1
|
Ma L, Cui Y, Wang F, Liu H, Cheng W, Peng L, Brennan C, Benjakul S, Xiao G. Fast and sensitive UHPLC-QqQ-MS/MS method for simultaneous determination of typical α,β-unsaturated aldehydes and malondialdehyde in various vegetable oils and oil-based foods. Food Chem 2023; 400:134028. [DOI: 10.1016/j.foodchem.2022.134028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/03/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022]
|
2
|
Lipid Peroxidation Produces a Diverse Mixture of Saturated and Unsaturated Aldehydes in Exhaled Breath That Can Serve as Biomarkers of Lung Cancer-A Review. Metabolites 2022; 12:metabo12060561. [PMID: 35736492 PMCID: PMC9229171 DOI: 10.3390/metabo12060561] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/09/2022] [Accepted: 06/17/2022] [Indexed: 02/06/2023] Open
Abstract
The peroxidation of unsaturated fatty acids is a widely recognized metabolic process that creates a complex mixture of volatile organic compounds including aldehydes. Elevated levels of reactive oxygen species in cancer cells promote random lipid peroxidation, which leads to a variety of aldehydes. In the case of lung cancer, many of these volatile aldehydes are exhaled and are of interest as potential markers of the disease. Relevant studies reporting aldehydes in the exhaled breath of lung cancer patients were collected for this review by searching the PubMed and SciFindern databases until 25 May 2022. Information on breath test results, including the biomarker collection, preconcentration, and quantification methods, was extracted and tabulated. Overall, 44 studies were included spanning a period of 34 years. The data show that, as a class, aldehydes are significantly elevated in the breath of lung cancer patients at all stages of the disease relative to healthy control subjects. The type of aldehyde detected and/or deemed to be a biomarker is highly dependent on the method of exhaled breath sampling and analysis. Unsaturated aldehydes, detected primarily when derivatized during preconcentration, are underrepresented as biomarkers given that they are also likely products of lipid peroxidation. Pentanal, hexanal, and heptanal were the most reported aldehydes in studies of exhaled breath from lung cancer patients.
Collapse
|
3
|
Muzio G, Barrera G, Pizzimenti S. Peroxisome Proliferator-Activated Receptors (PPARs) and Oxidative Stress in Physiological Conditions and in Cancer. Antioxidants (Basel) 2021; 10:antiox10111734. [PMID: 34829605 PMCID: PMC8614822 DOI: 10.3390/antiox10111734] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 12/18/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear hormone receptor superfamily. Originally described as “orphan nuclear receptors”, they can bind both natural and synthetic ligands acting as agonists or antagonists. In humans three subtypes, PPARα, β/δ, γ, are encoded by different genes, show tissue-specific expression patterns, and contribute to the regulation of lipid and carbohydrate metabolisms, of different cell functions, including proliferation, death, differentiation, and of processes, as inflammation, angiogenesis, immune response. The PPAR ability in increasing the expression of various antioxidant genes and decreasing the synthesis of pro-inflammatory mediators, makes them be considered among the most important regulators of the cellular response to oxidative stress conditions. Based on the multiplicity of physiological effects, PPAR involvement in cancer development and progression has attracted great scientific interest with the aim to describe changes occurring in their expression in cancer cells, and to investigate the correlation with some characteristics of cancer phenotype, including increased proliferation, decreased susceptibility to apoptosis, malignancy degree and onset of resistance to anticancer drugs. This review focuses on mechanisms underlying the antioxidant and anti-inflammatory properties of PPARs in physiological conditions, and on the reported beneficial effects of PPAR activation in cancer.
Collapse
|
4
|
Aquila G, Re Cecconi AD, Brault JJ, Corli O, Piccirillo R. Nutraceuticals and Exercise against Muscle Wasting during Cancer Cachexia. Cells 2020; 9:E2536. [PMID: 33255345 PMCID: PMC7760926 DOI: 10.3390/cells9122536] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer cachexia (CC) is a debilitating multifactorial syndrome, involving progressive deterioration and functional impairment of skeletal muscles. It affects about 80% of patients with advanced cancer and causes premature death. No causal therapy is available against CC. In the last few decades, our understanding of the mechanisms contributing to muscle wasting during cancer has markedly increased. Both inflammation and oxidative stress (OS) alter anabolic and catabolic signaling pathways mostly culminating with muscle depletion. Several preclinical studies have emphasized the beneficial roles of several classes of nutraceuticals and modes of physical exercise, but their efficacy in CC patients remains scant. The route of nutraceutical administration is critical to increase its bioavailability and achieve the desired anti-cachexia effects. Accumulating evidence suggests that a single therapy may not be enough, and a bimodal intervention (nutraceuticals plus exercise) may be a more effective treatment for CC. This review focuses on the current state of the field on the role of inflammation and OS in the pathogenesis of muscle atrophy during CC, and how nutraceuticals and physical activity may act synergistically to limit muscle wasting and dysfunction.
