1
|
Zhang JJ, Zhou R, Deng LJ, Cao GZ, Zhang Y, Xu H, Hou JY, Ju S, Yang HJ. Huangbai liniment and berberine promoted wound healing in high-fat diet/Streptozotocin-induced diabetic rats. Biomed Pharmacother 2022; 150:112948. [PMID: 35430394 DOI: 10.1016/j.biopha.2022.112948] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/01/2022] [Accepted: 04/08/2022] [Indexed: 11/28/2022] Open
Abstract
Diabetic ulcer is a challenging complication of diabetes mellitus but current treatments cannot achieve satisfactory results. In this study, the effect of Huangbai liniment (HB) and berberine on the wound healing in high fat diet/streptozotocin injection induced diabetic rats was investigated by RNA-seq technology. HB topical treatment promoted wound healing in the diabetic patients and diabetic rats, and it affected multiple processes, of which IL-17 signalling pathway was of importance. Inhibiting IL-17a by its inhibitor or antibody remarkably facilitated wound healing and HB significantly repressed the high IL-17 expression and its downstream targets, including Cxcl1, Ccl2, Mmp3, Mmp9, G-CSF, IL1B and IL6, in diabetic wounds, promoted T-AOC, SOD activity and GSH levels; decreased the levels of nitrotyrosine and 8-OHdG; enhanced angiogenesis-related CD31, PDGF-BB and ANG1 expression; inhibited cleaved caspase-3 levels and promoted TIMP1 and TGFB1. Moreover, berberine (a major component in HB) repressed the IL-17 signalling pathway, and promoted wound healing in diabetes mellitus. This study highlights the strategy of targeting IL-17a in diabetic wounds, deepens the understanding of wound healing in diabetes mellitus in a dynamic way and reveals the characteristics of HB and berberine in promoting wound healing of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Jing-Jing Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Rui Zhou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Li-Juan Deng
- Beijing University of Chinese Medicine, Beijing 100105, China
| | - Guang-Zhao Cao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yi Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - He Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jing-Yi Hou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shang Ju
- Dongzhimen Hospital, Beijing University of Chinese Medicine, 100007, China.
| | - Hong-Jun Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Experimental Research Centre, China Academy of Chinese Medical Science, 100007, China.
| |
Collapse
|
2
|
Zhang Q, Dong J, Zhang P, Zhou D, Liu F. Dynamics of Transcription Factors in Three Early Phases of Osteogenic, Adipogenic, and Chondrogenic Differentiation Determining the Fate of Bone Marrow Mesenchymal Stem Cells in Rats. Front Cell Dev Biol 2021; 9:768316. [PMID: 34765608 PMCID: PMC8576568 DOI: 10.3389/fcell.2021.768316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/05/2021] [Indexed: 12/14/2022] Open
Abstract
The imbalance of osteogenic, adipogenic, and chondrogenic differentiation in bone marrow mesenchymal stem cells (BMSCs) occurred in multiple age-related degenerative diseases such as osteoporosis and osteoarthritis. In order to improve our understanding and control of multi-directional differentiation of BMSCs in rats, using high-throughput sequencing, we identified key gene regulatory events in the early stages of lineage commitment. Data analysis revealed two transcription factors (TFs, Tsc22d3, and Epas1) with elevated expression throughout the initiation of differentiation (3 h), lineage acquisition (12 h), and early lineage progression (72 h) of three-directional differentiation. For osteogenic differentiation, 792, 1,042, and 638 differentially expressed genes including 48, 59, and 34 TFs were identified at three time points, respectively. Moreover, the functional analysis demonstrated that 4, 12, and 5 TFs were only differentially expressed during osteogenic differentiation at 3, 12, and 72 h, respectively, and not during other two-directional differentiation. Hopx showed enhanced expression throughout three early phases during the osteogenic differentiation but no significant change in other two-directional differentiation. A similar pattern of Gbx2 expression occurred in chondrogenic differentiation. Thus, Hopx and other early responder TFs may control the osteogenic cell fate of BMSCs and participate in the development of osteoporosis. Gbx2 and other early responder TFs should be considered in mechanistic models that clarify cartilage-anabolic changes in the clinical progression of osteoarthritis.
