1
|
Giordani AS, Menghi C, Proietti R, Stefanelli LF, Cacciapuoti M, Calò LA. Cardiovascular and arrhythmic manifestations of Bartter's and Gitelman's syndromes: do not forget the heart. A narrative literature review. J Hypertens 2025; 43:191-200. [PMID: 39445629 DOI: 10.1097/hjh.0000000000003910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
Bartter's and Gitelman's syndromes (BS/GS) are genetically determined kidney tubulopathies leading to electrolyte and neurohormonal abnormalities. Although considered benign entities, major adverse cardiovascular events may complicate both syndromes, in form of ventricular arrhythmias leading to palpitations, syncope or sudden cardiac death, microvascular cardiac dysfunction and exercise-induced myocardial contractile deficit. The mechanisms leading to cardiovascular complications are not only driven by chronic electrolyte abnormalities, i.e. chronic hypokalemia and hypomagnesemia, but also by neurohormonal alterations that can impair vascular tone and myocardial contractility. In presence of triggering factors, BS/GS patients may experience a spectrum of cardiac arrhythmias necessitating prompt diagnosis and treatment. The aim of this review is to explore the pathophysiological mechanisms of BS and GS, highlighting those responsible for cardiovascular involvement, and to analyze the spectrum of associated cardiovascular complications. This highlights the importance of an integrated shared management of GS/BS patients between Nephrologist and Cardiologist.
Collapse
Affiliation(s)
- Andrea S Giordani
- Cardiology, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Caterina Menghi
- Cardiology, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Riccardo Proietti
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Lucia Federica Stefanelli
- Nephrology, Dialysis and Transplantation Unit, Department of Medicine, University of Padova, Padova, Italy
| | - Martina Cacciapuoti
- Nephrology, Dialysis and Transplantation Unit, Department of Medicine, University of Padova, Padova, Italy
| | - Lorenzo A Calò
- Nephrology, Dialysis and Transplantation Unit, Department of Medicine, University of Padova, Padova, Italy
| |
Collapse
|
2
|
Ravarotto V, Bertoldi G, Rigato M, Pagnin E, Gobbi L, Davis PA, Calò LA. Tracing angiotensin II's yin-yang effects on cardiovascular-renal pathophysiology. Minerva Med 2023; 114:56-67. [PMID: 34180640 DOI: 10.23736/s0026-4806.21.07440-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Adverse changes in cardiovascular and renal systems are major contributors to overall morbidity and mortality. Human cardiovascular and renal systems exhibit a complex network of positive and negative feedback that is reflected in the control of vascular tone via angiotensin II (Ang II) based signaling. This review will examine in some depth, the multiple components and processes that control the status and reflect the health of these various cardiovascular and renal systems, such as pathways associated to monomeric G proteins, RhoA/Rho kinase system and ERK, oxidative stress and NO balance. It will specifically emphasize the "yin-yang" nature of Ang II signaling by comparing and contrasting the effects and activity of various systems, pathways and components found in hypertension to those found in Gitelman's and Bartter's syndromes (GS/BS), two rare autosomal recessive tubulopathies characterized by electrolytic imbalance, metabolic alkalosis, sodium wasting and prominent activation of the renin-angiotensin-aldosterone system. Notwithstanding the activation of the renin-angiotensin-aldosterone system, GS/BS are normo-hypotensive and protected from cardiovascular-renal remodeling and therefore can be considered the mirror image, the opposite of hypertension.
Collapse
Affiliation(s)
- Verdiana Ravarotto
- Unit of Nephrology, Dialysis and Transplantation, Department of Medicine, University of Padua, Padua, Italy
| | - Giovanni Bertoldi
- Unit of Nephrology, Dialysis and Transplantation, Department of Medicine, University of Padua, Padua, Italy
| | - Matteo Rigato
- Unit of Nephrology, Dialysis and Transplantation, Department of Medicine, University of Padua, Padua, Italy
| | - Elisa Pagnin
- Unit of Nephrology, Dialysis and Transplantation, Department of Medicine, University of Padua, Padua, Italy
| | - Laura Gobbi
- Unit of Nephrology, Dialysis and Transplantation, Department of Medicine, University of Padua, Padua, Italy
| | - Paul A Davis
- Department of Nutrition, University of California at Davis, Davis, CA, USA
| | - Lorenzo A Calò
- Unit of Nephrology, Dialysis and Transplantation, Department of Medicine, University of Padua, Padua, Italy -
| |
Collapse
|
3
|
Stefanelli LF, Di Vico V, Davis PA, Calò LA. Magnesium is crucial in renal-cardiovascular fibrosis but the Gitelman's syndrome paradox still awaits resolution. Int Urol Nephrol 2023; 55:487-488. [PMID: 35925487 DOI: 10.1007/s11255-022-03333-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 07/27/2022] [Indexed: 01/25/2023]
Affiliation(s)
- Lucia Federica Stefanelli
- Nephrology, Dialysis and Transplantation Unit, Department of Medicine (DIMED), University of Padova, Via Giustiniani, 2, 35128, Padua, Italy
| | - Valentina Di Vico
- Nephrology, Dialysis and Transplantation Unit, Department of Medicine (DIMED), University of Padova, Via Giustiniani, 2, 35128, Padua, Italy
| | - Paul A Davis
- Department of Nutrition, University of California, Davis, USA
| | - Lorenzo A Calò
- Nephrology, Dialysis and Transplantation Unit, Department of Medicine (DIMED), University of Padova, Via Giustiniani, 2, 35128, Padua, Italy.
