecular Microbiology and Technology, Department of Microbiology, College of LifeSciences, Nankai University, No. 94, Weijin Road, Tianjin, 300071, China
| | - Jiazhen Wang
- Ministry of Education Key Laboratory of Molecular Microbiology and Technology, Department of Microbiology, College of LifeSciences, Nankai University, No. 94, Weijin Road, Tianjin, 300071, China
| | - Qilin Yu
- Ministry of Education Key Laboratory of Molecular Microbiology and Technology, Department of Microbiology, College of LifeSciences, Nankai University, No. 94, Weijin Road, Tianjin, 300071, China
| | - Mingchun Li
- Ministry of Education Key Laboratory of Molecular Microbiology and Technology, Department of Microbiology, College of LifeSciences, Nankai University, No. 94, Weijin Road, Tianjin, 300071, China.
| |
Collapse
|
7
|
Mao X, Yang L, Liu Y, Ma C, Ma T, Yu Q, Li M. Vacuole and Mitochondria Patch (vCLAMP) Protein Vam6 Is Involved in Maintenance of Mitochondrial and Vacuolar Functions under Oxidative Stress in Candida albicans. Antioxidants (Basel) 2021; 10:antiox10010136. [PMID: 33478009 PMCID: PMC7835768 DOI: 10.3390/antiox10010136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 12/25/2022] Open
Abstract
Candida albicans is one of the most common opportunistic fungal pathogens in human beings. When infecting host cells, C. albicans is often exposed to oxidative stress from the host immune defense system. Maintenance of mitochondrial and vacuolar functions is crucial for its resistance to oxidative stress. However, the role of vacuole and mitochondria patchs (vCLAMPs) in cellular oxidative stress resistance and in the maintenance of organelle functions remains to be elucidated. Herein, the function of the vCLAMP protein Vam6 in response to oxidative stress was explored. The results showed that the vam6∆/∆ mutant exhibited obvious mitochondrial swelling, mtDNA damage, reduced activity of antioxidant enzymes, and abnormal vacuolar morphology under H2O2 treatment, indicating its important role in maintaining the structures and functions of both mitochondria and vacuoles under oxidative stress. Further studies showed that deletion of VAM6 attenuated hyphal development under oxidative stress. Moreover, loss of Vam6 obviously affected host tissue invasion and virulence of C. albicans. Taken together, this paper reveals the critical role of vCLAMPs in response to oxidative stress in C. albicans.
Collapse
|
8
|
Peng X, Yu Q, Liu Y, Ma T, Li M. Study on the Function of the Inositol Polyphosphate Kinases Kcs1 and Vip1 of Candida albicans in Energy Metabolism. Front Microbiol 2020; 11:566069. [PMID: 33362729 PMCID: PMC7758236 DOI: 10.3389/fmicb.2020.566069] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 11/11/2020] [Indexed: 12/15/2022] Open
Abstract
In Saccharomyces cerevisiae, inositol polyphosphate kinase KCS1 but not VIP1 knockout is of great significance for maintaining cell viability, promoting glycolysis metabolism, and inducing mitochondrial damage. The functions of Candida albicans inositol polyphosphate kinases Kcs1 and Vip1 have not yet been studied. In this study, we found that the growth rate of C. albicans vip1Δ/Δ strain in glucose medium was reduced and the upregulation of glycolysis was accompanied by a decrease in mitochondrial activity, resulting in a large accumulation of lipid droplets, along with an increase in cell wall chitin and cell membrane permeability, eventually leading to cell death. Relieving intracellular glycolysis rate or increasing mitochondrial metabolism can reduce lipid droplet accumulation, causing a reduction in chitin content and cell membrane permeability. The growth activity and energy metabolism of the vip1Δ/Δ strains in a non-fermentable carbon source glycerol medium were not different from those of the wild-type strains, indicating that knocking out VIP1 did not cause mitochondria damage. Moreover, C. albicans KCS1 knockout did not affect cell activity and energy metabolism. Thus, in C. albicans, Vip1 is more important than Kcs1 in regulating cell viability and energy metabolism.
Collapse
Affiliation(s)
- Xueling Peng
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yingzheng Liu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Tianyu Ma
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Mingchun Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
9
|
Peng L, Yu Q, Zhu H, Zhu N, Zhang B, Wei H, Xu J, Li M. The V-ATPase regulates localization of the TRP Ca 2+ channel Yvc1 in response to oxidative stress in Candida albicans. Int J Med Microbiol 2020; 310:151466. [PMID: 33291030 DOI: 10.1016/j.ijmm.2020.151466] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 11/08/2020] [Accepted: 11/25/2020] [Indexed: 12/24/2022] Open
Abstract
The vacuolar-type H+-ATPase (V-ATPase) is a highly conserved protein complex among the eukaryotic cells. We previously revealed that both the V-ATPase and the transient receptor potential (TRP) channel Yvc1 are involved in oxidative stress response (OSR). However, the relationship between V-ATPase and Yvc1 during OSR remains unknown. In this study, disruption of the V-ATPase-encoding genes VPH2 and TFP1, similar with disruption of YVC1, caused H2O2 hypersensitivity and enhancement of vacuolar membrane permeability (VMP) under oxidative stress. Further investigations showed that unlike the wild type strain with vacuole membrane-localized Yvc1, both vph2Δ/Δ and tfp1Δ/Δ had Yvc1 localization in the vacuole cavity, indicating that disruption of VPH2 or TFP1 impaired normal vacuolar membrane-localization of Yvc1. Interestingly, addition of CaCl2 alleviated the growth defect of vph2Δ/Δ and tfp1Δ/Δ under oxidative stress, leading to prevention of VMP, decrease in ROS levels and activation of OSR. In contrast, addition of the Ca2+ chelating agent glycol-bis-(2-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA) aggravated H2O2 hypersensitivity of the mutants. These results showed that the V-ATPase plays an important role in maintenance of normal Yvc1 localization, which contributes to Ca2+ transport from the vacuoles to the cytosol for activation of OSR. This work sheds a novel light on the interaction between V-ATPase and Ca2+ transport for regulation of OSR in C. albicans.
