1
|
Shen C, Feng G, Zhao F, Huang X, Wang M, Wang H. Integration of Transcriptomics and Proteomics Analysis Reveals the Molecular Mechanism of Eriocheir sinensis Gills Exposed to Heat Stress. Antioxidants (Basel) 2023; 12:2020. [PMID: 38136140 PMCID: PMC10740794 DOI: 10.3390/antiox12122020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/10/2023] [Accepted: 11/17/2023] [Indexed: 12/24/2023] Open
Abstract
Heat stress is an increasingly concerning topic under global warming. Heat stress can induce organisms to produce excess reactive oxygen species, which will lead to cell damage and destroy the antioxidant defense of aquatic animals. Chinese mitten crab, Eriocheir sinensis, is sensitive to the change in water temperature, and parent crabs are more vulnerable during the breeding stage. In the present study, the multi-omics responses of parent E. sinensis gills to heat stress (24 h) were determined via transcriptome and proteome. The integrative analysis revealed that heat shock protein 70 (HSP70) and glutathione s-transferase (GST) were significantly up-regulated at gene and protein levels after heat stress, indicating that HSP70 and the antioxidant system participated in the regulatory mechanism of heat stress to resist oxidative damage. Moreover, the "Relaxin signaling pathway" was also activated at gene and protein levels under 30 °C stress, which implied that relaxin may be essential and responsible for reducing the oxidative damage of gills caused by extreme heat stress. These findings provided an understanding of the regulation mechanism in E. sinensis under heat stress at gene and protein levels. The mining of key functional genes, proteins, and pathways can also provide a basis for the cultivation of new varieties resistant to oxidative stress.
Collapse
Affiliation(s)
- Chenchen Shen
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (C.S.); (F.Z.); (X.H.); (M.W.)
- College of Fisheries and Life sciences, Shanghai Ocean University, Shanghai 200090, China
| | - Guangpeng Feng
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (C.S.); (F.Z.); (X.H.); (M.W.)
- College of Fisheries and Life sciences, Shanghai Ocean University, Shanghai 200090, China
- Jiangxi Institute for Fisheries Sciences, Poyang Lake Fisheries Research Centre of Jiangxi, Nanchang 330039, China;
| | - Feng Zhao
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (C.S.); (F.Z.); (X.H.); (M.W.)
| | - Xiaorong Huang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (C.S.); (F.Z.); (X.H.); (M.W.)
| | - Min Wang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (C.S.); (F.Z.); (X.H.); (M.W.)
| | - Haihua Wang
- Jiangxi Institute for Fisheries Sciences, Poyang Lake Fisheries Research Centre of Jiangxi, Nanchang 330039, China;
| |
Collapse
|
2
|
Delvasto-Núñez L, Roem D, Bakhtiari K, van Mierlo G, Meijers JCM, Jongerius I, Zeerleder SS. Iron-Driven Alterations on Red Blood Cell-Derived Microvesicles Amplify Coagulation during Hemolysis via the Intrinsic Tenase Complex. Thromb Haemost 2021. [PMID: 34171935 DOI: 10.1055/s-0041-1731051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Hemolytic disorders characterized by complement-mediated intravascular hemolysis, such as autoimmune hemolytic anemia and paroxysmal nocturnal hemoglobinuria, are often complicated by life-threatening thromboembolic complications. Severe hemolytic episodes result in the release of red blood cell (RBC)-derived proinflammatory and oxidatively reactive mediators (e.g., extracellular hemoglobin, heme, and iron) into plasma. Here, we studied the role of these hemolytic mediators in coagulation activation by measuring factor Xa (FXa) and thrombin generation in the presence of RBC lysates. Our results show that hemolytic microvesicles (HMVs) formed during hemolysis stimulate thrombin generation through a mechanism involving FVIII and FIX, the so-called intrinsic tenase complex. Iron scavenging during hemolysis using deferoxamine decreased the ability of the HMVs to enhance thrombin generation. Furthermore, the addition of ferric chloride (FeCl3) to plasma propagated thrombin generation in a FVIII- and FIX-dependent manner suggesting that iron positively affects blood coagulation. Phosphatidylserine (PS) blockade using lactadherin and iron chelation using deferoxamine reduced intrinsic tenase activity in a purified system containing HMVs as source of phospholipids confirming that both PS and iron ions contribute to the procoagulant effect of the HMVs. Finally, the effects of FeCl3 and HMVs decreased in the presence of ascorbate and glutathione indicating that oxidative stress plays a role in hypercoagulability. Overall, our results provide evidence for the contribution of iron ions derived from hemolytic RBCs to thrombin generation. These findings add to our understanding of the pathogenesis of thrombosis in hemolytic diseases.