| |
Collapse
|
4
|
Zhang Y, Li W, Chen X, Xiong S, Bian Y, Yuan L, Gao X, Su D. Liver-Targeted Near-Infrared Fluorescence/Photoacoustic Dual-Modal Probe for Real-Time Imaging of In Situ Hepatic Inflammation. Anal Chem 2023; 95:2579-2587. [PMID: 36642958 DOI: 10.1021/acs.analchem.2c05476] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Early diagnosis of hepatic inflammation is the key to timely treatment and avoid the worsening of liver inflammation. Near-infrared fluorescence (NIRF) probes have high sensitivity but low spatial resolution in lesion imaging, while photoacoustic (PA) imaging has good spatial location information. Therefore, the development of a NIRF/PA dual-modal probe integrated with high sensitivity and spatial location feedback can achieve an accurate early diagnosis of hepatic inflammation. Here, we report an activatable NIRF/PA dual-modal probe (hCy-Tf-CA) for the detection of the superoxide anion (O2·-) in early hepatic inflammation. hCy-Tf-CA showed high selectivity and sensitivity for detecting O2·- fluctuation in vitro. More importantly, by introducing hepatocyte-targeting cholic acid (CA), the probe successfully achieved accurate in situ imaging of acute inflammatory liver injury (AILI) and autoimmune hepatitis (AIH) in vivo. The introduced CA not only promotes the hepatic targeting accumulation of probes but also improves the performance of low background dual-modal imaging in vivo. Therefore, hCy-Tf-CA provides an effective strategy for significantly improving in situ imaging performance and holds great potential for early, sensitive, and accurate diagnosis of hepatic inflammation.
Collapse
Affiliation(s)
- Yong Zhang
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, 100124 Beijing, P. R. China
| | - Wei Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Xueqian Chen
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, 100124 Beijing, P. R. China
| | - Shaoqing Xiong
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, 100124 Beijing, P. R. China
| | - Yongning Bian
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, 100124 Beijing, P. R. China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Xueyun Gao
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, 100124 Beijing, P. R. China
| | - Dongdong Su
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, 100124 Beijing, P. R. China
| |
Collapse
|
5
|
Chargui S, Houli R, Ounissi M, Ben Hamida F, Harzallah A, Abderrahim E. Gitelman syndrome, hypomagnesemia, and venous thrombosis: An intriguing association. Clin Case Rep 2022; 10:e05542. [PMID: 35280096 PMCID: PMC8894579 DOI: 10.1002/ccr3.5542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/27/2022] [Accepted: 02/16/2022] [Indexed: 12/02/2022] Open
Abstract
Among salt-wasting tubulopathies' complications, venous thrombosis is one of the rarest. We report a case of a young woman with Gitelman syndrome (GS). She presented a deep venous thrombosis in her leg and was treated with heparin with favorable outcomes. We retained hypomagnesemia as the cause of the thrombosis.