Collapse
Affiliation(s)
- Qingyu Zhang
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jun Dong
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Peng Zhang
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Dongsheng Zhou
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Fanxiao Liu
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
3
|
Zhang S, Gai Z, Gui T, Chen J, Chen Q, Li Y. Antioxidant Effects of Protocatechuic Acid and Protocatechuic Aldehyde: Old Wine in a New Bottle. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:6139308. [PMID: 34790246 PMCID: PMC8592717 DOI: 10.1155/2021/6139308] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/15/2021] [Indexed: 01/03/2023]
Abstract
Phenolic compounds are naturally present as secondary metabolites in plant-based sources such as fruits, vegetables, and spices. They have received considerable attention for their antioxidant, anti-inflammatory, and anti-carcinogenic properties for protection against many chronic disorders such as neurodegenerative diseases, diabetes, cardiovascular diseases, and cancer. They are categorized into various groups based on their chemical structure and include phenolic acids, flavonoids, curcumins, tannins, and quinolones. Their structural variations contribute to their specific beneficial effects on human health. The antioxidant property of phenolic compounds protects against oxidative stress by up-regulation of endogenous antioxidants, scavenging free radicals, and anti-apoptotic activity. Protocatechuic acid (PCA; 3,4-dihydroxy benzoic acid) and protocatechuic aldehyde (PAL; 3,4-dihydroxybenzaldehyde) are naturally occurring polyphenols found in vegetables, fruits, and herbs. PCA and PAL are the primary metabolites of anthocyanins and proanthocyanidins, which have been shown to possess pharmacological actions including antioxidant activity in vitro and in vivo. This review aims to explore the therapeutic potential of PCA and PAL by comprehensively summarizing their pharmacological properties reported to date, with an emphasis on their mechanisms of action and biological properties.
Collapse
Affiliation(s)
- Shijun Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zhibo Gai
- Key Laboratory of Traditional Chinese Medicine for Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Ting Gui
- Key Laboratory of Traditional Chinese Medicine for Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Juanli Chen
- The Institute for Tissue Engineering and Regenerative Medicine, The Liaocheng University/Liaocheng People's Hospital, Liaocheng, China
| | - Qingfa Chen
- The Institute for Tissue Engineering and Regenerative Medicine, The Liaocheng University/Liaocheng People's Hospital, Liaocheng, China
| | - Yunlun Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- The Third Department of Cardiovascular Diseases, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| |
Collapse
|
4
|
Qi Y, Zhou N, Jiang Q, Wang Z, Zhang Y, Li B, Xu W, Liu J, Wang Z, Zhu L. Dose-Dependent Variation of Synchronous Metabolites and Modules in a Yin/Yang Transformation Model of Appointed Ischemia Metabolic Networks. Front Neurosci 2021; 15:645185. [PMID: 34531713 PMCID: PMC8439200 DOI: 10.3389/fnins.2021.645185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/22/2021] [Indexed: 01/26/2023] Open
Abstract
Aim Chinese medicine Danhong injection (DHI) is an effective pharmaceutical preparation for treating cerebral infarction. Our previous study shows that DHI can remarkably reduce the ischemic stroke-induced infarct volume in a dose-dependent manner, but the pharmacological mechanism of the DHI dose-dependent relationship is not clear. Therefore, the dose-dependent efficacy of DHI on cerebral ischemia and the underlying mechanisms were further investigated in this study. Methods A middle cerebral artery occlusion (MCAO) model was established and the rats were randomly divided into six groups: sham, vehicle, DHI dose-1, DHI dose-2, DHI dose-3, and DHI dose-4. Forty-one metabolites in serum were selected as candidate biomarkers of efficacy phenotypes by the Agilent 1290 rapid-resolution liquid chromatography system coupled with the Agilent 