1
|
Shuang L, Su Y, Zhang Y. Downregulation of Gldc attenuates myocardial ischemia reperfusion injury in vitro by modulating Akt and NF-κB signalings. Sci Rep 2025; 15:268. [PMID: 39747134 PMCID: PMC11696683 DOI: 10.1038/s41598-024-79445-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 11/08/2024] [Indexed: 01/04/2025] Open
Abstract
Myocardial ischemia/reperfusion injury (MIRI) is a serious clinical complication that is caused by reperfusion therapy following myocardial infarction (MI). Mitochondria-related genes (Mito-RGs) play important roles in multiple diseases. However, the role of mitochondria-related genes in MIRI remains largely unknown. The GSE67308 dataset from the GEO database was utilized to identify MIRI-related gene modules through WGCNA. Meanwhile, differential expression analysis was conducted to identify differentially expressed genes (DEGs) in the GSE61592 dataset. Next, candidate Mito-RGs related to MIRI were screened by Venn analysis. Thereafter, a myocardial hypoxia/reperfusion (H/R) H9C2 cell model and a mouse ischemia/reperfusion (I/R) model were established to verify the expression level of glycine decarboxylase (Gldc) in MIRI in vitro and in vivo. Based on data from the GEO database, Gldc levels were notably upregulated in murine MIRI samples, compared to the control group. RT-qPCR and western blot confirmed that Gldc levels were obviously elevated in the heart of I/R mice and H/R-exposed cardiomyocytes. Moreover, the deficiency of Gldc notably increased the viability and reduced the apoptosis and inflammatory responses in H9C2 cells exposed to H/R. Meanwhile, Gldc downregulation significantly reduced p-NF-κB p65, Bax and cleaved caspase 3 levels and elevated p-Akt and Bcl-2 levels in H9C2 cells exposed to H/R. The ROC curve analysis further demonstrated that Gldc gene exhibited good diagnostic value for MIRI. Collectively, Gldc deficiency could attenuate H/R injury in cardiomyocytes in vitro through activating Akt and inactivating NF-κB signalings. These data suggested that GLDC may serve as both a diagnostic and therapeutic target for MIRI.
Collapse
Affiliation(s)
- Lian Shuang
- Geriatric Center, Affiliated Hospital of Inner Mongolia Medical University, No.1 Tongdao North Street, Huimin District, Hohhot, 010050, China
| | - Youle Su
- Department of Neurosurgery, Affiliated Hospital of Inner Mongolia Medical University, No.1 Tongdao North Street, Huimin District, Hohhot, 010050, China.
| | - Yue Zhang
- Geriatric Center, Affiliated Hospital of Inner Mongolia Medical University, No.1 Tongdao North Street, Huimin District, Hohhot, 010050, China.
| |
Collapse
|
2
|
García-García CA, Cruz-Gregorio A, Pedraza-Chaverri J, Montaño LF, Rendón-Huerta EP. NDMA enhances claudin-1 and -6 expression viaCYP2E1/ROS in AGS cells. Toxicol In Vitro 2025; 102:105952. [PMID: 39395750 DOI: 10.1016/j.tiv.2024.105952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/23/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024]
Abstract
Carcinogenic N-nitroso compounds, especially N-nitroso dimethylamine, increase the risk of gastric cancer development. Cytochrome P450-2E1 metabolizes this compound, thus generating an oxidant microenvironment. We aimed to evaluate in gastric adenocarcinoma cells if its effect on CYP2E1 and ROS affects signaling pathways associated with gastric cancer oncogenesis. The impact of N- nitroso dimethylamine upon CYP2E1 and ROS activation/secretion was evaluated by the DCFDA assay protocol, TER measurements, Stat3, pSTAT3, ERK1/2, and pERK1/2 expression, claudins-1 and -6 expression, and finally mRNA values of IL-1β IL-6, IL-8 and TNFα. Our results showed that exposure to N- N-nitroso dimethylamine disrupts the regulation of Stat3 and Erk1/2, alters the expression of claudin-1 and claudin-6 tight junction proteins, and increases the secretion of pro-inflammatory cytokines. These alterations induce a continuous local inflammatory process, an event identified as a gastric cancer promoter. In summary, N-nitroso dimethylamine can disrupt cell mechanisms associated with gastric cancer oncogenesis.