Collapse
Affiliation(s)
- Laura Delvasto-Núñez
- Sanquin Research, Department of Immunopathology, Amsterdam, The Netherlands, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Hematology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Dorina Roem
- Sanquin Research, Department of Immunopathology, Amsterdam, The Netherlands, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Kamran Bakhtiari
- Department of Molecular Hematology, Sanquin Research, Amsterdam, The Netherlands
| | - Gerard van Mierlo
- Sanquin Research, Department of Immunopathology, Amsterdam, The Netherlands, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Joost C M Meijers
- Department of Molecular Hematology, Sanquin Research, Amsterdam, The Netherlands.,Department of Experimental Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Ilse Jongerius
- Sanquin Research, Department of Immunopathology, Amsterdam, The Netherlands, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, Amsterdam UMC, Amsterdam, the Netherlands
| | - Sacha S Zeerleder
- Sanquin Research, Department of Immunopathology, Amsterdam, The Netherlands, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Hematology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Hematology and Central Hematology Laboratory, Inselspital - Bern University Hospital, University of Bern, Bern, Switzerland.,Department for BioMedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
3
|
Delvasto L, Roem D, Bakhtiari K, van Mierlo GJ, Meijers J, Jongerius I, Zeerleder SS. Iron-driven alterations on red blood cell-derived microvesicles amplify coagulation during hemolysis via the intrinsic tenase complex. Thromb Haemost 2021; 122:80-91. [PMID: 33940654 DOI: 10.1055/a-1497-9573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Hemolytic disorders characterized by complement-mediated intravascular hemolysis, such as autoimmune hemolytic anemia and paroxysmal nocturnal hemoglobinuria, are often complicated by life-threatening thromboembolic complications. Severe hemolytic episodes result in the release of red blood cell (RBC)-derived pro-inflammatory and oxidatively reactive mediators (e.g. extracellular hemoglobin, heme and iron) into plasma. Here, we studied the role of these hemolytic mediators in coagulation activation by measuring FXa and thrombin generation in the presence of RBC lysates. Our results show that hemolytic microvesicles (HMVs) formed during hemolysis stimulate thrombin generation through a mechanism involving FVIII and FIX, the so-called intrinsic tenase complex. Iron scavenging during hemolysis using deferoxamine decreased the ability of the HMVs to enhance thrombin generation. Furthermore, the addition of ferric chloride (FeCl3) to plasma propagated thrombin generation in a FVIII and FIX-dependent manner suggesting that iron positively affects blood coagulation. Phosphatidylserine (PS) blockade using lactadherin and iron chelation using deferoxamine reduced intrinsic tenase activity in a purified system containing HMVs as source of phospholipids confirming that both PS and iron ions contribute to the procoagulant effect of the HMVs. Finally, the effects of FeCl3 and HMVs decreased in the presence of ascorbate and glutathione indicating that oxidative stress plays a role in hypercoagulability. Overall, our results provide evidence for the contribution of iron ions derived from hemolytic RBCs to thrombin generation. These findings add to our understanding of the pathogenesis of thrombosis in hemolytic diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Ilse Jongerius
- Sanquin Research, Amsterdam, Netherlands.,Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Amsterdam UMC Locatie AMC, Amsterdam, Netherlands
| | - Sacha S Zeerleder
- Department of Immunopathology, Sanquin-AMC Landsteiner Laboratory, Amsterdam, Netherlands.,Department of Hematology, Academic Medical Center, Amsterdam, Netherlands
| |
Collapse
|
4
|