Collapse
Affiliation(s)
- Soumaya Chargui
- Internal Medicine (A) DepartmentCharles Nicolles HospitalTunisTunisia
- Research Laboratory of Renal Pathology LR00SP01Charles Nicolles HospitalTunisTunisia
| | - Rawnak Houli
- Internal Medicine (A) DepartmentCharles Nicolles HospitalTunisTunisia
| | - Mondher Ounissi
- Internal Medicine (A) DepartmentCharles Nicolles HospitalTunisTunisia
| | - Fethi Ben Hamida
- Research Laboratory of Renal Pathology LR00SP01Charles Nicolles HospitalTunisTunisia
| | - Amel Harzallah
- Internal Medicine (A) DepartmentCharles Nicolles HospitalTunisTunisia
| | | |
Collapse
|
6
|
Borràs VJ, Francés‐Monerris A, Roca‐Sanjuán D. Hydroxyl Radical Addition to Thymine and Cytosine and Photochemistry of the Adducts at the C6 Position. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900087] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Vicent J. Borràs
- Institut de Ciència MolecularUniversitat de València P.O. Box 22085 46071 Valencia Spain
- Departamento de QuímicaUniversidad Autónoma de Madrid 28049 Madrid Spain
| | - Antonio Francés‐Monerris
- Laboratoire de Physique et Chimie Théoriques (LPCT)Université de Lorraine, CNRS 54000 Nancy France
| | - Daniel Roca‐Sanjuán
- Institut de Ciència MolecularUniversitat de València P.O. Box 22085 46071 Valencia Spain
| |
Collapse
|
7
|
Ravarotto V, Simioni F, Sabbadin C, Pagnin E, Maiolino G, Armanini D, Calò LA. Proinflammatory/profibrotic effects of aldosterone in Gitelman's syndrome, a human model opposite to hypertension. J Endocrinol Invest 2019; 42:521-526. [PMID: 30136149 DOI: 10.1007/s40618-018-0942-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 08/09/2018] [Indexed: 12/22/2022]
Abstract
PURPOSE Aldosterone proinflammatory/profibrotic effects are mediated by the induction of mononuclear leucocytes (MNL) to express oxidative stress (OxSt)-related proteins, such as p22phox, and by the activation of RhoA/Rho kinase pathway. Gitelman's syndrome (GS), an autosomal recessive tubulopathy, is an interesting opposite model to hypertension, being characterized by hypokalemia, activation of renin-angiotensin-aldosterone system yet normo/hypotension and lack of cardiovascular-renal remodeling. We aimed to evaluate the proinflammatory/profibrotic effect of aldosterone in MNL of 6 GS patients compared with 6 healthy subjects (HS). METHODS p22phox expression and MYPT-1 phosphorylation status, a marker of RhoA/Rho kinase pathway activation, were evaluated in MNL of GS patients and HS at baseline and after incubation with aldosterone (1 × 10-8 M) alone or with canrenone (1 × 10-6 M). RESULTS At basal condition, p22phox expression was significantly higher in HS than in GS patients (1.02 ± 0.05 densitometric unit (du) vs 0.40 ± 0.1 du, respectively). Aldosterone significantly increased p22phox expression in HS and this effect was reversed by coincubation with canrenone (1.4 ± 0.05 du and 1.09 ± 0.03 du, respectively). No significant change was reported in GS after incubation of MNL with aldosterone and/or canrenone compared with basaline. Even MYPT-1 phosphorylation was significantly higher in HS compared with GS patients at basal condition (1.16 ± 0.1 du vs 0.69 ± 0.07, respectively). Aldosterone significantly increased MYPT-1 phosphorylation only in HS (1.37 ± 0.1 du vs 0.83 ± 0.12 du in GS). CONCLUSIONS GS patients seem to be protected by the OxSt status induced by aldosterone and revealed in HS. This human model could provide additional clues to highlight the proinflammatory/cardiovascular remodeling effects of aldosterone.
Collapse
Affiliation(s)
- V Ravarotto
- Department of Medicine-Nephrology, University of Padova, Via Giustiniani, 2, 35128, Padua, Italy
| | - F Simioni
- Department of Medicine-Nephrology, University of Padova, Via Giustiniani, 2, 35128, Padua, Italy
| | - C Sabbadin
- Department of Medicine-Endocrinology, University of Padova, Padua, Italy
| | - E Pagnin
- Department of Medicine-Nephrology, University of Padova, Via Giustiniani, 2, 35128, Padua, Italy
| | - G Maiolino
- Department of Medicine-Hypertension, University of Padova, Padua, Italy
| | - D Armanini
- Department of Medicine-Endocrinology, University of Padova, Padua, Italy
| | - L A Calò
- Department of Medicine-Nephrology, University of Padova, Via Giustiniani, 2, 35128, Padua, Italy.