Collapse
Affiliation(s)
| | - Alfredo Cruz-Gregorio
- Departamento de Fisiología, Instituto Nacional de Cardiología "Ignacio Chávez", Mexico
| | | | - Luis F Montaño
- Laboratorio de Inmunobiología, Departamento de Biología Celular y Tisular, Facultad de Medicina, UNAM, Mexico
| | - Erika P Rendón-Huerta
- Laboratorio de Inmunobiología, Departamento de Biología Celular y Tisular, Facultad de Medicina, UNAM, Mexico.
| |
Collapse
|
3
|
Zheng P, Xu D, Cai Y, Zhu L, Xiao Q, Peng W, Chen B. A multi-omic analysis reveals that Gamabufotalin exerts anti-hepatocellular carcinoma effects by regulating amino acid metabolism through targeting STAMBPL1. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156094. [PMID: 39348778 DOI: 10.1016/j.phymed.2024.156094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/03/2024] [Accepted: 09/23/2024] [Indexed: 10/02/2024]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC), a prevalent type of liver cancer, is characterized by an unfavorable prognosis and a high mortality rate. Identifying novel treatments to prevent HCC recurrence and metastasis remains crucial for improving patient survival. Gamabufotalin (CS-6), a primary bufadienolide derived from the traditional Chinese medicine Chansu, has demonstrated significant anti-tumor activity. However, the effects and underlying mechanisms of CS-6 on HCC cells are not yet fully understood. PURPOSE This study sought to elucidate the anti-HCC effects and potential mechanisms of CS-6. In vitro experiments were conducted using the HCC cell lines MHCC97H and Huh-7, employing CCK-8 assays, colony formation assays, wound healing assays, transwell invasion and migration assays, and flow cytometry to assess apoptosis and cell cycle dynamics. A multi-omics approach, including metabolomics and RNA sequencing analysis, was utilized to identify CS-6's molecular targets and mechanisms in HCC therapy. Additionally, in vivo assessments were performed using xenografts in nude mice. RESULTS CS-6 significantly inhibited HCC cell proliferation, migration, and invasion. Multi-omics analysis suggested that CS-6's anti-HCC effects may involve the modulation of metabolic pathways, potentially through the downregulation of STAMBPL1, resulting in reduced mTOR signaling, increased apoptosis, and suppression of malignant HCC behavior. In vivo studies further confirmed that CS-6 significantly suppressed tumor growth and enhanced apoptosis and autophagy within tumors. CONCLUSION These results underscore the therapeutic potential of CS-6 in HCC treatment. The study offers novel insights into the mechanism of CS-6, suggesting that its therapeutic efficacy may be uniquely mediated by targeting STAMBPL1. This distinct mechanism sets CS-6 apart from existing HCC treatments and positions it as a promising candidate for further clinical investigation.
Collapse
Affiliation(s)
- Piao Zheng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha 410011, China; National Clinical Research Center for Mental Disorder, The Second Xiangya Hospital, Central South University, Changsha 410011, China; Academician Workstation, Changsha Medical University, Changsha 410219, China
| | - Die Xu
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Yisi Cai
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Lemei Zhu
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha 410011, China; National Clinical Research Center for Mental Disorder, The Second Xiangya Hospital, Central South University, Changsha 410011, China; Academician Workstation, Changsha Medical University, Changsha 410219, China
| | - Qiao Xiao
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha 410011, China; National Clinical Research Center for Mental Disorder, The Second Xiangya Hospital, Central South University, Changsha 410011, China; Academician Workstation, Changsha Medical University, Changsha 410219, China
| | - Weijun Peng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha 410011, China; National Clinical Research Center for Mental Disorder, The Second Xiangya Hospital, Central South University, Changsha 410011, China; Academician Workstation, Changsha Medical University, Changsha 410219, China.