6550 Q-TOF MS system. Then, the metabolic networks in each group were constructed using the Weighted Correlation Network analysis (WGCNA). Moreover, the Yang and Yin transformation of six patterns (which are defined by up- and downregulation of metabolites) and synchronous modules divided from a synchronous network were used to dynamically analyze the mechanism of the drug’s effectiveness. Results The neuroprotective effect of DHI has shown a dose-dependent manner, and the high-dose group (DH3 and DH4) effect is better. The entropy of the metabolic network and the Yin/Yang index both showed a consistent dose–response relationship. Seven dose-sensitive metabolites maintained constant inverse upregulation or downregulation in the four dose groups. Three synchronous modules for the DH1–DH4 full-course network were identified. Glycine, N-acetyl-L-glutamate, and tetrahydrofolate as a new emerging module appeared in DH2/DH3 and enriched in glutamine and glutamate metabolism-related pathways. Conclusion This study takes the DHI metabolic network as an example to provide a new method for the discovery of multiple targets related to pharmacological effects. Our results show that the three conservative allosteric module nodes, taurine, L-tyrosine, and L-leucine, may be one of the basic mechanisms of DHI in the treatment of cerebral infarction, and the other three new emerging module nodes glyoxylate, L-glutamate, and L-valine may participate in the glutamine and glutamate metabolism pathway to improve the efficacy of DHI.
Collapse
Affiliation(s)
- Yifei Qi
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China.,Xiyuan Hospital, Institute of Geriatrics, China Academy of Chinese Medical Sciences, Beijing, China
| | - Niwen Zhou
- Center for Statistics and Data Science, Beijing Normal University at Zhuhai, Zhuhai, China
| | - Qing Jiang
- Center for Statistics and Data Science, Beijing Normal University at Zhuhai, Zhuhai, China
| | - Zhi Wang
- Global Business Services, International Business Machines Corporation, Shanghai, China
| | - Yingying Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Bing Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenjuan Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Jun Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhong Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lixing Zhu
- Center for Statistics and Data Science, Beijing Normal University at Zhuhai, Zhuhai, China.,Department of Mathematics, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
5
|
Wang Z, Wan H, Tong X, He Y, Yang J, Zhang L, Shao C, Ding Z, Wan H, Li C. An integrative strategy for discovery of functional compound combination from Traditional Chinese Medicine: Danhong Injection as a model. Biomed Pharmacother 2021; 138:111451. [PMID: 33714107 DOI: 10.1016/j.biopha.2021.111451] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/24/2021] [Accepted: 02/27/2021] [Indexed: 02/07/2023] Open
Abstract
Traditional Chinese Medicine formulas, which are usually considered exerting their holistic clinical benefits via multi-component, multi-target manner, are unique resources for the discovery of multi-component drug combinations. In order to screen and optimize the functional compound combination (FCC) from TCM, we established a novel four-step 'GCIC' strategy, including 'Global profiling', 'Chemical structural classification', 'Intra-group screening' and 'Component-knockout optimization'. Following this strategy, an FCC consisted of four components from Danhong Injection (DHI) was identified, containing ferulic acid, cryptotanshinone, quercetin and anhydrosafflor yellow B. The holistic neuroprotective effects of the FCC were further investigated, indicating that the combination can both activate the antioxidative and anti-inflammatory responses in PC12 cells to protect them from oxidative stress. Major signaling pathways as Nrf2/ARE and Nrf2/AMPK/GSK3β were involved in the protective process of FCC. The 'GCIC' strategy established in this study might provide an alternation to traditional strategies in discovering the bioactive components from herbal medicines, especially compounded TCM formulas.