Woolcock AD, Serpa PBS, Santos AP, Christian JA, Moore GE. Development and validation of a flow cytometric assay for detecting reactive oxygen species in the erythrocytes of healthy dogs. Am J Vet Res 2021; 82:343-351. [PMID: 33904808 DOI: 10.2460/ajvr.82.5.343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To validate the use of a flow cytometric assay that uses 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) to measure reactive oxygen species in the erythrocytes of healthy dogs. ANIMALS 50 healthy adult dogs. PROCEDURES Erythrocytes were incubated with DCFH-DA or a vehicle control (dimethyl sulfoxide), then incubated with (stimulated) or without (unstimulated) hydrogen peroxide. The flow cytometric assay was evaluated for specificity with increasing concentrations of DCFH-DA and hydrogen peroxide, and a polynomial regression line was applied to determine optimal concentrations. For precision, samples were analyzed 5 consecutive times for determination of intra- and interassay variability. Stability of samples stored at 4°C for up to 48 hours after blood collection was determined with flow cytometric analysis. Coefficient of variation (CV) was considered acceptable at 20%. Baseline measurements were used to determine an expected range of median fluorescence intensity for unstimulated erythrocytes incubated with DCFH-DA. RESULTS Erythrocytes were successfully isolated, and stimulated samples demonstrated higher median fluorescence intensity, compared with unstimulated samples. The intra-assay CV was 11.9% and 8.9% and interassay CV was 11.9% and 9.1% for unstimulated and stimulated samples, respectively. Unstimulated samples were stable for up to 24 hours, whereas stimulated samples were stable for up to 48 hours. CONCLUSIONS AND CLINICAL RELEVANCE Flow cytometry for the measurement of reactive oxygen species in the erythrocytes of healthy dogs by use of DCFH-DA had acceptable specificity, precision, and stability. Flow cytometry is a promising technique for evaluating intraerythrocytic oxidative stress for healthy dogs.
Collapse
|
5
|
Complement-mediated oxidative damage of red cells impairs response to eculizumab in a G6PD-deficient patient with PNH. Blood 2021; 136:3082-3085. [PMID: 32845970 DOI: 10.1182/blood.2020007780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/18/2020] [Indexed: 11/20/2022] Open
|
6
|
Gbotosho OT, Kapetanaki MG, Kato GJ. The Worst Things in Life are Free: The Role of Free Heme in Sickle Cell Disease. Front Immunol 2021; 11:561917. [PMID: 33584641 PMCID: PMC7873693 DOI: 10.3389/fimmu.2020.561917] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 12/04/2020] [Indexed: 12/15/2022] Open
Abstract
Hemolysis is a pathological feature of several diseases of diverse etiology such as hereditary anemias, malaria, and sepsis. A major complication of hemolysis involves the release of large quantities of hemoglobin into the blood circulation and the subsequent generation of harmful metabolites like labile heme. Protective mechanisms like haptoglobin-hemoglobin and hemopexin-heme binding, and heme oxygenase-1 enzymatic degradation of heme limit the toxicity of the hemolysis-related molecules. The capacity of these protective systems is exceeded in hemolytic diseases, resulting in high residual levels of hemolysis products in the circulation, which pose a great oxidative and proinflammatory risk. Sickle cell disease (SCD) features a prominent hemolytic anemia which impacts the phenotypic variability and disease severity. Not only is circulating heme a potent oxidative molecule, but it can act as an erythrocytic danger-associated molecular pattern (eDAMP) molecule which contributes to a proinflammatory state, promoting sickle complications such as vaso-occlusion and acute lung injury. Exposure to extracellular heme in SCD can also augment the expression of placental growth factor (PlGF) and interleukin-6 (IL-6), with important consequences to enthothelin-1 (ET-1) secretion and pulmonary hypertension, and potentially the development of renal and cardiac dysfunction. This review focuses on heme-induced mechanisms that are implicated in disease pathways, mainly in SCD. A special emphasis is given to heme-induced PlGF and IL-6 related mechanisms and their role in SCD disease progression.