Collapse
Affiliation(s)
- Giorgio Aquila
- Neuroscience Department, Mario Negri Institute for Pharmacological Research IRCCS, 20156 Milan, Italy; (G.A.); (A.D.R.C.)
- Italian Institute for Planetary Health, IIPH, 20156 Milan, Italy;
| | - Andrea David Re Cecconi
- Neuroscience Department, Mario Negri Institute for Pharmacological Research IRCCS, 20156 Milan, Italy; (G.A.); (A.D.R.C.)
- Italian Institute for Planetary Health, IIPH, 20156 Milan, Italy;
| | - Jeffrey J. Brault
- Indiana Center for Musculoskeletal Health, Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Oscar Corli
- Italian Institute for Planetary Health, IIPH, 20156 Milan, Italy;
- Oncology Department, Mario Negri Institute for Pharmacological Research IRCCS, 20156 Milan, Italy
| | - Rosanna Piccirillo
- Neuroscience Department, Mario Negri Institute for Pharmacological Research IRCCS, 20156 Milan, Italy; (G.A.); (A.D.R.C.)
- Italian Institute for Planetary Health, IIPH, 20156 Milan, Italy;
| |
Collapse
|
5
|
Vega OM, Abkenari S, Tong Z, Tedman A, Huerta-Yepez S. Omega-3 Polyunsaturated Fatty Acids and Lung Cancer: nutrition or Pharmacology? Nutr Cancer 2020; 73:541-561. [PMID: 32393071 DOI: 10.1080/01635581.2020.1761408] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Omega-3 polyunsaturated fatty acid (ω-3 PUFA) supplements for chemoprevention of different types of cancer including lung cancer has been investigated in recent years. ω-3 PUFAs are considered immunonutrients, commonly used in the nutritional therapy of cancer patients. ω-3 PUFAs play essential roles in cell signaling and in cell structure and fluidity of membranes. They participate in the resolution of inflammation and have anti-inflammatory effects. Lung cancer patients suffer complications, such as anorexia-cachexia syndrome, pain and depression. The European Society for Clinical Nutrition and Metabolism (ESPEN) 2017 guidelines for cancer patients only discuss the use of ω-3 PUFAs for cancer-cachexia treatment, leaving aside other cancer-related complications that could potentially be managed by ω-3 PUFAs. This review aims to elucidate whether the effects of ω-3 PUFAs in lung cancer is supplementary, pharmacological or both. In addition, clinical studies, evidence in cell lines and animal models suggest how ω-3 PUFAs induce anticancer effects. ω-3 PUFAs and their metabolites are suggested to modulate pivotal pathways underlying the progression or complications of lung cancer, indicating that this is a promising field to be explored. Further investigation is still required to analyze the benefits of ω-3 PUFAs as supplementation or pharmacological treatment in lung cancer.