Collapse
Affiliation(s)
- Liping Peng
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Hangqi Zhu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Nali Zhu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Bing Zhang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Henan Wei
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Jiachun Xu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Mingchun Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, PR China.
| |
Collapse
|
10
|
Lange M, Peiter E. Calcium Transport Proteins in Fungi: The Phylogenetic Diversity of Their Relevance for Growth, Virulence, and Stress Resistance. Front Microbiol 2020; 10:3100. [PMID: 32047484 PMCID: PMC6997533 DOI: 10.3389/fmicb.2019.03100] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/20/2019] [Indexed: 12/26/2022] Open
Abstract
The key players of calcium (Ca2+) homeostasis and Ca2+ signal generation, which are Ca2+ channels, Ca2+/H+ antiporters, and Ca2+-ATPases, are present in all fungi. Their coordinated action maintains a low Ca2+ baseline, allows a fast increase in free Ca2+ concentration upon a stimulus, and terminates this Ca2+ elevation by an exponential decrease – hence forming a Ca2+ signal. In this respect, the Ca2+ signaling machinery is conserved in different fungi. However, does the similarity of the genetic inventory that shapes the Ca2+ peak imply that if “you’ve seen one, you’ve seen them all” in terms of physiological relevance? Individual studies have focused mostly on a single species, and mechanisms elucidated in few model organisms are usually extrapolated to other species. This mini-review focuses on the physiological relevance of the machinery that maintains Ca2+ homeostasis for growth, virulence, and stress responses. It reveals common and divergent functions of homologous proteins in different fungal species. In conclusion, for the physiological role of these Ca2+ transport proteins, “seen one,” in many cases, does not mean: “seen them all.”
Collapse
Affiliation(s)
- Mario Lange
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
| | - Edgar Peiter
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
11
|
Peng L, Yu Q, Wei H, Zhu N, Ren T, Liang C, Xu J, Tian L, Li M. The TRP Ca2+ channel Yvc1 regulates hyphal reactive oxygen species gradient for maintenance of polarized growth in Candida albicans. Fungal Genet Biol 2019; 133:103282. [DOI: 10.1016/j.fgb.2019.103282] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/14/2019] [Accepted: 10/14/2019] [Indexed: 11/26/2022]
|
12
|
Cui L, Zhao H, Yin Y, Liang C, Mao X, Liu Y, Yu Q, Li M. Function of Atg11 in non-selective autophagy and selective autophagy of Candida albicans. Biochem Biophys Res Commun 2019; 516:1152-1158. [PMID: 31284951 DOI: 10.1016/j.bbrc.2019.06.148] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 06/27/2019] [Indexed: 12/14/2022]
Abstract
Candida albicans is an important opportunistic pathogenic fungus in the human body. It is a common microbe inhabiting on the mucosa surfaces of healthy individuals, but may cause infections when the host immune system is weak. Autophagy is a "self-eating" process in eukaryotes, which can recover and utilize damaged organelles and misfolded proteins. Here we investigated the role of the autophagy-related protein Atg11 in C. albicans. Deletion of ATG11 led to the defect in growth under the nitrogen starvation condition. Western blotting and GFP localization further revealed that the transport and degradation of Atg8 was blocked in the atg11Δ/Δ mutant under both the nitrogen starvation and hypha-inducing conditions. Moreover, degradation of both Lap41 (the indicator of the cytoplasm-to-vacuole pathway) and Csp37 (the indicator of mitophagy) was also thoroughly suppressed in this mutant under nitrogen starvation. These results indicated that Atg11 plays an essential role in both non-selective and selective autophagy in C. albicans.
Collapse
Affiliation(s)
- Lifang Cui
- Ministry of Education Key Laboratory of Molecular Microbiology and Technology, Department of Microbiology, College of Life Science, Nankai University, Tianjin, 300071, China
| | - He Zhao
- Ministry of Education Key Laboratory of Molecular Microbiology and Technology, Department of Microbiology, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Yujun Yin
- Ministry of Education Key Laboratory of Molecular Microbiology and Technology, Department of Microbiology, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Chao Liang
- Ministry of Education Key Laboratory of Molecular Microbiology and Technology, Department of Microbiology, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Xiaolong Mao
- Ministry of Education Key Laboratory of Molecular Microbiology and Technology, Department of Microbiology, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Yingzheng Liu
- Ministry of Education Key Laboratory of Molecular Microbiology and Technology, Department of Microbiology, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Qilin Yu
- Ministry of Education Key Laboratory of Molecular Microbiology and Technology, Department of Microbiology, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Mingchun Li
- Ministry of Education Key Laboratory of Molecular Microbiology and Technology, Department of Microbiology, College of Life Science, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
13
|
Periplanetasin-4, a novel antimicrobial peptide from the cockroach, inhibits communications between mitochondria and vacuoles. Biochem J 2019; 476:1267-1284. [DOI: 10.1042/bcj20180933] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 12/16/2022]
Abstract
Abstract
Communications between various organelle–organelles play an essential role in cell survival. The cross-talk between mitochondria and vacuoles comes up with the vital roles of the intercompartmental process. In this study, we found a couple of cell death features, membrane damage, and apoptosis using antimicrobial peptide from American Cockroach. Periplanetasin-4 (LRHKVYGYCVLGP-NH2) is a 13-mer peptide derived from Periplaneta americana and exhibits phosphatidylserine exposure and caspase activation without DNA fragmentation. Apoptotic features without DNA damage provide evidence that this peptide did not interact with DNA directly and exhibited dysfunction of mitochondria and vacuoles. Superoxide radicals were generated from mitochondria and converted to hydrogen peroxide. Despite the enhancement of catalase and total glutathione contents, oxidative damage disrupted intracellular contents. Periplanetasin-4 induced cell death associated with the production of superoxide radicals, calcium uptake in mitochondria and disorder of vacuoles, such as increased permeability and alkalization. While calcium movement from vacuoles to the mitochondria occurred, the cross-talk with these organelles proceeded and the inherent functionality was impaired. To sum up, periplanetasin-4 stimulates superoxide signal along with undermining the mitochondrial functions and interfering in communication with vacuoles.