| | - Bolin Chen
- Department of Thoracic Medical Oncology, Hunan Cancer Hospital/the affiliated Cancer Hospital of Xiangya school of Medicine, Central South University, No.283 Tongzipo Road, Changsha 410013, China.
| |
Collapse
|
4
|
Zhang X, Liu Y, Yang R, Guo Y, Yan M, Xiao Y, Dong Y, Zhang R, Qin Y, Bu Y, Zhang Y, Gao H. Phosphorylation of RasGRP1 by Shc3 prevents RasGRP1 degradation and contributes to Ras/c-Jun activation in hepatocellular carcinoma. Mol Cell Biochem 2024; 479:2307-2321. [PMID: 37646951 DOI: 10.1007/s11010-023-04839-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/14/2023] [Indexed: 09/01/2023]
Abstract
Ras guanine nucleotide-releasing protein 1 (RasGRP1), a Ras activator, is upregulated in hepatocellular carcinoma (HCC) and other kinds of cancer and is associated with the poor prognosis of patients. However, little is known about the underlying regulatory mechanisms of RasGRP1 in the context of cancer. Here, we report that RasGRP1 physically interacted with the adaptor protein Src homolog and collagen homolog 3 (Shc3). Moreover, RasGRP1 C-terminus domain (aa 607-797) bound to the central collagen-homology 1 (CH1) domain of Shc3. Subsequently, Shc3 enhanced the RasGRP1 tyrosine phosphorylation rate and stability by inhibiting its ubiquitination. Notably, the phosphorylation-mimicking mutants of RasGRP1, RasGRP1 Y704A, and Y748A, rescued the phosphorylation and ubiquitination levels of RasGRP1 in HCC cells. Further investigation showed that the RasGRP1 and Shc3 interaction induced activation of Ras and c-Jun, resulting in cell proliferation in vitro. Moreover, the regulation of Shc3/RasGRP1/Ras/c-Jun signal transduction was confirmed in vivo using the subcutaneous xenograft mouse model. Thus, we propose that continuous Shc3 overexpression may be a possible mechanism for maintaining RasGRP1 stability and that persistent activation of Ras/c-Jun signaling through the interaction of RasGRP1 and Shc3 is a key event increasing cell proliferation. Our findings suggest that the interaction of RasGRP1 and Shc3 plays an important role in HCC tumorigenesis and suggests the potential clinical usage of novel biomarkers and therapeutic targets in HCC.
Collapse
Affiliation(s)
- Xinran Zhang
- Department of Pharmacy, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, China
| | - Yun Liu
- Key Laboratory of Cancer Prevention and Therapy, Department of Pediatric Oncology, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300060, China
| | - Rui Yang
- Department of Critical Care Medicine, Tianjin First Central Hospital, Tianjin Institute of Emergency Medicine, Tianjin, 300192, China
| | - Yuanyuan Guo
- Department of Pharmacy, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, China
| | - Meiling Yan
- Department of Pharmacy, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, China
| | - Ying Xiao
- Department of Pharmacy, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, China
| | - Yunzhuo Dong
- Department of Pharmacy, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, China
| | - Ruixia Zhang
- Department of Pharmacy, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, China
| | - Yinpeng Qin
- Department of Pharmacy, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, China
| | - Yishan Bu
- Department of Pharmacy, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, China
| | - Yi Zhang
- Department of Pharmacy, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, China
| | - Huier Gao
- Department of Pharmacy, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, China.