Collapse
Affiliation(s)
- Zhixiong Wang
- Zhejiang Chinese Medical University, Hangzhou 310057, PR China
| | - Haofang Wan
- Zhejiang Chinese Medical University, Hangzhou 310057, PR China
| | - Xin Tong
- Zhejiang Chinese Medical University, Hangzhou 310057, PR China
| | - Yu He
- Zhejiang Chinese Medical University, Hangzhou 310057, PR China
| | - Jiehong Yang
- Zhejiang Chinese Medical University, Hangzhou 310057, PR China
| | - Ling Zhang
- Zhejiang Chinese Medical University, Hangzhou 310057, PR China
| | - Chongyu Shao
- Zhejiang Chinese Medical University, Hangzhou 310057, PR China
| | - Zhishan Ding
- Zhejiang Chinese Medical University, Hangzhou 310057, PR China
| | - Haitong Wan
- Zhejiang Chinese Medical University, Hangzhou 310057, PR China.
| | - Chang Li
- Zhejiang Chinese Medical University, Hangzhou 310057, PR China.
| |
Collapse
|
6
|
Xiang C, Zhang F, Gao J, Guo F, Zhang M, Zhou R, Wei J, Wang P, Zhang Y, Zhang J, Yang H. Yixin-Shu Capsules Ameliorated Ischemia-Induced Heart Failure by Restoring Trx2 and Inhibiting JNK/p38 Activation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8049079. [PMID: 33643519 PMCID: PMC7902134 DOI: 10.1155/2021/8049079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 12/31/2020] [Accepted: 01/20/2021] [Indexed: 12/16/2022]
Abstract
Traditional Chinese medicine has shown great safety and efficacy in the treatment of heart failure (HF), whereas the mechanism remains unclear. In this study, the protective effect of Yixin-shu (YXS) capsules, a conventional medicine for various cardiovascular diseases, against myocardial ischemia-induced HF in rats was systematically investigated by RNA-seq technology. HF rats treated with YXS (0.8 or 1.6 g/kg/d, ig) for 6 weeks had significantly decreased brain natriuretic peptide (BNP) and atrial natriuretic peptide (ANP) and collagen III and attenuated cardiac structure rupture and collagen deposition. Additionally, YXS treatment decreased the levels of interleukin-1β (IL-1β), interleukin 6 (IL-6), tumor necrosis factor-α (TNF-α), and lactate dehydrogenase (LDH) and TUNEL-positive rate and the nitrotyrosine staining, but increased levels of glutathione (GSH), total antioxidant capacity (T-AOC) activity, and mitochondrial membrane potential. Further experiments demonstrated that YXS restored Trx2 and inhibited the phosphorylation of JNK and p38, thereby improving cardiac function in the rats with HF. Silencing Trx2 decreased the protection of YXS in the response to H2O2 as evidenced by the increase of caspase-3 activity and decrease of GSH level. Thus, YXS enhanced heart function and decreased myocardial damage through restoring Trx2 and inhibiting JNK and p38 activation in ischemia-induced HF.
Collapse
Affiliation(s)
- Changpei Xiang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Fangbo Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jinhuan Gao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Feifei Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Mao Zhang
- Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Rui Zhou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Junying Wei
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ping Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yi Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jingjing Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hongjun Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
7
|
Danhong Injection and Trimetazidine Protect Cardiomyocytes and Enhance Calcium Handling after Myocardial Infarction. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:2480465. [PMID: 33510801 PMCID: PMC7822665 DOI: 10.1155/2021/2480465] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/16/2020] [Accepted: 12/31/2020] [Indexed: 11/18/2022]
Abstract
Myocardial infarction (MI) is one of the leading causes of death worldwide. However, there is no effective treatment for MI. In this study, trimetazidine (TMZ) and Danhong injection (DHI), representing western medicine and traditional Chinese medicine for MI, were used as tools to identify vital processes in alleviating MI injury. Administration of DHI and TMZ obviously decreased myocardial infarct size, improved ultrasonic heart function, and reduced creatine kinase (CK), lactate dehydrogenase (LDH), and glutamic oxaloacetic transaminase (AST) levels after MI. RNA-seq results indicated calcium ion handling and negative regulation of apoptotic process were vital processes and DHI and TMZ obviously reduced the expression of CaMK II and inhibited cleaved caspase-3 and Bax. Furthermore, DHI and TMZ increased p-S16-PLB, p-S16T17-PLB, CACNA1C, p-RyR2, and p-PKA expression but did not affect SERCA2a expression. In addition to the enhancement of cardiac myocyte shortening amplitude, maximum shortening velocity, and calcium transients, DHI and TMZ increased sarcoplasmic reticulum calcium content and enhanced SERCA2a calcium uptake capability by upregulating the phosphorylation of PLB but did not affect calcium exclusion by NCX. In conclusion, DHI and TMZ protect against MI through inhibiting apoptosis by downregulating CaMKII pathway and enhancing cardiac myocyte contractile functions possibly through the PKA signaling pathway.