| |
Collapse
|
8
|
|
9
|
Francés-Monerris A, Merchán M, Roca-Sanjuán D. Mechanism of the OH Radical Addition to Adenine from Quantum-Chemistry Determinations of Reaction Paths and Spectroscopic Tracking of the Intermediates. J Org Chem 2016; 82:276-288. [PMID: 27957829 DOI: 10.1021/acs.joc.6b02393] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The OH radical is a well-known mediator in the oxidation of biological structures like DNA. Over the past decades, the precise events taking place after reaction of DNA nucleobases with OH radical have been widely investigated by the scientific community. Thirty years after the proposal of the main routes for the reaction of •OH with adenine ( Vieira , A. ; Steenken , S. J. Am. Chem. Soc. 1990 , 112 , 6986 - 6994 ), the present work demonstrates that the OH radical addition to C4 position is a minor pathway. Instead, the dehydration process is mediated by the A5OH adduct. Conclusions are based on density functional theory calculations for the ground-state reactivity and highly accurate multiconfigurational computations for the excited states of the radical intermediates. The methodology has been also used to study the mechanism giving rise to the mutagens 8-oxoA and FAPyA. Taking into account the agreement between the experimental data and the theoretical results, it is concluded that addition to the C5 and C8 positions accounts for at least ∼44.5% of the total •OH reaction in water solution. Finally, the current findings suggest that hydrophobicity in the DNA/RNA surroundings facilitates the formation of 8-oxoA and FAPyA.
Collapse
Affiliation(s)
| | - Manuela Merchán
- Instituto de Ciencia Molecular, Universitat de València , P.O. Box 22085, 46071 València, Spain
| | - Daniel Roca-Sanjuán
- Instituto de Ciencia Molecular, Universitat de València , P.O. Box 22085, 46071 València, Spain
| |
Collapse
|
10
|
Maiolino G, Pagnin E, Plebani M, Davis PA, Calò LA. Uric acid and cardiovascular-renal disease risk. Insights from a human model opposite to hypertension. Int J Cardiol 2016; 212:18-9. [PMID: 27016704 DOI: 10.1016/j.ijcard.2016.03.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 03/02/2016] [Accepted: 03/13/2016] [Indexed: 11/28/2022]
Affiliation(s)
| | - Elisa Pagnin
- Department of Medicine, Nephrology, University of Padova, Italy
| | - Mario Plebani
- Department of Medicine, Laboratory Medicine University of Padova, Italy
| | - Paul A Davis
- Department of Nutrition, University of California, Davis, USA
| | - Lorenzo A Calò
- Department of Medicine, Nephrology, University of Padova, Italy.
| |
Collapse
|
11
|
Calò LA, Vertolli U, Pagnin E, Ravarotto V, Davis PA, Lupia M, Naso E, Maiolino G, Naso A. Increased rho kinase activity in mononuclear cells of dialysis and stage 3-4 chronic kidney disease patients with left ventricular hypertrophy: Cardiovascular risk implications. Life Sci 2016; 148:80-5. [PMID: 26872982 DOI: 10.1016/j.lfs.2016.02.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 01/22/2016] [Accepted: 02/06/2016] [Indexed: 11/19/2022]
Abstract
AIMS Cardiovascular disease (CVD) is the leading cause of excess mortality in chronic kidney disease (CKD) and dialysis patients (DP) who have higher prevalence of left ventricular hypertrophy (LVH), the strongest predictor of CV events. Rho kinase (ROCK) activation is linked in hypertensive patients to cardiac remodeling while ROCK inhibition suppresses cardiomyocyte hypertrophy and, in a human clinical condition opposite to hypertension, its downregulation associates with lack of CV remodeling. Information on ROCK activation-LVH link in CKD and DP is lacking. MATERIALS AND METHODS Mononuclear cells (PBMCs) MYPT-1 phosphorylation, a marker of ROCK activity, and the effect of fasudil, a ROCK inhibitor, on MYPT-1 phosphorylation were assessed in 23 DPs, 13 stage 3-4 CKD and 36 healthy subjects (HS) by Western blot. LV mass was assessed by M-mode echocardiography. KEY FINDINGS DP and CKD had higher MYPT-1 phosphorylation compared to HS (p<0.001 and p=0.003). Fasudil (500 and 1000μM) dose dependently reduced MYPT-1 phosphorylation in DP (p<0.01). DP had higher LV mass than CKD (p<0.001). MYPT-1 phosphorylation was higher in patients with LVH (p=0.009) and correlated with LV mass both in DP and CKD with LVH (p<0.001 and p=0.006). SIGNIFICANCE In DP and CKD, ROCK activity tracks with LVH. This ROCK activation-LVH link provided in these CVD high-risk patients along with similar findings in hypertensive patients and added to opposite findings in a human model opposite to hypertension and in type 2 diabetic patients, identify ROCK activation as a potential LVH marker and provide further rationale for ROCK activation inhibition as target of therapy in CVD high-risk patients.