Collapse
|
14
|
Liang C, Zhang B, Cui L, Li J, Yu Q, Li M. Mgm1 is required for maintenance of mitochondrial function and virulence in Candida albicans. Fungal Genet Biol 2018; 120:42-52. [PMID: 30240789 DOI: 10.1016/j.fgb.2018.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/20/2018] [Accepted: 09/17/2018] [Indexed: 01/17/2023]
Abstract
Mitochondria are dynamic organelles, and their shapes and sizes are regulated by mitochondrial fusion and fission. The proteins essential for mitochondrial fusion in Candida albicans have not been clearly characterized. In this study, Mgm1 was explored for its roles in mitochondrial function, cell cycle, hyphal growth and virulence in this pathogen. The deletion of MGM1 led to mitochondrial fragmentation and mtDNA loss and activated the checkpoint pathway to arrest the cell cycle in G1 phase. Moreover, loss of MGM1 led to defects in hyphal development and attenuation of virulence in a macrophage cell line and a mouse model of disseminated infection. These results reveal that Mgm1 plays an important role in mitochondrial dynamics and function, cell cycle progression, hyphal development and virulence in C. albicans.
Collapse
Affiliation(s)
- Chao Liang
- Ministry of Education Key Laboratory of Molecular Microbiology and Technology, Department of Microbiology, College of Life Science, Nankai University, Tianjin 300071, China
| | - Bing Zhang
- Ministry of Education Key Laboratory of Molecular Microbiology and Technology, Department of Microbiology, College of Life Science, Nankai University, Tianjin 300071, China
| | - Lifang Cui
- Ministry of Education Key Laboratory of Molecular Microbiology and Technology, Department of Microbiology, College of Life Science, Nankai University, Tianjin 300071, China
| | - Jianrong Li
- Ministry of Education Key Laboratory of Molecular Microbiology and Technology, Department of Microbiology, College of Life Science, Nankai University, Tianjin 300071, China
| | - Qilin Yu
- Ministry of Education Key Laboratory of Molecular Microbiology and Technology, Department of Microbiology, College of Life Science, Nankai University, Tianjin 300071, China.
| | - Mingchun Li
- Ministry of Education Key Laboratory of Molecular Microbiology and Technology, Department of Microbiology, College of Life Science, Nankai University, Tianjin 300071, China.
| |
Collapse
|
15
|
Li Y, Sun L, Lu C, Gong Y, Li M, Sun S. Promising Antifungal Targets Against Candida albicans Based on Ion Homeostasis. Front Cell Infect Microbiol 2018; 8:286. [PMID: 30234023 PMCID: PMC6131588 DOI: 10.3389/fcimb.2018.00286] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/27/2018] [Indexed: 11/13/2022] Open
Abstract
In recent decades, invasive fungal infections have been increasing significantly, contributing to high incidences and mortality in immunosuppressed patients. Candida albicans (C. albicans) is the most prevalent opportunistic fungal pathogen in humans that can cause severe and often fatal bloodstream infections. Current antifungal agents have several limitations, including that only a small number of classes of antifungals are available, certain of which have severe toxicity and high cost. Moreover, the emergence of drug resistance is a new limitation to successful patient outcomes. Therefore, the development of antifungals with novel targets is an essential strategy for the efficient management of C. albicans infections. It is widely recognized that ion homeostasis is crucial for all living cells. Many studies have identified that ion-signaling and transduction networks are central to fungal survival by regulating gene expression, morphological transition, host invasion, stress response, and drug resistance. Dysregulation of ion homeostasis rapidly mediates cell death, forming the mechanistic basis of a growing number of compounds that elicit antifungal activity. Most of the potent antifungals have been widely used in the clinic, and certain of them have low toxicity, meaning that they may be expected to be used as antifungal drugs in the future. Hence, we briefly summarize the homeostasis regulation of several important ions, potential antifungal targets based on these ion-signaling networks, and antifungal compounds based on the disruption of ion homeostasis. This summary will help in designing effective drugs and identifying new targets for combating fungal diseases.
Collapse
Affiliation(s)
- Yiman Li
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Licui Sun
- Department of Pharmacy, Feicheng Mining Central Hospital, Feicheng, China
| | - Chunyan Lu
- Department of Pharmacy, Qianfoshan Hospital Affiliated to Shandong University, Jinan, China
| | - Ying Gong
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Min Li
- Department of Pharmacy, Qianfoshan Hospital Affiliated to Shandong University, Jinan, China
| | - Shujuan Sun
- Department of Pharmacy, Qianfoshan Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
16
|
Li J, Yu Q, Zhang B, Xiao C, Ma T, Yi X, Liang C, Li M. Stress-associated endoplasmic reticulum protein 1 (SERP1) and Atg8 synergistically regulate unfolded protein response (UPR) that is independent on autophagy in Candida albicans. Int J Med Microbiol 2018; 308:378-386. [PMID: 29544880 DOI: 10.1016/j.ijmm.2018.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 02/28/2018] [Accepted: 03/05/2018] [Indexed: 01/07/2023] Open
Abstract
Cellular stresses could activate several response processes, such as the unfolded protein response (UPR), autophagy and oxidative stress response to restore cellular homeostasis or render cell death. Herein, we identified the Candida albicans stress-associated endoplasmic reticulum protein 1 (SERP1), also known as Ysy6, which was involved in endoplasmic reticulum (ER) stress response. We found that deletion of both SERP1/YSY6 and ATG8 led to hypersensitivity to tunicamycin (TN), and resulted in severe mitochondrial dysfunction under this stress. UPR reporting systems illustrated that the double mutation attenuated splicing of HAC1 mRNA, followed by decreased level of UPR activation. In addition, the atg8Δ/Δ ysy6Δ/Δ double mutant had normal autophagic degradation of the ER component Sec63 under ER stress, suggesting that SERP1/Ysy6 and Atg8 synergistically regulated UPR that is independent on autophagy. We also found that deletion of both SERP1/YSY6 and ATG8 caused the loss of virulence. This study reveals the important role of SERP1/Ysy6 and Atg8 in ER stress response and virulence in C. albicans.