Collapse
Affiliation(s)
- Oluwabukola T. Gbotosho
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Maria G. Kapetanaki
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Gregory J. Kato
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
7
|
Roh H, Kim A, Kim N, Lee Y, Kim DH. Multi-Omics Analysis Provides Novel Insight into Immuno-Physiological Pathways and Development of Thermal Resistance in Rainbow Trout Exposed to Acute Thermal Stress. Int J Mol Sci 2020; 21:E9198. [PMID: 33276666 PMCID: PMC7731343 DOI: 10.3390/ijms21239198] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 12/16/2022] Open
Abstract
In recent years, poikilothermic animals such as fish have increasingly been exposed to stressful high-temperature environments due to global warming. However, systemic changes in fish under thermal stress are not fully understood yet at both the transcriptome and proteome level. Therefore, the objective of this study was to investigate the immuno-physiological responses of fish under extreme thermal stress through integrated multi-omics analysis. Trout were exposed to acute thermal stress by raising water temperature from 15 to 25 °C within 30 min. Head-kidney and plasma samples were collected and used for RNA sequencing and two-dimensional gel electrophoresis. Gene enrichment analysis was performed: differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) were identified to interpret the multi-omics results and identify the relevant biological processes through pathway analysis. Thousands of DEGs and 49 DEPs were identified in fish exposed to thermal stress. Most of these genes and proteins were highly linked to DNA replication, protein processing in the endoplasmic reticulum, cell signaling and structure, glycolysis activation, complement-associated hemolysis, processing of released free hemoglobin, and thrombosis and hypertension/vasoconstriction. Notably, we found that immune disorders mediated by the complement system may trigger hemolysis in thermally stressed fish, which could have serious consequences such as ferroptosis and thrombosis. However, antagonistic activities that decrease cell-free hemoglobin, heme, and iron might be involved in alleviating the side effects of thermally induced immuno-physiological disorders. These factors may represent the major thermal resistance traits that allow fish to overcome extreme thermal stress. Our findings, based on integration of multi-omics data from transcriptomics and proteomics analyses, provide novel insight into the pathogenesis of acute thermal stress and temperature-linked epizootics.
Collapse
Affiliation(s)
- HyeongJin Roh
- Department of Aquatic Life Medicine, College of Fisheries Science, Pukyong National University, Busan 48513, Korea; (H.R.); (N.K.); (Y.L.)
| | - Ahran Kim
- Pathology Research Division, National Institute of Fisheries Science, Busan 46083, Korea;
| | - Nameun Kim
- Department of Aquatic Life Medicine, College of Fisheries Science, Pukyong National University, Busan 48513, Korea; (H.R.); (N.K.); (Y.L.)
| | - Yoonhang Lee
- Department of Aquatic Life Medicine, College of Fisheries Science, Pukyong National University, Busan 48513, Korea; (H.R.); (N.K.); (Y.L.)
| | - Do-Hyung Kim
- Department of Aquatic Life Medicine, College of Fisheries Science, Pukyong National University, Busan 48513, Korea; (H.R.); (N.K.); (Y.L.)