Collapse
|
8
|
Huangbai Liniment Accelerated Wound Healing by Activating Nrf2 Signaling in Diabetes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4951820. [PMID: 32566084 PMCID: PMC7271242 DOI: 10.1155/2020/4951820] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 12/23/2019] [Accepted: 02/19/2020] [Indexed: 12/26/2022]
Abstract
As a serious complication of diabetes, nonhealing skin ulcer leads to high mortality and disability in diabetic patients. However, limited therapy is available in managing diabetic wounds. In this study, RNA-seq technology was used to systematically investigate the effect of Huangbai (HB) liniment, a traditional Chinese medicine, on the streptozotocin- (STZ-) induced diabetic wound. HB liniment significantly accelerated the wound closure and enhanced the generation of extracellular matrix in diabetic rats, and oxidative stress was identified to play a vital role in HB-mediated wound healing. Importantly, HB liniment activated nuclear factor erythroid-derived 2-like 2 (Nrf2) and its downstream antioxidant genes (e.g., genes involved in glutathione system, thioredoxin system, and GAPDH generation as well as other antioxidant genes), which inhibited oxidative damage and apoptosis. By associating drug targets of HB liniment with Nrf2 and its downstream genes, 54 components in HB liniment were screened out, and the majority was from Cortex Phellodendri and Forsythia suspensa. Additionally, HB liniment enhanced TGF-β1 and reduced MMP9 level, accelerating wound healing in diabetes. The in vitro experiment showed HB facilitated cell proliferation and inhibited oxidative damage in high glucose-induced HaCaT cells. Our findings provided the experimental evidence for the treatment of diabetic wound with HB, clarified the potential mechanism of HB, and improved our understanding of diabetic wound healing.
Collapse
|
9
|
Zhang J, Zhou R, Xiang C, Fan F, Gao J, Zhang Y, Tang S, Xu H, Yang H. Enhanced thioredoxin, glutathione and Nrf2 antioxidant systems by safflower extract and aceglutamide attenuate cerebral ischaemia/reperfusion injury. J Cell Mol Med 2020; 24:4967-4980. [PMID: 32266795 PMCID: PMC7205826 DOI: 10.1111/jcmm.15099] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/02/2020] [Accepted: 02/08/2020] [Indexed: 12/22/2022] Open
Abstract
A large number of reactive oxygen species (ROS) aggravate cerebral damage after ischaemia/reperfusion (I/R). Glutathione (GSH), thioredoxin (Trx) and nuclear factor (erythroid-derived 2)-like 2 (Nrf2) represent three major antioxidant systems and play vital roles in affecting each other in eliminating ROS. Identification of drugs targeting triple antioxidant systems simultaneously is vital for inhibiting oxidative damage after cerebral I/R. This study investigated the protective effect of safflower extract and aceglutamide (SAAG) against cerebral I/R injury through modulating multiple antioxidant systems of GSH, Trx and Nrf2 and identified each role of its component acegluatminde (AG) and safflower extract (SA) on these systems. Safflower extract and aceglutamide and its two components decreased neurological deficit scores, infarction rate, apoptosis and oxidative damage after cerebral I/R while enhanced cell viability, decreased reactive oxygen species and nitric oxide level in H2 O2 -induced PC12 cell model. Importantly, compared to its two components, SAAG demonstrated more effective enhancement of GSH, Nrf2 and Trx systems and a better protection against cerebral I/R injury. The enhanced antioxidant systems prevented ASK1 activation and suppressed subsequent p38 and JNK cascade-mediated apoptosis. Moreover, inhibition of Trx and Nrf2 systems by auranofin and ML385 abolished SAAG-mediated protection, respectively. Thus, enhanced triple systems by SAAG played a better protective role than those by SA or AG via inhibition of ASK1 cascades. This research provided evidence for the necessity of combination drugs from the perspective of multiple antioxidant systems. Furthermore, it also offers references for the study of combination drugs and inspires novel treatments for ischaemic stroke.