Collapse
Affiliation(s)
- Owen M Vega
- Pathology and Laboratory Medicine, University of California, Los Angeles, USA
| | - Shaheen Abkenari
- Pathology and Laboratory Medicine, University of California, Los Angeles, USA
| | - Zhen Tong
- Pathology and Laboratory Medicine, University of California, Los Angeles, USA
| | - Austin Tedman
- Pathology and Laboratory Medicine, University of California, Los Angeles, USA
| | - Sara Huerta-Yepez
- Pathology and Laboratory Medicine, University of California, Los Angeles, USA.,Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de Mexico, Federico Gomez, Mexico City, Mexico
| |
Collapse
|
6
|
Kopecka J, Trouillas P, Gašparović AČ, Gazzano E, Assaraf YG, Riganti C. Phospholipids and cholesterol: Inducers of cancer multidrug resistance and therapeutic targets. Drug Resist Updat 2020; 49:100670. [DOI: 10.1016/j.drup.2019.100670] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/14/2019] [Accepted: 11/17/2019] [Indexed: 12/13/2022]
|
7
|
Freitas RDS, Campos MM. Protective Effects of Omega-3 Fatty Acids in Cancer-Related Complications. Nutrients 2019; 11:nu11050945. [PMID: 31035457 PMCID: PMC6566772 DOI: 10.3390/nu11050945] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 12/24/2022] Open
Abstract
Omega-3 polyunsaturated fatty acids (PUFAs) are considered immunonutrients and are commonly used in the nutritional therapy of cancer patients due to their ample biological effects. Omega-3 PUFAs play essential roles in cell signaling and in the cell structure and fluidity of membranes. They participate in the resolution of inflammation and have anti-inflammatory and antinociceptive effects. Additionally, they can act as agonists of G protein-coupled receptors, namely, GPR40/FFA1 and GPR120/FFA4. Cancer patients undergo complications, such as anorexia-cachexia syndrome, pain, depression, and paraneoplastic syndromes. Interestingly, the 2017 European Society for Clinical Nutrition and Metabolism (ESPEN) guidelines for cancer patients only discuss the use of omega-3 PUFAs for cancer-cachexia treatment, leaving aside other cancer-related complications that could potentially be managed by omega-3 PUFA supplementation. This critical review aimed to discuss the effects and the possible underlying mechanisms of omega-3 PUFA supplementation in cancer-related complications. Data compilation in this critical review indicates that further investigation is still required to assess the factual benefits of omega-3 PUFA supplementation in cancer-associated illnesses. Nevertheless, preclinical evidence reveals that omega-3 PUFAs and their metabolites might modulate pivotal pathways underlying complications secondary to cancer, indicating that this is a promising field of knowledge to be explored.
Collapse
Affiliation(s)
- Raquel D S Freitas
- Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde, PUCRS, Porto Alegre 90619-900, RS, Brazil.
- Programa de Pós-graduação em Medicina e Ciências da Saúde, Escola de Medicina, PUCRS, Porto Alegre 90619-900, RS, Brazil.
| | - Maria M Campos
- Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde, PUCRS, Porto Alegre 90619-900, RS, Brazil.
- Programa de Pós-graduação em Medicina e Ciências da Saúde, Escola de Medicina, PUCRS, Porto Alegre 90619-900, RS, Brazil.
- Programa de Pós-graduação em Odontologia, Escola de Ciências da Saúde, PUCRS, Porto Alegre 90619-900, RS, Brazil.
| |
Collapse
|
8
|
Fukushima H, Takemura K, Suzuki H, Koga F. Impact of Sarcopenia as a Prognostic Biomarker of Bladder Cancer. Int J Mol Sci 2018; 19:ijms19102999. [PMID: 30275370 PMCID: PMC6213561 DOI: 10.3390/ijms19102999] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 09/29/2018] [Accepted: 09/29/2018] [Indexed: 12/25/2022] Open
Abstract
Sarcopenia, the degenerative and systemic loss of skeletal muscle mass, indicates patient frailty and impaired physical function. Sarcopenia can be caused by multiple factors, including advanced age, lack of exercise, poor nutritional status, inflammatory diseases, endocrine diseases, and malignancies. In patients with cancer cachexia, anorexia, poor nutrition and systemic inflammation make the metabolic state more catabolic, resulting in sarcopenia. Thus, sarcopenia is considered as one of manifestations of cancer cachexia. Recently, growing evidence has indicated the importance of sarcopenia in the management of patients with various cancers. Sarcopenia is associated with not only higher rates of treatment-related complications but also worse prognosis in cancer-bearing patients. In this article, we summarized metabolic backgrounds of cancer cachexia and sarcopenia and definitions of sarcopenia based on computed tomography (CT) images. We conducted a systematic literature review regarding the significance of sarcopenia as a prognostic biomarker of bladder cancer. We also reviewed recent studies focusing on the prognostic role of changes in skeletal muscle mass during the course of treatment in bladder cancer patients. Lastly, we discussed the impact of nutritional support, medication, and exercise on sarcopenia in cancer-bearing patients.