| |
Collapse
|
8
|
Woolcock AD, Serpa PBS, Santos AP, Christian JA, Moore GE. Reactive oxygen species, glutathione, and vitamin E concentrations in dogs with hemolytic or nonhemolytic anemia. J Vet Intern Med 2020; 34:2357-2364. [PMID: 33047374 PMCID: PMC7694834 DOI: 10.1111/jvim.15926] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 09/19/2020] [Accepted: 09/23/2020] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Red blood cells (RBC) are uniquely susceptible to oxidative injury. Oxidative stress is both a cause for, and effect, of anemia in people but this has been minimally documented in dogs. OBJECTIVE To describe direct and indirect markers of oxidative stress in anemic dogs. HYPOTHESIS Anemic dogs will have oxidative stress when compared to healthy dogs. ANIMALS Forty-seven dogs with anemia (10 with hemolytic anemia) and 70 healthy control dogs. METHODS Prospective, cross-sectional study. Anemic dogs were identified from the patient population, and medical records were reviewed to classify the anemia as hemolytic or nonhemolytic. Flow cytometry was used to detect reactive oxygen species (ROS) in erythrocyte isolates. Reduced glutathione (GSH) concentrations were measured in both plasma and hemolysate samples, and vitamin E was measured in serum. RESULTS Anemic dogs (both hemolytic and nonhemolytic) had significantly lower median RBC hemolysate GSH concentrations (3.1 μM [0.4-30.8]) when compared to healthy dogs (7.0 μM [0.5-29.7]; P = .03). Dogs with hemolytic anemia had significantly higher median plasma GSH (7.6 μM [0.4-17.8]) when compared to dogs with nonhemolytic anemia (1.6 μM [0.01-7.1]; P = .04) and healthy dogs (2.8 μM [0.1-29.9]; P < .0001). Reactive oxygen species were detectable in all samples, but there was no difference in ROS or vitamin E between groups. CONCLUSIONS AND CLINICAL IMPORTANCE Oxidative stress is present in anemic dogs. Derangements in biomarkers of oxidative stress are different in dogs with hemolytic anemia and nonhemolytic anemia.
Collapse
Affiliation(s)
- Andrew D Woolcock
- Department of Veterinary Clinical Sciences, Purdue University College of Veterinary Medicine, West Lafayette, Indiana, 47907, USA
| | - Priscila B S Serpa
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, West Lafayette, Indiana, 47907, USA
| | - Andrea P Santos
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, West Lafayette, Indiana, 47907, USA
| | - John A Christian
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, West Lafayette, Indiana, 47907, USA
| | - George E Moore
- Department of Veterinary Administration, Purdue University College of Veterinary Medicine, West Lafayette, Indiana, 47907, USA
| |
Collapse
|
9
|
Stachurska A, Dorman M, Korsak J, Gaweł D, Grzanka M, Trybus W, Fabijanska-Mitek J. Selected CD molecules and the phagocytosis of microvesicles released from erythrocytes ex vivo. Vox Sang 2019; 114:576-587. [PMID: 31281973 DOI: 10.1111/vox.12819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 01/28/2019] [Accepted: 03/28/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND OBJECTIVES The accumulation of microvesicles in erythrocyte concentrates during storage or irradiation may be responsible for clinical symptoms such as inflammation, coagulation and immunization. Our aim was to determine whether any of the cluster of differentiation (CD) molecules responsible for important functions are present on microvesicles, and if their expression level is dependent on the storage period of erythrocyte concentrates. MATERIAL AND METHODS Erythrocyte microvesicles were isolated from 'fresh' (2nd day) and 'old' (42nd day) stored erythrocyte concentrates. Qualitative cytometric analysis of 0·5 µm, erythrocyte-derived, PS-exposing vesicles was performed using the annexin V-FITC, anti-CD235a-PE antibody and calibrated beads. The microvesicles were also visualized under a confocal microscope. The expression of the molecules CD235a, CD44, CD47, CD55, CD59 and of phosphatidylserine (PS) was compared using flow cytometry. Measurements of microvesicle phagocytosis by human monocytes were carried out using a flow cytometer and a confocal microscope. RESULTS The analysis of the microvesicles with calibration beads allowed us to identify these structures with a diameter of about 0·5 µm in the 'fresh' and 'old' samples. At day 2, the microvesicles had elevated expression levels of CD47, reduced expression levels of PS, CD55 and CD59. The phagocytosis index was higher for the microvesicles isolated from the 42-day-old erythrocyte concentrates. CONCLUSION This research may bring us closer to understanding the factors responsible for erythrocyte ageing and to evaluate the quality of stored red blood concentrates intended for transfusion.