Collapse
Affiliation(s)
- Jianrong Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Science, Nankai University, Tianjin, PR China
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Science, Nankai University, Tianjin, PR China
| | - Bing Zhang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Science, Nankai University, Tianjin, PR China
| | - Chenpeng Xiao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Science, Nankai University, Tianjin, PR China
| | - Tianyu Ma
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Science, Nankai University, Tianjin, PR China
| | - Xiao Yi
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Science, Nankai University, Tianjin, PR China
| | - Chao Liang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Science, Nankai University, Tianjin, PR China
| | - Mingchun Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Science, Nankai University, Tianjin, PR China.
| |
Collapse
|
17
|
Lee W, Lee DG. Reactive oxygen species modulate itraconazole-induced apoptosis via mitochondrial disruption in Candida albicans. Free Radic Res 2017; 52:39-50. [PMID: 29157011 DOI: 10.1080/10715762.2017.1407412] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Itraconazole (ITC), a well-known fungistatic agent, has potent fungicidal activity against Candida albicans. However, its mechanism of fungicidal activity has not been elucidated yet, and we aimed to identify the mechanism of ITC against C. albicans. ITC caused cell shrinkage via potassium leakage through the ion channel. Since shrunken cells could indicate apoptosis, we investigated apoptotic features. Annexin V-FITC and TUNEL assays indicated that fungicidal activity of ITC was involved in apoptosis. Subsequently, we confirmed an intracellular factor that could cause apoptosis. ITC treatment caused reactive oxygen species (ROS) accumulation. To confirm whether ROS is related with ITC-triggered cell death, cell viability was examined using the ROS scavenger N-acetylcysteine (NAC). NAC pretreatment recovered ITC-induced cell death, indicating that antifungal activity of ITC is associated with ROS, which is also confirmed by impaired glutathione-related antioxidant system and oxidized intracellular lipids. Moreover, ITC-induced mitochondrial dysfunction, in turn, triggered cytochrome c release and metacaspase activation, leading to apoptosis. Unlike the only ITC-treatment group, cells with NAC pretreatment did not show significant damage to mitochondria, and attenuated apoptotic features. Therefore, our results suggest that ITC induces apoptosis as fungicidal mechanism, and intracellular ROS is major factor to trigger the apoptosis by ITC in C. albicans.
Collapse
Affiliation(s)
- Wonjong Lee
- a School of Life Sciences, BK 21 Plus KNU Creative BioResearch Group, College of Natural Sciences , Kyungpook National University , Daegu , Republic of Korea
| | - Dong Gun Lee
- a School of Life Sciences, BK 21 Plus KNU Creative BioResearch Group, College of Natural Sciences , Kyungpook National University , Daegu , Republic of Korea
| |
Collapse
|
18
|
Liu Z, Wang Z, Huang M, Yan L, Ma Z, Yin Y. The FgSsb-FgZuo-FgSsz complex regulates multiple stress responses and mycotoxin production via folding the soluble SNARE Vam7 and β2-tubulin in Fusarium graminearum. Environ Microbiol 2017; 19:5040-5059. [PMID: 29076607 DOI: 10.1111/1462-2920.13968] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 10/16/2017] [Accepted: 10/19/2017] [Indexed: 11/28/2022]
Abstract
Hsp70 proteins play important roles in protein folding in the budding yeast, but their functions in pathogenic fungi are largely unknown. Here, we found that Fusarium graminearum Hsp70 proteins FgSsb, FgSsz and their cochaperone FgZuo formed a complex. This complex was required for microtubule morphology, vacuole fusion and endocytosis. More importantly, the β2-tubulin FgTub2 and SNARE protein FgVam7 were identified as targeting proteins of this complex. We further found that the complex FgSsb-FgZuo-FgSsz controlled sensitivity of F. graminearum to the antimicrotubule drug carbendazim and cold stress via regulating the folding of FgTub2. Moreover, this complex assisted the folding of FgVam7, subsequently modulated vacuole fusion and responses to heavy metal, osmotic and oxidative stresses. In addition, the deletion of this complex led to dramatically decreased deoxynivalenol biosynthesis. This study uncovers a novel regulating mechanism of Hsp70 in multiple stress responses in a filamentous fungus.
Collapse
Affiliation(s)
- Zunyong Liu
- Institute of Biotechnology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Zhihui Wang
- Institute of Biotechnology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Mengmeng Huang
- Institute of Biotechnology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Leiyan Yan
- Ningbo Academy of Agricultural Sciences, Ningbo, 315040, China
| | - Zhonghua Ma
- Institute of Biotechnology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China.,State Key Laboratory of Rice Biology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Yanni Yin
- Institute of Biotechnology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| |
Collapse
|
19
|
Astasov-Frauenhoffer M, Varenganayil MM, Decho AW, Waltimo T, Braissant O. Exopolysaccharides regulate calcium flow in cariogenic biofilms. PLoS One 2017; 12:e0186256. [PMID: 29023506 PMCID: PMC5638444 DOI: 10.1371/journal.pone.0186256] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 09/28/2017] [Indexed: 11/18/2022] Open
Abstract
Caries-associated biofilms induce loss of calcium from tooth surfaces in the presence of dietary carbohydrates. Exopolysaccharides (EPS) provide a matrix scaffold and an abundance of primary binding sites within biofilms. The role of EPS in binding calcium in cariogenic biofilms is only partially understood. Thus, the aim of the present study is to investigate the relationship between the calcium dissolution rates and calcium tolerance of caries-associated bacteria and yeast as well as to examine the properties of EPS to quantify its binding affinity for dissolved calcium. Calcium dissolution was measured by dissolution zones on Pikovskaya's agar. Calcium tolerance was assessed by isothermal microcalorimetry (IMC) by adding CaCl2 to the bacterial cultures. Acid-base titration and Fourier transform infrared (FTIR) spectroscopy were used to identify possible functional groups responsible for calcium binding, which was assessed by isothermal titration calorimetry (ITC). Lactobacillus spp. and mutans streptococci demonstrated calcium dissolution in the presence of different carbohydrates. All strains that demonstrated high dissolution rates also revealed higher rates of calcium tolerance by IMC. In addition, acidic functional groups were predominantly identified as possible binding sites for calcium ions by acid-base titration and FTIR. Finally, ITC revealed EPS to have a higher binding affinity for calcium compared, for example, to lactic acid. In conclusion, this study illustrates the role of EPS in terms of the calcium tolerance of cariogenic microbiota by determining the ability of EPS to control free calcium concentrations within the biofilms as a self-regulating mode of action in the pathogenesis of dental caries.