| |
Collapse
|
5
|
Zhang J, Luo C, Long H. Sirtuin 5 regulates acute myeloid leukemia cell viability and apoptosis by succinylation modification of glycine decarboxylase. Open Life Sci 2024; 19:20220832. [PMID: 38585637 PMCID: PMC10997144 DOI: 10.1515/biol-2022-0832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 04/09/2024] Open
Abstract
Acute myeloid leukemia (AML) is a blood system malignancy where sirtuin 5 (SIRT5) is abnormally expressed in AML cell lines. This study aimed to investigate the SIRT5 effects on the viability and apoptosis of AML cell lines. The mRNA and protein expression levels of succinylation regulatory enzyme in clinical samples and AML cell lines were detected by real-time quantitative polymerase chain reaction and western blotting while cell viability was measured using cell counting kit-8 assay. The apoptosis rate was assessed with flow cytometry. The interaction between SIRT5 and glycine decarboxylase (GLDC) was determined by co-immunoprecipitation and immunofluorescence staining techniques. Results indicated higher mRNA and protein expression levels of SIRT5 in clinical AML samples of AML than in normal subjects. Similarly, cell viability was inhibited, and apoptosis was promoted by downregulating SIRT5, in addition to inhibition of SIRT5-mediated GLDC succinylation. Moreover, rescue experiment results showed that GLDC reversed the effects of SIRT5 knockdown on cell viability and apoptosis. These results, in combination with SIRT5 and GLDC interactions, suggested that SIRT5 was involved in mediating AML development through GLDC succinylation. SIRT5 inhibits GLDC succinylation to promote viability and inhibit apoptosis of AML cells, suggesting that SIRT5 encourages the development of AML.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Hematology, The Second Affiliated Hospital of Guizhou Medical University, No. 3, Kangfu Road, Kaili, Guizhou, 556000, China
| | - Cheng Luo
- Department of Hematology, The Second Affiliated Hospital of Guizhou Medical University, No. 3, Kangfu Road, Kaili, Guizhou, 556000, China
| | - Haiying Long
- Department of Hematology, The Second Affiliated Hospital of Guizhou Medical University, No. 3, Kangfu Road, Kaili, Guizhou, 556000, China
| |
Collapse
|
6
|
Cai J, Jiang Y, Chen P, Liang J, Zhang Y, Yuan R, Fan H, Zhong Y, Cai J, Cheng S, Zhang Y. TBC1D1 represses glioma progression by altering the integrity of the cytoskeleton. Aging (Albany NY) 2024; 16:431-444. [PMID: 38189823 PMCID: PMC10817367 DOI: 10.18632/aging.205377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 11/20/2023] [Indexed: 01/09/2024]
Abstract
BACKGROUND Glioma is one of the most aggressive malignant brain tumors and is characterized by invasive growth and poor prognosis. TBC1D1, a member of the TBC family, is associated with the development of various malignancies. However, the role of TBC1D1 in glioma-genesis remains unclear. METHODS The effect of TBC1D1 on the prognosis of glioma patients and related influencing factors were analyzed in the Chinese Glioma Genome Atlas (CGGA) and The Cancer Genome Atlas (TCGA) databases. Expression of TBC1D1 in glioma cell lines was detected by western blotting. Cell viability and proliferation were measured by EdU and Colony formation assays, respectively. Transwell and wound healing assays were performed to determine the cell migration and invasion capacities. Immunofluorescence was used to observe actin morphology in the cytoskeleton. RESULTS We discovered that high TBC1D1 expression in gliomas led to poor prognosis. Downregulation of TBC1D1 in glioma cells significantly inhibited multiple important functions, such as proliferation, migration, and invasion. We further demonstrated that the tumor-inhibitory effect of TBC1D1 might occur through the P-LIMK/cofilin pathway, destroying the cytoskeletal structure and affecting the depolymerization of F-actin, thereby inhibiting glioma migration. CONCLUSION TBC1D1 affects the balance and integrity of the actin cytoskeleton via cofilin, thereby altering the morphology and aggressiveness of glioma cells. This study provides a new perspective on its role in tumorigenesis, thereby identifying a potential therapeutic target for the treatment of gliomas.