Collapse
Affiliation(s)
- Anna Stachurska
- Department of Immunohematology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Małgorzata Dorman
- Department of Clinical Transfusiology, Military Institute of Medicine, Warsaw, Poland
| | - Jolanta Korsak
- Department of Clinical Transfusiology, Military Institute of Medicine, Warsaw, Poland
| | - Damian Gaweł
- Department of Biochemistry, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Małgorzata Grzanka
- Department of Biochemistry, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Wojciech Trybus
- Department of Cell Biology and Electron Microscopy, Institute of Biology, The Jan Kochanowski University, Kielce, Poland
| | | |
Collapse
|
10
|
Rogobete AF, Sandesc D, Bedreag OH, Papurica M, Popovici SE, Bratu T, Popoiu CM, Nitu R, Dragomir T, AAbed HIM, Ivan MV. MicroRNA Expression is Associated with Sepsis Disorders in Critically Ill Polytrauma Patients. Cells 2018; 7:E271. [PMID: 30551680 PMCID: PMC6316368 DOI: 10.3390/cells7120271] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/06/2018] [Accepted: 12/06/2018] [Indexed: 12/16/2022] Open
Abstract
A critically ill polytrauma patient is one of the most complex cases to be admitted to the intensive care unit, due to both the primary traumatic complications and the secondary post-traumatic interactions. From a molecular, genetic, and epigenetic point of view, numerous biochemical interactions are responsible for the deterioration of the clinical status of a patient, and increased mortality rates. From a molecular viewpoint, microRNAs are one of the most complex macromolecular systems due to the numerous modular reactions and interactions that they are involved in. Regarding the expression and activity of microRNAs in sepsis, their usefulness has reached new levels of significance. MicroRNAs can be used both as an early biomarker for sepsis, and as a therapeutic target because of their ability to block the complex reactions involved in the initiation, maintenance, and augmentation of the clinical status.
Collapse
Affiliation(s)
- Alexandru Florin Rogobete
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania.
- Clinic of Anesthesia and Intensive Care, Emergency County Hospital "Pius Brinzeu", 300723 Timisoara, Romania.
| | - Dorel Sandesc
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania.
- Clinic of Anesthesia and Intensive Care, Emergency County Hospital "Pius Brinzeu", 300723 Timisoara, Romania.
| | - Ovidiu Horea Bedreag
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania.
- Clinic of Anesthesia and Intensive Care, Emergency County Hospital "Pius Brinzeu", 300723 Timisoara, Romania.
| | - Marius Papurica
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania.
- Clinic of Anesthesia and Intensive Care, Emergency County Hospital "Pius Brinzeu", 300723 Timisoara, Romania.
| | - Sonia Elena Popovici
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania.
| | - Tiberiu Bratu
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania.
| | - Calin Marius Popoiu
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania.
| | - Razvan Nitu
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania.
| | - Tiberiu Dragomir
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania.
| | - Hazzaa I M AAbed
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania.
| | - Mihaela Viviana Ivan
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania.
| |
Collapse
|
11
|
Bissinger R, Bhuyan AAM, Qadri SM, Lang F. Oxidative stress, eryptosis and anemia: a pivotal mechanistic nexus in systemic diseases. FEBS J 2018; 286:826-854. [PMID: 30028073 DOI: 10.1111/febs.14606] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/15/2018] [Accepted: 07/18/2018] [Indexed: 12/21/2022]
Abstract
The average lifespan of circulating erythrocytes usually exceeds hundred days. Prior to that, however, erythrocytes may be exposed to oxidative stress in the circulation which could cause injury and trigger their suicidal death or eryptosis. Oxidative stress activates Ca2+ -permeable nonselective cation channels in the cell membrane, thus, stimulating Ca2+ entry and subsequent cell membrane scrambling resulting in phosphatidylserine exposure and activation of Ca2+ -sensitive K+ channels leading to K+ exit, hyperpolarization, Cl- exit, and ultimately cell shrinkage due to loss of KCl and osmotically driven water. While the mechanistic link between oxidative stress and anemia remains ill-defined, several diseases such as diabetes, hepatic failure, malignancy, chronic kidney disease and inflammation have been identified to display both increased oxidative stress as well as eryptosis. Recent compelling evidence suggests that oxidative stress is an important perpetrator in accelerating erythrocyte loss in different systemic conditions and an underlying mechanism for anemia associated with these pathological states. In the present review, we discuss the role of oxidative stress in reducing erythrocyte survival and provide novel insights into the possible use of antioxidants as putative antieryptotic and antianemic agents in a variety of systemic diseases.