Collapse
Affiliation(s)
- Monika Astasov-Frauenhoffer
- Department of Preventive Dentistry and Oral Microbiology, University Center for Dental Medicine, University of Basel, Basel, Switzerland
- * E-mail:
| | - Muth M. Varenganayil
- Department of Preventive Dentistry and Oral Microbiology, University Center for Dental Medicine, University of Basel, Basel, Switzerland
| | - Alan W. Decho
- Department of Environmental Health Sciences, Arnold School of Public Health, Columbia, South Carolina, United States
| | - Tuomas Waltimo
- Department of Preventive Dentistry and Oral Microbiology, University Center for Dental Medicine, University of Basel, Basel, Switzerland
| | - Olivier Braissant
- Center of Biomechanics & Biocalorimetry, c/o Department Biomedical Engineering (DBE), University of Basel, Allschwil, Switzerland
| |
Collapse
|
20
|
Zhang K, Jia C, Yu Q, Xiao C, Dong Y, Zhang M, Zhang D, Zhao Q, Zhang B, Li M. Contribution of VMA5 to vacuolar function, stress response, ion homeostasis and autophagy in Candida albicans. Future Microbiol 2017; 12:1147-1166. [PMID: 28879785 DOI: 10.2217/fmb-2017-0029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
AIM V-ATPase is a conservative multi-subunit enzyme in eukaryotes and modulates several cellular responses. This study aimed to illustrate the roles of Vma5 in vacuolar function, oxidative stress response, calcium homeostasis, autophagy and virulence. MATERIALS & METHODS The vma5Δ/Δ mutant was obtained using PCR-mediated homologous recombination. The functions of Vma5 were investigated by a series of biochemical and systemic infection methods. RESULTS Disruption of VMA5 led to growth inhibition, vacuolar dysfunction, disturbance of calcium homeostasis and inhibition of calcium-related oxidative stress response. Furthermore, its deletion caused defects in autophagy completion and hyphal development, and resulted in attenuated Candida albicans virulence. CONCLUSION Our findings provide new insights into V-ATPase functions in C. albicans, and reveal a potential candidate for development of antifungal drugs.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Microbiology, Key Laboratory of Molecular Microbiology & Technology, College of Life Sciences, Nankai University, Ministry of Education, Tianjin 300071, China
| | - Chang Jia
- Department of Microbiology, Key Laboratory of Molecular Microbiology & Technology, College of Life Sciences, Nankai University, Ministry of Education, Tianjin 300071, China
| | - Qilin Yu
- Department of Microbiology, Key Laboratory of Molecular Microbiology & Technology, College of Life Sciences, Nankai University, Ministry of Education, Tianjin 300071, China
| | - Chenpeng Xiao
- Department of Microbiology, Key Laboratory of Molecular Microbiology & Technology, College of Life Sciences, Nankai University, Ministry of Education, Tianjin 300071, China
| | - Yijie Dong
- Department of Microbiology, Key Laboratory of Molecular Microbiology & Technology, College of Life Sciences, Nankai University, Ministry of Education, Tianjin 300071, China.,The State Key Laboratory for Biology of Plant Disease & Insect Pests, Institute of Plant protection, Chinese Academy of Agricultural Sciences, Beijing 100871, China
| | - Meng Zhang
- Department of Microbiology, Key Laboratory of Molecular Microbiology & Technology, College of Life Sciences, Nankai University, Ministry of Education, Tianjin 300071, China
| | - Dan Zhang
- Department of Microbiology, Key Laboratory of Molecular Microbiology & Technology, College of Life Sciences, Nankai University, Ministry of Education, Tianjin 300071, China
| | - Qiang Zhao
- Department of Zoology & Developmental Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Biao Zhang
- College of Language & Culture, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Mingchun Li
- Department of Microbiology, Key Laboratory of Molecular Microbiology & Technology, College of Life Sciences, Nankai University, Ministry of Education, Tianjin 300071, China
| |
Collapse
|
21
|
Yu Q, Wang H, Peng Q, Li Y, Liu Z, Li M. Different toxicity of anatase and rutile TiO 2 nanoparticles on macrophages: Involvement of difference in affinity to proteins and phospholipids. JOURNAL OF HAZARDOUS MATERIALS 2017; 335:125-134. [PMID: 28437696 DOI: 10.1016/j.jhazmat.2017.04.026] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 04/06/2017] [Accepted: 04/07/2017] [Indexed: 06/07/2023]
Abstract
TiO2 nanoparticles (NPs) are well-known nanomaterials (NMs), widely used in cosmetics, solar cells, photo-catalysts and additives. Anatase and rutile are the two main crystalline phases of TiO2 NPs and have distinct electrical and optical properties. However, their relative toxicity to organisms is a current topic of debate. In this study, we synthesize both anatase NPs (TiO2-A) and rutile NPs (TiO2-R) with similar particle sizes (20-40nm), surface areas (51-52m2/g) and Zeta potentials (-13.4 to -13.7mV), and investigate their toxicity to macrophages. Contrary to previous findings, TiO2-A show a lower percentage cell deaths compared to TiO2-R (10% vs 20% at 50mg/L), indicating a lower toxicity compared to TiO2-R. The macrophages treated with TiO2-A and TiO2-R have similar levels of reactive oxygen species (ROS) and the autophagy marker LC3, implying that our observed difference in toxicity is not attributed to oxidative damage and autophagy. Interestingly, TiO2-A cause less severe necrosis and lysosomal membrane permeabilization (LMP), but more severe mitochondrial dysfunction. Adsorption assays further reveal that TiO2-A and TiO2-R have a higher affinity to proteins and phospholipids, respectively. This study demonstrates an important role of crystal phase-related surface affinity to different biomolecules in nanotoxicity.