Collapse
Affiliation(s)
- Jingjing Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Rui Zhou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Changpei Xiang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fangfang Fan
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jinhuan Gao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shihuan Tang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Haiyu Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongjun Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
10
|
Liu X, Cui Y, Li X, Yang H. In-depth transcriptomic and proteomic analyses of the hippocampus and cortex in a rat model after cerebral ischemic injury and repair by Shuxuetong (SXT) injection. JOURNAL OF ETHNOPHARMACOLOGY 2020; 249:112362. [PMID: 31676400 DOI: 10.1016/j.jep.2019.112362] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/29/2019] [Accepted: 10/26/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND There is a lack of systematic descriptions and characterization of strokes and their effects in both the cerebral hippocampus and cortex. Shuxuetong (SXT) injection was reported to have good therapeutic effects in the clinic; therefore, it was selected as a drug intervention method for cerebral ischemia repair in rat models. The aim of this study was to understand the features of molecules and pathways and to reveal key processes of SXT repair. MATERIALS AND METHODS Evaluation of neurological deficit and infarct volume measurement was used to estimate the pharmacological effects of SXT injection on Ischemia-reperfusion(I/R) model rats. LC-MS/MS and RNA-Seq analysis were used to analyze the proteins and mRNA expression in the cerebral hippocampus and cortex 6 h and 24 h after ischemic injury and repair. A label-free approach (IBAQ) for proteomics analysis and FPKM based on gene read count for transcriptomics analysis were used to quantify the differences among the three experimental groups (Sham, Model and SXT-treated groups). Transcriptomics and proteomics analyses were verified by RT-qPCR and western blotting. RESULTS By combining LC-MS/MS and RNA-Seq, eight larger datasets (two time points and two tissues) were confidently identified in more than three biological replicates. An average of 4500 unique proteins and 8200 protein-coding genes were confidently identified. By combining the subcellular localization, hierarchical clustering, pathway enrichment analysis in the injury and repair phase, six core proteins and related genes that were significantly expressed were verified as candidates for cerebral ischemic injury by western blotting and quantitative real-time PCR. Meanwhile, the results indicated that there was better expression in the 6 h group by significant proteomics analysis during the development and progression of cerebral ischemia. Two primary co-enriched pathways, the PI3K-AKT and MAPK signaling pathways, and six related core candidates may play key roles in molecular mechanisms related to cerebral ischemic injury and repair by SXT injection. CONCLUSION Our data not only identified six core candidates and two key signaling pathways for cerebral ischemic injury and verification but also provided evidence for the explanation, prevention and treatment of cerebral ischemia by SXT injection. The results of the present study provide evidence for the explanation, prevention and treatment of cerebral ischemia by SXT injection.