Collapse
Affiliation(s)
- Jiahong Cai
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi, China
| | - Yong’an Jiang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi, China
| | - Peng Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi, China
| | - Jiawei Liang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi, China
| | - Yi Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi, China
| | - Raorao Yuan
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi, China
| | - Hengyi Fan
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi, China
| | - Yuefei Zhong
- Department of Neurology, Shang Rao GuangXin District People’s Hospital, Shangrao 334100, Jiangxi, China
| | - Jianhui Cai
- Department of Neurosurgery, Nanchang County People’s Hospital, Nanchang 330200, Jiangxi, China
| | - Shiqi Cheng
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi, China
| | - Yan Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi, China
| |
Collapse
|
7
|
Chen YD, Gao KX, Wang Z, Deng Q, Chen YT, Liang H. Glycine Decarboxylase Suppresses the Renal Cell Carcinoma Growth and Regulates Its Gene Expressions and Functions. World J Oncol 2022; 13:387-402. [PMID: 36660213 PMCID: PMC9822677 DOI: 10.14740/wjon1539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 11/08/2022] [Indexed: 12/26/2022] Open
Abstract
Background Glycine decarboxylase (GLDC), a key metabolic enzyme, participates in the regulation of the glycine metabolic pathway. Differential expression of GLDC is linked to the malignant growth of renal cell carcinoma (RCC) and may regulate tumor progression through other genes. However, the regulatory function of GLDC in RCC is currently unknown. The purpose of this work was to evaluate the roles of GLDC in the invasion, proliferation, and migration of RCC cells and elucidate the processes underlying RCC development. Methods The expression of GLDC in RCC cell lines and tissues was identified by quantitative reverse transcription polymerase chain reaction (PCR) and western blot. A stably transfected cell line overexpressing GLDC was constructed using a lentiviral vector. Cell proliferation was detected using Cell Counting Kit-8 (CCK8) and EdU experiments, and scratch and transwell assays were used to determine migration and invasion capabilities. Furthermore, differential proteins were identified and obtained using high-performance liquid chromatography (HPLC)-tandem mass spectrometry (MS/MS) analysis. Finally, these differential proteins were analyzed by bioinformatics, including cluster analysis, subcellular localization, domain annotation, annotation of the Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG), enrichment analysis, and study of protein-protein interactions. Results GLDC expression was found to be lower in six RCC cell lines (786-O, A498, Caki-1, 769-P, OSRC-2, and ACHN) than in 293T cells and decreased in kidney cancer tissues compared to neighboring normal tissues. Overexpression of GLDC inhibited the proliferation of RCC cells as well as their migration and invasion abilities. Tandem mass tag analysis showed that 317 and 236 genes were downregulated and upregulated, respectively, when GLDC was overexpressed in A498 cells. Tandem mass tag analysis showed that 317 and 236 genes were downregulated and upregulated, respectively, when GLDC was overexpressed in A498 cells. Volcano plot showed these upregulated and downregulated proteins. Cluster analysis showed that differentially expressed protein screening can represent the effect of biological treatment on samples. Subcellular localization analysis showed differential proteins are mainly distributed in the nucleus, cytoplasm, mitochondria, plasma membrane, extracellular matrix, and lysosome. GO annotation showed many biological processes in the cells were changed, including "positive regulation of histone H3-K4 methylation", "cofactor binding", and "nuclear body". KEGG pathway analysis showed key pathways have all undergone considerable alterations, such as "cell cycle", "glyoxylate and dicarboxylate metabolism", and "threonine, glycine, and serine metabolism". Finally, highly aggregated proteins with the same or similar functions were acquired by analysis of the protein-protein interaction (PPI) network. Conclusions These studies indicate that GLDC overexpression suppresses the invasion, proliferation, and migration of RCC cells and leads to the upregulation and downregulation of 236 and 317 genes, respectively.
Collapse
Affiliation(s)
- Ye Da Chen
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China,Department of Urology, Affiliated Longhua People’s Hospital, Southern Medical University (Longhua People’s Hospital), Shenzhen 518109, China
| | - Ke Xin Gao
- Department of Urology, Affiliated Longhua People’s Hospital, Southern Medical University (Longhua People’s Hospital), Shenzhen 518109, China
| | - Zhu Wang
- Department of Urology, Affiliated Longhua People’s Hospital, Southern Medical University (Longhua People’s Hospital), Shenzhen 518109, China
| | - Qiong Deng
- Department of Urology, Affiliated Longhua People’s Hospital, Southern Medical University (Longhua People’s Hospital), Shenzhen 518109, China
| | - Yu Ting Chen
- Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China,Corresponding Author: Yu Ting Chen, Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China. ; Hui Liang, Department of Urology, Affiliated Longhua People’s Hospital, Southern Medical University (Longhua People’s Hospital), Shenzhen 518109, China.