Collapse
Affiliation(s)
- Hiroshi Fukushima
- Department of Urology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo 113-8677, Japan.
| | - Kosuke Takemura
- Department of Urology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo 113-8677, Japan.
| | - Hiroaki Suzuki
- Department of Urology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo 113-8677, Japan.
| | - Fumitaka Koga
- Department of Urology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo 113-8677, Japan.
| |
Collapse
|
9
|
Abstract
The concept of cell signaling in the context of nonenzyme-assisted protein modifications by reactive electrophilic and oxidative species, broadly known as redox signaling, is a uniquely complex topic that has been approached from numerous different and multidisciplinary angles. Our Review reflects on five aspects critical for understanding how nature harnesses these noncanonical post-translational modifications to coordinate distinct cellular activities: (1) specific players and their generation, (2) physicochemical properties, (3) mechanisms of action, (4) methods of interrogation, and (5) functional roles in health and disease. Emphasis is primarily placed on the latest progress in the field, but several aspects of classical work likely forgotten/lost are also recollected. For researchers with interests in getting into the field, our Review is anticipated to function as a primer. For the expert, we aim to stimulate thought and discussion about fundamentals of redox signaling mechanisms and nuances of specificity/selectivity and timing in this sophisticated yet fascinating arena at the crossroads of chemistry and biology.
Collapse
Affiliation(s)
- Saba Parvez
- Department of Pharmacology and Toxicology, College of
Pharmacy, University of Utah, Salt Lake City, Utah, 84112, USA
- Department of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York, 14853, USA
| | - Marcus J. C. Long
- Department of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York, 14853, USA
| | - Jesse R. Poganik
- Ecole Polytechnique Fédérale de Lausanne,
Institute of Chemical Sciences and Engineering, 1015, Lausanne, Switzerland
- Department of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York, 14853, USA
| | - Yimon Aye
- Ecole Polytechnique Fédérale de Lausanne,
Institute of Chemical Sciences and Engineering, 1015, Lausanne, Switzerland
- Department of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York, 14853, USA
- Department of Biochemistry, Weill Cornell Medicine, New
York, New York, 10065, USA
| |
Collapse
|
10
|
Liu S, Xu T, Wu X, Lin Y, Bao D, Di Y, Ma T, Dang Y, Jia P, Xian J, Wang A, Liu Y. Pomegranate peel extract attenuates D-galactose-induced oxidative stress and hearing loss by regulating PNUTS/PP1 activity in the mouse cochlea. Neurobiol Aging 2017; 59:30-40. [PMID: 28837860 DOI: 10.1016/j.neurobiolaging.2017.07.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 07/11/2017] [Accepted: 07/15/2017] [Indexed: 01/20/2023]
Abstract
Oxidative stress is considered to be a major contributor to age-related hearing loss (ARHL). Here, we investigated whether pomegranate peel extract (PPE) protected against hearing loss by decreased oxidative stress in the cochlea of D-galactose-induced accelerated aging mice. The aging mice exhibited an increase in hearing threshold shifts and hair cells loss, which were improved in the PPE-treated aging mice. The aging mice also exhibited an increase in 4-hydroxynonenal, the expression of protein phosphatase 1 nuclear targeting subunit (PNUTS), p53 and caspase-3, and a decrease in protein phosphatase 1 (PP1) and MDM2 in the cochlea. PPE treatment reversed the changes in aforementioned molecules. Our results suggested that PPE can protect against ARHL, the underlying mechanisms may involve in the inhibition of oxidative damage of cochlea, possibly by regulating PNUTS/PP1 pathway. The results from the present study provide a new therapeutic strategy to use PPE for prevention of ARHL.
Collapse
Affiliation(s)
- Shuangyue Liu
- Department of Physiology, Jinzhou Medical University, Jinzhou, P.R. China
| | - Tao Xu
- Life Science Institute, Jinzhou Medical University, Jinzhou, P.R. China
| | - Xidi Wu
- Department of Physiology, Jinzhou Medical University, Jinzhou, P.R. China
| | - Yuhan Lin
- Department of Physiology, Jinzhou Medical University, Jinzhou, P.R. China
| | - Dongyan Bao
- Department of Physiology, Jinzhou Medical University, Jinzhou, P.R. China
| | - Yang Di
- Department of Physiology, Jinzhou Medical University, Jinzhou, P.R. China
| | - Tingting Ma
- Department of Physiology, Jinzhou Medical University, Jinzhou, P.R. China
| | - Yan Dang
- Department of Physiology, Jinzhou Medical University, Jinzhou, P.R. China
| | - Peili Jia
- Department of Physiology, Jinzhou Medical University, Jinzhou, P.R. China
| | - Jianqiao Xian
- Department of Physiology, Jinzhou Medical University, Jinzhou, P.R. China
| | - Aimei Wang
- Department of Physiology, Jinzhou Medical University, Jinzhou, P.R. China.
| | - Yongxin Liu
- Department of Otorhinolaryngology-Head and Neck Surgery, the First Hospital of Jinzhou Medical University, Jinzhou, P.R. China.
| |
Collapse
|