Collapse
Affiliation(s)
- Rosi Bissinger
- Department of Internal Medicine III, Eberhard-Karls-University Tübingen, Germany
| | - Abdulla Al Mamun Bhuyan
- Department of Vegetative & Clinical Physiology, Institute of Physiology, Eberhard-Karls-University Tübingen, Germany
| | - Syed M Qadri
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada.,Centre for Innovation, Canadian Blood Services, Hamilton, ON, Canada
| | - Florian Lang
- Department of Vegetative & Clinical Physiology, Institute of Physiology, Eberhard-Karls-University Tübingen, Germany.,Department of Molecular Medicine II, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
12
|
Henrique Silva F, Yotsumoto Fertrin K, Costa Alexandre E, Beraldi Calmasini F, Fernanda Franco-Penteado C, Ferreira Costa F. Impairment of Nitric Oxide Pathway by Intravascular Hemolysis Plays a Major Role in Mice Esophageal Hypercontractility: Reversion by Soluble Guanylyl Cyclase Stimulator. J Pharmacol Exp Ther 2018; 367:194-202. [PMID: 30108160 DOI: 10.1124/jpet.118.249581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 07/30/2018] [Indexed: 01/18/2023] Open
Abstract
Paroxysmal nocturnal hemoglobinuria (PNH) patients display exaggerated intravascular hemolysis and esophageal disorders. Since excess hemoglobin in the plasma causes reduced nitric oxide (NO) bioavailability and oxidative stress, we hypothesized that esophageal contraction may be impaired by intravascular hemolysis. This study aimed to analyze the alterations of the esophagus contractile mechanisms in a murine model of exaggerated intravascular hemolysis induced by phenylhydrazine (PHZ). For comparative purposes, sickle cell disease (SCD) mice were also studied, a less severe intravascular hemolysis model. Esophagus rings were dissected free and placed in organ baths. Plasma hemoglobin was higher in PHZ compared with SCD mice, as expected. The contractile responses produced by carbachol (CCh), KCl, and electrical-field stimulation (EFS) were superior in PHZ esophagi compared with control but remained unchanged in SCD mice. Preincubation with the NO-independent soluble guanylate cyclase stimulator 3-(4-amino-5-cyclopropylpyrimidin-2-yl)-1-(2-fluorobenzyl)-1H-pyrazolo[3,4-b]pyridine (BAY 41-2272; 1 μM) completely reversed the increased contractile responses to CCh, KCl, and EFS in PHZ mice, but responses remained unchanged with prior treatment with NO donor sodium nitroprusside (300 μM). Protein expression of 3-nitrotyrosine and 4-hydroxynonenal increased in esophagi from PHZ mice, suggesting a state of oxidative stress. In endothelial nitric oxide synthase gene-deficient mice, the contractile responses elicited by KCl and CCh were increased in the esophagus but remained unchanged with the intravascular hemolysis induced by PHZ. In conclusion, our results show that esophagus hypercontractile state occurs in association with lower NO bioavailability due to exaggerated hemolysis intravascular and oxidative stress. Moreover, our study supports the hypothesis that esophageal disorders in PNH patients are secondary to intravascular hemolysis affecting the NO-cGMP pathway.
Collapse
Affiliation(s)
- Fabio Henrique Silva
- Hematology and Hemotherapy Center (F.H.S., K.Y.F., C.F.F.-P., F.F.C.) and Department of Pharmacology, Faculty of Medical Sciences (E.C.A., F.B.C.), University of Campinas, Campinas, São Paulo, Brazil; and Division of Hematology, University of Washington, Seattle, Washington (K.Y.F.)
| | - Kleber Yotsumoto Fertrin
- Hematology and Hemotherapy Center (F.H.S., K.Y.F., C.F.F.-P., F.F.C.) and Department of Pharmacology, Faculty of Medical Sciences (E.C.A., F.B.C.), University of Campinas, Campinas, São Paulo, Brazil; and Division of Hematology, University of Washington, Seattle, Washington (K.Y.F.)