Collapse
Affiliation(s)
- Qilin Yu
- Ministry of Education Key Laboratory of Molecular Microbiology and Technology, Department of Microbiology, College of Life Science, Nankai University, Tianjin 300071, China
| | - Honggang Wang
- Ministry of Education Key Laboratory of Molecular Microbiology and Technology, Department of Microbiology, College of Life Science, Nankai University, Tianjin 300071, China
| | - Qi Peng
- Ministry of Education Key Laboratory of Molecular Microbiology and Technology, Department of Microbiology, College of Life Science, Nankai University, Tianjin 300071, China
| | - Ye Li
- Ministry of Education Key Laboratory of Molecular Microbiology and Technology, Department of Microbiology, College of Life Science, Nankai University, Tianjin 300071, China
| | - Zhe Liu
- Ministry of Education Key Laboratory of Molecular Microbiology and Technology, Department of Microbiology, College of Life Science, Nankai University, Tianjin 300071, China; Water Environment Monitoring Center of Yellow River Basin, Zhengzhou, Henan 450002, China
| | - Mingchun Li
- Ministry of Education Key Laboratory of Molecular Microbiology and Technology, Department of Microbiology, College of Life Science, Nankai University, Tianjin 300071, China.
| |
Collapse
|
22
|
Role of the Inositol Polyphosphate Multikinase Ipk2 in Regulation of Hyphal Development, Calcium Signaling and Secretion in Candida albicans. Mycopathologia 2017; 182:609-623. [DOI: 10.1007/s11046-017-0138-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 04/12/2017] [Indexed: 10/19/2022]
|
23
|
Li SX, Song YJ, Zhang YS, Wu HT, Guo H, Zhu KJ, Li DM, Zhang H. Mitochondrial Complex V α Subunit Is Critical for Candida albicans Pathogenicity through Modulating Multiple Virulence Properties. Front Microbiol 2017; 8:285. [PMID: 28280492 PMCID: PMC5322696 DOI: 10.3389/fmicb.2017.00285] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Accepted: 02/13/2017] [Indexed: 11/22/2022] Open
Abstract
The α subunit (ATP1) is a vital component of mitochondrial complex V which counts for the majority of cellular ATP production in a living organism. Nevertheless, how the α subunit influences other cellular processes such as pathogenicity in Candida albicans remains poorly understood. To address this question, ATP1 mutant (atp1Δ/Δ) and the gene-reconstituted strain (atp1Δ/ATP1) have been constructed in this study and their pathogenicity-related traits are compared to those of wild type (WT). In a murine model of disseminated candidiasis, atp1Δ/Δ infected mice have a significantly higher survival rate and experience a lower fungal burden in tissues. In in vitro studies atp1Δ/Δ lose a capability to damage or destroy macrophages and endothelial cells. Furthermore, atp1Δ/Δ is not able to grow under either glucose-denial conditions or high H2O2 conditions, both of which are associated with the potency of the macrophages to kill C. albicans. Defects in filamentation and biofilm formation may impair the ability of atp1Δ/Δ to penetrate host cells and establish robust colonies in the host tissues. In concert with these pathogenic features, intracellular ATP levels of atp1Δ/Δ can drop to 1/3 of WT level. These results indicate that the α subunit of Complex V play important roles in C. albicans pathogenicity.
Collapse
Affiliation(s)
- Shui-Xiu Li
- The First Affiliated Hospital of Jinan UniversityGuangzhou, China; Institute of Mycology, Jinan UniversityGuangzhou, China
| | - Yan-Jun Song
- The First Affiliated Hospital of Jinan UniversityGuangzhou, China; Institute of Mycology, Jinan UniversityGuangzhou, China
| | - Yi-Shan Zhang
- The First Affiliated Hospital of Jinan UniversityGuangzhou, China; Institute of Mycology, Jinan UniversityGuangzhou, China
| | - Hao-Tian Wu
- The First Affiliated Hospital of Jinan UniversityGuangzhou, China; Institute of Mycology, Jinan UniversityGuangzhou, China
| | - Hui Guo
- The First Affiliated Hospital of Jinan UniversityGuangzhou, China; Institute of Mycology, Jinan UniversityGuangzhou, China
| | - Kun-Ju Zhu
- The First Affiliated Hospital of Jinan UniversityGuangzhou, China; Institute of Mycology, Jinan UniversityGuangzhou, China
| | - Dong-Mei Li
- Department of Microbiology and Immunology, Georgetown University Medical Center Washington, DC, USA
| | - Hong Zhang
- The First Affiliated Hospital of Jinan UniversityGuangzhou, China; Institute of Mycology, Jinan UniversityGuangzhou, China
| |
Collapse
|
24
|
Dong Y, Zhang D, Yu Q, Zhao Q, Xiao C, Zhang K, Jia C, Chen S, Zhang B, Zhang B, Li M. Loss of Ssq1 leads to mitochondrial dysfunction, activation of autophagy and cell cycle arrest due to iron overload triggered by mitochondrial iron-sulfur cluster assembly defects in Candida albicans. Int J Biochem Cell Biol 2017; 85:44-55. [PMID: 28163187 DOI: 10.1016/j.biocel.2017.01.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 12/30/2016] [Accepted: 01/29/2017] [Indexed: 01/10/2023]
Abstract
Iron-sulfur clusters perform essential functions in enzymatic catalysis and homeostatic regulation. Here we for the first time identified Ssq1 as an essential component for iron-sulfur cluster assembly in Candida albicans. Ssq1 played an important role in cell growth. Shutting off SSQ1 led to accumulation of intracellular iron, especially in mitochondria, and disorder of intracellular iron regulation. In tetO-SSQ1, iron overloading triggered the oxidative damage of mitochondrial function. Surprisingly, disruption of SSQ1 activated autophagic pathway. The mitochondrial dysfunction was further aggravated when CCZ1 (which is essential for autophagy) and SSQ1 was simultaneously deleted, suggesting that autophagy played a critical role in maintenance of mitochondrial function in tetO-SSQ1. In addition, double deletion of SSQ1 and CCZ1 further elevated cellular iron levels in comparison with tetO-SSQ1, indicating that autophagy participated in maintenance of iron homeostasis. Furthermore, we found that loss of SSQ1 led to increasing protein expression of Rnr1 and redistribution of Rnr2 from the nucleus to cytoplasm, and further resulted in cell cycle arrest. The results implied that cell cycle arrest was caused by activating the checkpoint pathway because of impairing the iron-sulfur cluster assembly in tetO-SSQ1. Shutting off SSQ1 led to a significant defect in filamentous development. Interestingly, the tetO-SSQ1ccz1Δ/Δ growth was inhibited on hyphae-inducing solid media. Both tetO-SSQ1 and tetO-SSQ1ccz1Δ/Δ exhibited extremely attenuated virulence, indicating that Ssq1 might provide a promising target for antifungal drugs development. In summary, our findings provide new insights into the understanding of iron-sulfur cluster assembly-related gene in C. albicans.