| | - Hui Liang
- Department of Urology, Affiliated Longhua People’s Hospital, Southern Medical University (Longhua People’s Hospital), Shenzhen 518109, China,Corresponding Author: Yu Ting Chen, Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China. ; Hui Liang, Department of Urology, Affiliated Longhua People’s Hospital, Southern Medical University (Longhua People’s Hospital), Shenzhen 518109, China.
| |
Collapse
|
8
|
Lv S, Chen Z, Mi H, Yu X. Cofilin Acts as a Booster for Progression of Malignant Tumors Represented by Glioma. Cancer Manag Res 2022; 14:3245-3269. [PMID: 36452435 PMCID: PMC9703913 DOI: 10.2147/cmar.s389825] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/10/2022] [Indexed: 07/20/2023] Open
Abstract
Cofilin, as a depolymerization factor of actin filaments, has been widely studied. Evidences show that cofilin has a role in actin structural reorganization and dynamic regulation. In recent years, several studies have demonstrated a regulatory role for cofilin in the migration and invasion mediated by cell dynamics and epithelial to mesenchymal transition (EMT)/EMT-like process, apoptosis, radiotherapy resistance, immune escape, and transcriptional dysregulation of malignant tumor cells, particularly glioma cells. On this basis, it is practical to evaluate cofilin as a biomarker for predicting tumor metastasis and prognosis. Targeting cofilin regulating kinases, Lin11, Isl-1 and Mec-3 kinases (LIM kinases/LIMKs) and their major upstream molecules inhibits tumor cell migration and invasion and targeting cofilin-mediated mitochondrial pathway induces apoptosis of tumor cells represent effective options for the development of novel anti-malignant tumor drug, especially anti-glioma drugs. This review explores the structure, general biological function, and regulation of cofilin, with an emphasis on the critical functions and prospects for clinical therapeutic applications of cofilin in malignant tumors represented by glioma.
Collapse
Affiliation(s)
- Shihong Lv
- Department of Gastroenterology, The Second Affiliated Hospital of Mudanjiang Medical College, Mudanjiang Medical College, Mudanjiang, 157011, People’s Republic of China
| | - Zhiye Chen
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
- Department of Histology and Embryology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Hailong Mi
- Department of Histology and Embryology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Xingjiang Yu
- Department of Histology and Embryology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| |
Collapse
|
9
|
Xie H, Yan T, Lu X, Du Y, Xu S, Kong Y, Yu L, Sun J, Zhou L, Ma J. GLDC mitigated by miR-30e regulates cell proliferation and tumor immune infiltration in TNBC. Front Immunol 2022; 13:1033367. [PMID: 36275705 PMCID: PMC9585280 DOI: 10.3389/fimmu.2022.1033367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
Background TNBC, whose clinical prognosis is poorer than other subgroups of breast cancer, is a malignant tumor characterized by lack of estrogen receptors, progesterone hormone receptors, and HER2 overexpression. Due to the lack of specific targeted drugs, it is crucial to identify critical factors involved in regulating the progression of TNBC. Methods We analyzed the expression profiles of TNBC in TCGA and the prognoses values of GLDC. Correlations of GLDC and tumor immune infiltration were also identified. CCK8 and BrdU incorporation assays were utilized to determine cell proliferation. The mRNA and protein levels were examined by using Real-time PCR and Western blot analysis. Results In the present study, we analyzed the mRNA expression profiles of TNBC in TCGA and found that GLDC, a key enzyme in glycine cleavage system, was significantly up-regulated in TNBC tissues and higher expression of GLDC was correlated with a worse prognosis in TNBC. Moreover, the expression of GLDC was negatively correlated with macrophage and monocyte and positively correlated with activated CD4 T cell and type 2 T helper cell in TNBC. Overexpression of GLDC facilitated the proliferation of TNBC cells, whereas GLDC knockdown had the opposite effects. Additionally, miR-30e acts as a functional upstream regulator of GLDC and the inhibitory effects of miR-30e on cell proliferation were mitigated by the reintroduction of GLDC. Conclusions These results imply that miR-30e-depressed GLDC acts as a tumor suppressive pathway in TNBC and provides potential targets for the treatment of TNBC.