| | - Eduardo Costa Alexandre
- Hematology and Hemotherapy Center (F.H.S., K.Y.F., C.F.F.-P., F.F.C.) and Department of Pharmacology, Faculty of Medical Sciences (E.C.A., F.B.C.), University of Campinas, Campinas, São Paulo, Brazil; and Division of Hematology, University of Washington, Seattle, Washington (K.Y.F.)
| | - Fabiano Beraldi Calmasini
- Hematology and Hemotherapy Center (F.H.S., K.Y.F., C.F.F.-P., F.F.C.) and Department of Pharmacology, Faculty of Medical Sciences (E.C.A., F.B.C.), University of Campinas, Campinas, São Paulo, Brazil; and Division of Hematology, University of Washington, Seattle, Washington (K.Y.F.)
| | - Carla Fernanda Franco-Penteado
- Hematology and Hemotherapy Center (F.H.S., K.Y.F., C.F.F.-P., F.F.C.) and Department of Pharmacology, Faculty of Medical Sciences (E.C.A., F.B.C.), University of Campinas, Campinas, São Paulo, Brazil; and Division of Hematology, University of Washington, Seattle, Washington (K.Y.F.)
| | - Fernando Ferreira Costa
- Hematology and Hemotherapy Center (F.H.S., K.Y.F., C.F.F.-P., F.F.C.) and Department of Pharmacology, Faculty of Medical Sciences (E.C.A., F.B.C.), University of Campinas, Campinas, São Paulo, Brazil; and Division of Hematology, University of Washington, Seattle, Washington (K.Y.F.)
| |
Collapse
|
13
|
Kendall A, Woolcock A, Brooks A, Moore GE. Glutathione Peroxidase Activity, Plasma Total Antioxidant Capacity, and Urinary F2- Isoprostanes as Markers of Oxidative Stress in Anemic Dogs. J Vet Intern Med 2017; 31:1700-1707. [PMID: 29031029 PMCID: PMC5697175 DOI: 10.1111/jvim.14847] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 08/04/2017] [Accepted: 08/28/2017] [Indexed: 11/27/2022] Open
Abstract
Background Oxidative stress plays a role in the pathophysiology of several diseases and has been documented as a contributor to disease in both the human and veterinary literature. One at‐risk cell is the erythrocyte, however, the role of oxidative stress in anemia in dogs has not been widely investigated. Hypothesis/Objective Anemic dogs will have an alteration in the activity of glutathione peroxidase (GPx), a decrease in of total antioxidant capacity (TAC), and an increased concentration of urinary 15‐F2‐isoprostanes (F2‐IsoP) when compared to healthy dogs. Animals 40 client‐owned dogs with anemia (PCV <30%) age‐matched to 40 client‐owned healthy control dogs. Methods Prospective, cross‐sectional study. Whole blood GPx activity, plasma TAC, and urinary F2‐isoprostane concentrations were evaluated in each dog and compared between groups. Results Anemic dogs had significantly lower GPx activity (43.1 × 103 +/‐ 1.6 × 103 U/L) than did dogs in the control group (75.8 × 103 +/‐ 2.0 × 103 U/L; P < 0.0001). The GPx activity in dogs with hemolysis (103 +/‐ 0.8 × 103 U/L) was not significantly different (P = 0.57) than in dogs with nonhemolytic anemia (43.5 × 103 +/‐ 1.1 × 103 U/L). The TAC concentrations (P = 0.15) and urinary F2‐isoprostanes (P = 0.73) did not significantly differ between groups. Conclusions and Clinical Importance Glutathione peroxidase activity was significantly decreased in anemic dogs indicating oxidative stress. Additional studies are warranted to determine if antioxidant supplementation would improve survival and overall outcome as part of a therapeutic regimen for anemic dogs.
Collapse
Affiliation(s)
- A Kendall
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN
| | - A Woolcock
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN
| | - A Brooks
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN
| | - G E Moore
- Department of Veterinary Administration, College of Veterinary Medicine, Purdue University, West Lafayette, IN
| |
Collapse
|