Collapse
Affiliation(s)
- Xin Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Yiran Cui
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
| | - Xianyu Li
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Hongjun Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
11
|
Zhou R, Gao J, Xiang C, Liu Z, Zhang Y, Zhang J, Yang H. Salvianolic acid A attenuated myocardial infarction–induced apoptosis and inflammation by activating Trx. Naunyn Schmiedebergs Arch Pharmacol 2019; 393:991-1002. [DOI: 10.1007/s00210-019-01766-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 11/08/2019] [Indexed: 01/30/2023]
|
12
|
Li Y, Liu X. The inhibitory role of Chinese materia medica in cardiomyocyte apoptosis and underlying molecular mechanism. Biomed Pharmacother 2019; 118:109372. [DOI: 10.1016/j.biopha.2019.109372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/19/2019] [Accepted: 08/22/2019] [Indexed: 01/04/2023] Open
|
13
|
Salvia miltiorrhiza and Carthamus tinctorius Extract Prevents Cardiac Fibrosis and Dysfunction after Myocardial Infarction by Epigenetically Inhibiting Smad3 Expression. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:6479136. [PMID: 31275414 PMCID: PMC6582873 DOI: 10.1155/2019/6479136] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/07/2019] [Accepted: 05/20/2019] [Indexed: 12/15/2022]
Abstract
The incidence of cardiac dysfunction after myocardial infarction (MI) continues to increase despite advances in treatment. Excessive myocardial fibrosis plays a vital role in the development of adverse cardiac remodeling and deterioration of cardiac function. Understanding the molecular and cellular mechanism of the fibrosis process and developing effective therapeutics are of great importance. Salvia miltiorrhiza and Carthamus tinctorius extract (SCE) is indicated for angina pectoris and other ischemic cardiovascular diseases in China. SCE has been shown to inhibit the platelet activation and aggregation, ameliorate ROS-induced myocardial necrosis by inhibiting mitochondrial permeability transition pore opening, and promote angiogenesis by upregulating the expression of vascular endothelial growth factor (VEGF). However, whether SCE has effect on cardiac fibrosis after MI is not fully clear. Here, a mouse model of MI was established to observe the effect of SCE upon survival, cardiac function, myocardial fibrosis, and inflammation. Quantitative PCR and western blot assays were used to determine the expression of genes related to transforming growth factor-β (TGF-β) cascade and inflammatory responses in vivo. Additionally, the effects of SCE upon the collagen production, TGF-β/Smad3 (SMAD family member 3) signaling, and the levels of histone methylation in primary cardiac fibroblasts were detected. We found that SCE treatment significantly improved survival and left ventricular function in mice after MI. Inhibition of inflammation and fibrosis, as well as decreased expression of Smad3, was observed with SCE treatment. In TGF-β-stimulated cardiac fibroblasts, SCE significantly decreased the expression of collagen, α-smooth muscle actin (α-SMA), and Smad3. Furthermore, SCE treatment downregulated the levels of H3K4 trimethylation (H3K4me3) and H3K36 trimethylation (H3K36me3) at the Smad3 promoter region of cardiac fibroblasts, leading to inhibition of Smad3 transcription. Our findings suggested that SCE prevents myocardial fibrosis and adverse remodeling after MI with a novel mechanism of suppressing histone methylation of the Smad3 promoter and its transcription.
Collapse
|
14
|
Xu W, Zhang Y, Yu Y, Li B, Liu J, Wang P, Wu H, Liu Q, Wei Z, Xiao H, Wang Z. Dose-dependent target diversion of Danhong injection on the Glu-GLT-1/Gly-GlyRα dynamic balance module of cerebral ischemia. Pharmacol Res 2018; 135:80-88. [PMID: 30031913 DOI: 10.1016/j.phrs.2018.07.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/18/2018] [Accepted: 07/18/2018] [Indexed: 02/07/2023]
Abstract
Function-oriented modular structure analysis is a great challenge in module-based pharmacological studies. A strategy to uncover target-target interaction (TTI) and dynamic balance regularity (DBR) was established to discover the structural factors influencing modular functions and explore the mechanism of Danhong injection (DHI) in treating cerebral ischemia. The dose-related metabolic features of DHI intervention were investigated using metabolomics and modular pharmacology. The findings indicated that Glu/Gly was a biomarker and Glu-GLT-1/Gly-GlyRα was the core unit regulated by DHI. Gly and Glu displayed opposite patterns and functional roles, representing intra-modular balance. GlyRα was identified as the upstream target and GLT-1 as the downstream target by inhibiting or activating GlyRα, indicating that DHI has two dose-dependent regulatory modes. GlyRα was the major target at low doses, while GLT-1 was activated as the dominant target as doses accumulated. Our study reveals that target-target interaction and dynamic balance regularity are the key factors influencing modular functions, which is a promising breakthrough for module-based pharmacological studies.