Collapse
Affiliation(s)
- Yijie Dong
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, PR China; The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, PR China
| | - Dan Zhang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, PR China
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, PR China
| | - Qiang Zhao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, PR China
| | - Chenpeng Xiao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, PR China
| | - Kai Zhang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, PR China
| | - Chang Jia
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, PR China
| | - Sijia Chen
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, PR China
| | - Bing Zhang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, PR China
| | - Biao Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Mingchun Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, PR China.
| |
Collapse
|
25
|
Román E, Prieto D, Martin R, Correia I, Mesa Arango AC, Alonso-Monge R, Zaragoza O, Pla J. Role of catalase overproduction in drug resistance and virulence in Candida albicans. Future Microbiol 2016; 11:1279-1297. [DOI: 10.2217/fmb-2016-0067] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To investigate the role of Cat1 overproduction in Candida albicans. Materials & methods: Strains overproducing the CAT1 gene were constructed. Results: Cells overproducing CAT1 were found to be more resistant to some oxidants and mammalian phagocytic cells. They also showed reduced intracellular reactive oxygen species generated by amphotericin B or ciclopirox olamine. CAT1 overproduction did not change the minimum inhibitory concentration of fungal cells to fungistatic or fungicidal azoles nor to amphotericin B although increased twofold the minimum inhibitory concentration to caspofungin. The role of Cat1 overproduction in virulence and colonization was also analyzed in mouse models. Conclusion: The overproduction of Cat1 protects against oxidants, phagocytes and certain antifungals at subinhibitory concentration but does not increase virulence in a systemic infection mouse model.
Collapse
Affiliation(s)
- Elvira Román
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, E-28040 Madrid, Spain
| | - Daniel Prieto
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, E-28040 Madrid, Spain
| | - Ry Martin
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, E-28040 Madrid, Spain
| | - Inês Correia
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, E-28040 Madrid, Spain
| | | | - Rebeca Alonso-Monge
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, E-28040 Madrid, Spain
| | - Oscar Zaragoza
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Jesús Pla
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, E-28040 Madrid, Spain
| |
Collapse
|
26
|
Yu Q, Zhang B, Li J, Zhang B, Wang H, Li M. Endoplasmic reticulum-derived reactive oxygen species (ROS) is involved in toxicity of cell wall stress to Candida albicans. Free Radic Biol Med 2016; 99:572-583. [PMID: 27650297 DOI: 10.1016/j.freeradbiomed.2016.09.014] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/28/2016] [Accepted: 09/16/2016] [Indexed: 12/22/2022]
Abstract
The cell wall is an important cell structure in both fungi and bacteria, and hence becomes a common antimicrobial target. The cell wall-perturbing agents disrupt synthesis and function of cell wall components, leading to cell wall stress and consequent cell death. However, little is known about the detailed mechanisms by which cell wall stress renders fungal cell death. In this study, we found that ROS scavengers drastically attenuated the antifungal effect of cell wall-perturbing agents to the model fungal pathogen Candida albicans, and these agents caused remarkable ROS accumulation and activation of oxidative stress response (OSR) in this fungus. Interestingly, cell wall stress did not cause mitochondrial dysfunction and elevation of mitochondrial superoxide levels. Furthermore, the iron chelator 2,2'-bipyridyl (BIP) and the hydroxyl radical scavengers could not attenuate cell wall stress-caused growth inhibition and ROS accumulation. However, cell wall stress up-regulated expression of unfold protein response (UPR) genes, enhanced protein secretion and promoted protein folding-related oxidation of Ero1, an important source of ROS production. These results indicated that oxidation of Ero1 in the endoplasmic reticulum (ER), rather than mitochondrial electron transport and Fenton reaction, contributed to cell wall stress-related ROS accumulation and consequent growth inhibition. Our findings uncover a novel link between cell wall integrity (CWI), ER function and ROS production in fungal cells, and shed novel light on development of strategies promoting the antifungal efficacy of cell wall-perturbing agents against fungal infections.
Collapse
Affiliation(s)
- Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, PR China
| | - Bing Zhang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, PR China
| | - Jianrong Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, PR China
| | - Biao Zhang
- Tianjin Traditional Chinese Medicine University, Tianjin 300193, PR China
| | - Honggang Wang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, PR China
| | - Mingchun Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, PR China.