Collapse
Affiliation(s)
- Lorenzo A Calò
- Department of Medicine (DIMED), Nephrology, University of Padova, Italy.
| | - Ugo Vertolli
- Department of Medicine (DIMED), Nephrology, University of Padova, Italy
| | - Elisa Pagnin
- Department of Medicine (DIMED), Nephrology, University of Padova, Italy
| | | | - Paul A Davis
- Department of Nutrition, University of California, Davis, USA
| | - Mario Lupia
- Department of Cardiologic, Thoracic and Vascular Sciences, University of Padova, Italy
| | - Elena Naso
- Department of Medicine (DIMED), Nephrology, University of Padova, Italy
| | - Giuseppe Maiolino
- Department of Medicine (DIMED), Hypertension, University of Padova, Italy
| | - Agostino Naso
- Department of Medicine (DIMED), Nephrology, University of Padova, Italy
| |
Collapse
|
12
|
Calò LA, Maiolino G. Hypomagnesaemia, cardiovascular–renal negative effects and Gitelman's syndrome: A paradox awaiting resolution. Int J Cardiol 2015; 198:106-7. [DOI: 10.1016/j.ijcard.2015.06.148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 06/26/2015] [Indexed: 11/30/2022]
|
13
|
Calò LA, Davis PA, Maiolino G, Pagnin E, Ravarotto V, Naso E, Carraro G, Naso A. Assessing the Relationship of Angiotensin II Type 1 Receptors with Erythropoietin in a Human Model of Endogenous Angiotensin II Type 1 Receptor Antagonism. Cardiorenal Med 2015; 6:16-24. [PMID: 27194993 DOI: 10.1159/000439183] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 07/28/2015] [Indexed: 12/26/2022] Open
Abstract
HYPOTHESIS/INTRODUCTION Angiotensin II (Ang II) has been shown to control erythropoietin (EPO) synthesis as Ang II type 1 receptor (AT1R) blockers block Ang-II-induced EPO oversecretion. To further explore the involvement of AT1R in processes controlling EPO levels, plasma EPO and mononuclear cell NADPH oxidase 4 (NOX4) - a NOX family member involved in oxygen sensing, which is a process central to controlling EPO levels - were assessed in Bartter's/Gitelman's syndrome (BS/GS) patients, a human model of endogenous AT1R antagonism and healthy subjects. Heme oxygenase (HO)-1, antioxidant and anti-inflammatory factor related to NOX4 activation, and the relationship of EPO and NOX4 to HO-1 were also assessed. MATERIALS AND METHODS EPO was measured by chemiluminescent immunoassay, HO-1 by sandwich immunoassay and NOX4 protein expression by Western blot. RESULTS EPO was increased in BS/GS patients compared to healthy subjects (7.64 ± 2.47 vs. 5.23 ± 1.07 U/l; p = 0.025), whereas NOX4 did not differ between BS/GS and healthy subjects (1.76 ± 0.61 vs. 1.65 ± 0.54 densitometric units; p = n.s.), and HO-1 was increased in BS/GS patients compared to healthy subjects (9.58 ± 3.07 vs. 5.49 ± 1.04 ng/ml; p = 0.003). NOX4 positively correlated with HO-1 only in BS/GS patients; no correlation was found between EPO and either NOX4 or HO-1 in those two groups. CONCLUSIONS The effect of the renin-angiotensin system on EPO cannot be solely mediated by Ang II via AT1R signaling, but rather, EPO levels are also determined by a complex interrelated set of signals that involve AT2R, nitric oxide levels, NOX4 and HO-1 activity.
Collapse
Affiliation(s)
- Lorenzo A Calò
- Department of Medicine, Nephrology and Hypertension, University of Padova, Padova, Italy
| | - Paul A Davis
- Department of Nutrition, University of California, Davis, Calif., USA
| | - Giuseppe Maiolino
- Department of Medicine, Nephrology and Hypertension, University of Padova, Padova, Italy
| | - Elisa Pagnin
- Department of Medicine, Nephrology and Hypertension, University of Padova, Padova, Italy
| | - Verdiana Ravarotto
- Department of Medicine, Nephrology and Hypertension, University of Padova, Padova, Italy
| | - Elena Naso
- Department of Medicine, Nephrology and Hypertension, University of Padova, Padova, Italy
| | - Gianni Carraro
- Department of Medicine, Nephrology and Hypertension, University of Padova, Padova, Italy
| | - Agostino Naso
- Department of Medicine, Nephrology and Hypertension, University of Padova, Padova, Italy
| |
Collapse
|