Collapse
Affiliation(s)
- Wenjuan Xu
- School of Life Sciences, Research Center for Chinese Medical Analysis and Transformation, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yingying Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China; Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yanan Yu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Bing Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Institute of Information on Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jun Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Pengqian Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Hongli Wu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qiong Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Ziyi Wei
- School of Life Sciences, Research Center for Chinese Medical Analysis and Transformation, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Hongbin Xiao
- School of Life Sciences, Research Center for Chinese Medical Analysis and Transformation, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Zhong Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
15
|
Author Correction: Screening and identification of critical transcription factors involved in the protection of cardiomyocytes against hydrogen peroxide-induced damage by Yixin-shu. Sci Rep 2018; 8:8993. [PMID: 29875369 PMCID: PMC5990537 DOI: 10.1038/s41598-018-27137-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.
Collapse
|
16
|
Liu L, Wu W, Li J, Jiao WH, Liu LY, Tang J, Liu L, Sun F, Han BN, Lin HW. Two sesquiterpene aminoquinones protect against oxidative injury in HaCaT keratinocytes via activation of AMPKα/ERK-Nrf2/ARE/HO-1 signaling. Biomed Pharmacother 2018; 100:417-425. [PMID: 29471244 DOI: 10.1016/j.biopha.2018.02.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/26/2018] [Accepted: 02/09/2018] [Indexed: 12/21/2022] Open
Abstract
AIMS To investigate the cytoprotective effects of two sesquiterpene aminoquinones isolated from the marine sponge Dysidea fragilis, Dysidaminone H (DA8) and 3'-methylamino-avarone (DA14), we examined their effects against hydrogen peroxide (H2O2)-induced oxidative injury in human keratinocyte cell line and elucidated the underlying mechanisms. MAIN METHODS Cell viability was detected using a CCK-8 assay kit. Intracellular reactive oxygen species (ROS) production was measured by fluorescence of 2, 7-Dichlorodi-hydrofluorescein diacetate (DCFH-DA). Messenger RNA and protein expression were measured by real-time quantitative PCR and western blotting analysis. Immunocytochemistry was performed to determine the intracellular location of nuclear factorerythroid 2 p45 related factor 2 (Nrf2). The antioxidant response element (ARE)-luciferase reporter gene assay and RNA interference were used to establish the role of ARE and Nrf2. KEY FINDINGS DA8 and DA14 (DAs) resisted H2O2induced decline of cell viability by inhibiting the accumulation of ROS. Meanwhile, DAs increased HO-1 expression and ARE activity and induced Nrf2 expression, as well as the accumulation of Nrf2 in the cell nucleus. However, silencing of Nrf2 abolished DAs-induced HO-1 expression and ARE luciferase activation. In addition, DAs induced the phosphorylation of both cyclic AMP-activated protein kinase-α (AMPKα) and extracellular signal-regulated kinase (ERK), while specific inhibitors of AMPKα and ERK abrogated HO1 upregulation and Nrf2 activation. SIGNIFICANCE DAs provided cytoprotective effects against H2O2-induced cytotoxicity by activation of the Nrf2/ARE/HO-1 pathway via phosphorylation of AMPKα and ERK. The findings suggested that DA8 and DA14 might be the candidate therapeutic agents for skin diseases caused by oxidative injury.
Collapse
Affiliation(s)
- Li Liu
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Wei Wu
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jing Li
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Wei-Hua Jiao
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Li-Yun Liu
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jie Tang
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Lei Liu
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Fan Sun
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Bing-Nan Han
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; Department of Development Technology of Marine Resources, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Hou-Wen Lin
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| |
Collapse
|