| |
Collapse
|
27
|
The Candida albicans fimbrin Sac6 regulates oxidative stress response (OSR) and morphogenesis at the transcriptional level. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2255-66. [DOI: 10.1016/j.bbamcr.2016.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 05/27/2016] [Accepted: 06/02/2016] [Indexed: 12/30/2022]
|
28
|
Ma F, Zhang Y, Wang Y, Wan Y, Miao Y, Ma T, Yu Q, Li M. Role of Aif1 in regulation of cell death under environmental stress in Candida albicans. Yeast 2016; 33:493-506. [PMID: 27121326 DOI: 10.1002/yea.3167] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 04/10/2016] [Accepted: 04/12/2016] [Indexed: 01/31/2023] Open
Abstract
Apoptosis-inducing factor (AIF) is a conserved flavoprotein localized in the mitochondria, inducing apoptosis after translocation into the nucleus. However, its role in the important fungal pathogen, Candida albicans, remains to be investigated. In this study, we find that the C. albicans AIF protein Aif1, similar to its homologues in other organisms, is localized at the mitochondria and translocated into the nucleus under apoptosis-inducing conditions. Moreover, deletion of AIF1 causes attenuated apoptosis in this pathogen under apoptosis-inducing conditions, such as the treatment of 2 mm H2 O2 , 10 mm acetic acid or 0.08 mg/l caspofungin, and its overexpression enhances this process. Interestingly, treatment with high levels of these agents leads to reversed sensitivity of aif1Δ/Δ and the overexpression strain AIF1ov. In addition, the virulence of C. albicans is not affected by deletion or overexpression of AIF1. Hence, C. albicans Aif1, as a mitochondria-localized protein, plays a dual role in the regulation of cell death under different concentrations of the stress-caused agents. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Feiyang Ma
- Key Laboratory of Molecular Microbiology and Technology, College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| | - Yueqi Zhang
- Key Laboratory of Molecular Microbiology and Technology, College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| | - Yuzhou Wang
- Laboratory Animal Centre, College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| | - Yajuan Wan
- College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| | - Yunheng Miao
- Key Laboratory of Molecular Microbiology and Technology, College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| | - Tianyu Ma
- Key Laboratory of Molecular Microbiology and Technology, College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| | - Mingchun Li
- Key Laboratory of Molecular Microbiology and Technology, College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| |
Collapse
|
29
|
Liu Z, Zhang M, Han X, Xu H, Zhang B, Yu Q, Li M. TiO2 nanoparticles cause cell damage independent of apoptosis and autophagy by impairing the ROS-scavenging system in Pichia pastoris. Chem Biol Interact 2016; 252:9-18. [DOI: 10.1016/j.cbi.2016.03.029] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/19/2016] [Accepted: 03/29/2016] [Indexed: 01/10/2023]
|
30
|
Liu S, Yue L, Gu W, Li X, Zhang L, Sun S. Synergistic Effect of Fluconazole and Calcium Channel Blockers against Resistant Candida albicans. PLoS One 2016; 11:e0150859. [PMID: 26986478 PMCID: PMC4795682 DOI: 10.1371/journal.pone.0150859] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/19/2016] [Indexed: 11/18/2022] Open
Abstract
Candidiasis has increased significantly recently that threatens patients with low immunity. However, the number of antifungal drugs on the market is limited in comparison to the number of available antibacterial drugs. This fact, coupled with the increased frequency of fungal resistance, makes it necessary to develop new therapeutic strategies. Combination drug therapy is one of the most widely used and effective strategy to alleviate this problem. In this paper, we were aimed to evaluate the combined antifungal effects of four CCBs (calcium channel blockers), amlodipine (AML), nifedipine (NIF), benidipine (BEN) and flunarizine (FNZ) with fluconazole against C. albicans by checkerboard and time-killing method. In addition, we determined gene (CCH1, MID1, CNA1, CNB1, YVC1, CDR1, CDR2 and MDR1) expression by quantitative PCR and investigated the efflux pump activity of resistant candida albicans by rhodamine 6G assay to reveal the potential mechanisms. Finally, we concluded that there was a synergy when fluconazole combined with the four tested CCBs against resistant strains, with fractional inhibitory concentration index (FICI) <0.5, but no interaction against sensitive strains (FICI = 0.56 ~ 2). The mechanism studies revealed that fluconazole plus amlodipine caused down-regulating of CNA1, CNB1 (encoding calcineurin) and YVC1 (encoding calcium channel protein in vacuole membrane).
Collapse
Affiliation(s)
- Shuyuan Liu
- School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong Province, People’s Republic of China
- Department of Pharmacy, Ordos Central Hospital, Ordos, 017000, Inner Mongolia, People’s Republic of China
| | - Longtao Yue
- Translational Medicine Research Centre, Qianfoshan Hospital Affiliated to Shandong University, Jinan, 250014, Shandong Province, People’s Republic of China
| | - Wenrui Gu
- School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong Province, People’s Republic of China
| | - Xiuyun Li
- School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong Province, People’s Republic of China
| | - Liuping Zhang
- School of Pharmaceutical Sciences, Taishan Medical University, taian, 271000, Shandong Province, People’s Republic of China
| | - Shujuan Sun
- Department of Pharmacy, Qianfoshan Hospital Affiliated to Shandong University, Jinan, 250014, Shandong Province, People’s Republic of China
- * E-mail:
| |
Collapse
|
31
|
Dong Y, Yu Q, Chen Y, Xu N, Zhao Q, Jia C, Zhang B, Zhang K, Zhang B, Xing L, Li M. The Ccz1 mediates the autophagic clearance of damaged mitochondria in response to oxidative stress in Candida albicans. Int J Biochem Cell Biol 2015; 69:41-51. [PMID: 26471407 DOI: 10.1016/j.biocel.2015.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 08/28/2015] [Accepted: 10/07/2015] [Indexed: 10/25/2022]
Abstract
Autophagy plays a critical role in response to numerous cellular stresses, such as nutrient deprivation, hypoxia, starvation and organelle damage. The disruption of autophagy pathway affects multiple aspects of cellular stress response. Here we for the first time identified Ccz1 as an essential component for autophagy in Candida albicans. Our experiments demonstrated that loss of CCZ1 gene led to vacuolar fragmentation and disruption of the autophagy pathway. Our results also suggested that Ccz1 functioned in oxidative stress. In the ccz1Δ/Δ mutant, the levels of reactive oxidative species (ROS) sharply increased under H2O2 treatment. Further studies demonstrated that breakdown of the autophagic clearance pathway led to the accumulation of oxidative stress-damaged mitochondria, and consequently elevated cellular ROS levels in the ccz1Δ/Δ mutant. Furthermore, deletion of CCZ1 led to a significant defect in filamentous development at both 30°C and 37°C. The disruption of CCZ1 gene led to decreased capacity of macrophage killing and increased sensitivity to the macrophages. In addition, the ccz1Δ/Δ mutant exhibited attenuated virulence and decreased fungal burdens in the mouse systemic infection model, indicating that CCZ1 might provide a promising target for antifungal drugs development. In summary, our findings provide new insights into the understanding of autophagy-related gene in C. albicans.
Collapse
Affiliation(s)
- Yijie Dong
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, PR China.
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, PR China.
| | - Yulu Chen
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, PR China.
| | - Ning Xu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China.
| | - Qiang Zhao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, PR China.
| | - Chang Jia
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, PR China.
| | - Bing Zhang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, PR China.
| | - Kai Zhang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, PR China.
| | - Biao Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| | - Laijun Xing
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, PR China.
| | - Mingchun Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, PR China.
| |
Collapse
|