Collapse
Affiliation(s)
- Huaying Xie
- Department of Radiation Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tingting Yan
- Department of Breast Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xinxin Lu
- Department of Oncology, Ganzhou Women and Children’s Health Care Hospital, Ganzhou, China
| | - Yueyao Du
- Department of Breast Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Shuguang Xu
- Department of Breast Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Kong
- Department of Radiation Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Liangjie Yu
- Department of Radiation Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jian Sun
- Department of Breast Surgery, Obstetrics and Gynaecology Hospital, Fudan University, Shanghai, China
- *Correspondence: Jun Ma, ; Liheng Zhou, ; Jian Sun,
| | - Liheng Zhou
- Department of Breast Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Jun Ma, ; Liheng Zhou, ; Jian Sun,
| | - Jun Ma
- Eye Institute, Eye & Ear, Nose, and Throat (ENT) Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- *Correspondence: Jun Ma, ; Liheng Zhou, ; Jian Sun,
| |
Collapse
|
10
|
Blocking glycine utilization inhibits multiple myeloma progression by disrupting glutathione balance. Nat Commun 2022; 13:4007. [PMID: 35817773 PMCID: PMC9273595 DOI: 10.1038/s41467-022-31248-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/06/2022] [Indexed: 11/30/2022] Open
Abstract
Metabolites in the tumor microenvironment are a critical factor for tumor progression. However, the lack of knowledge about the metabolic profile in the bone marrow (BM) microenvironment of multiple myeloma (MM) limits our understanding of MM progression. Here, we show that the glycine concentration in the BM microenvironment is elevated due to bone collagen degradation mediated by MM cell-secreted matrix metallopeptidase 13 (MMP13), while the elevated glycine level is linked to MM progression. MM cells utilize the channel protein solute carrier family 6 member 9 (SLC6A9) to absorb extrinsic glycine subsequently involved in the synthesis of glutathione (GSH) and purines. Inhibiting glycine utilization via SLC6A9 knockdown or the treatment with betaine suppresses MM cell proliferation and enhances the effects of bortezomib on MM cells. Together, we identify glycine as a key metabolic regulator of MM, unveil molecular mechanisms governing MM progression, and provide a promising therapeutic strategy for MM treatment. The bone tumour microenvironment plays an essential role in multiple myeloma (MM) development. Here, the authors show that bone collagen degradation provides glycine to support MM progression through glutathione and purine synthesis.
Collapse
|
11
|
Zhang Q, Li W. Correlation between amino acid metabolism and self-renewal of cancer stem cells: Perspectives in cancer therapy. World J Stem Cells 2022; 14:267-286. [PMID: 35662861 PMCID: PMC9136564 DOI: 10.4252/wjsc.v14.i4.267] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/19/2022] [Accepted: 04/25/2022] [Indexed: 02/06/2023] Open
Abstract
Cancer stem cells (CSCs) possess self-renewal and differentiation potential, which may be related to recurrence, metastasis, and radiochemotherapy resistance during tumor treatment. Understanding the mechanisms via which CSCs maintain self-renewal may reveal new therapeutic targets for attenuating CSC resistance and extending patient life-span. Recent studies have shown that amino acid metabolism plays an important role in maintaining the self-renewal of CSCs and is involved in regulating their tumorigenicity characteristics. This review summarizes the relationship between CSCs and amino acid metabolism, and discusses the possible mechanisms by which amino acid metabolism regulates CSC characteristics particularly self-renewal, survival and stemness. The ultimate goal is to identify new targets and research directions for elimination of CSCs.
Collapse
Affiliation(s)
- Qi Zhang
- Cancer Center, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Wei Li
- Cancer Center, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| |
Collapse
|
12
|
Xiaoqian W, Bing Z, Yangwei L, Yafei Z, Tingting Z, Yi W, Qingjun L, Suxia L, Ling Z, Bo W, Peng Z. DEAD-box Helicase 27 Promotes Hepatocellular Carcinoma Progression Through ERK Signaling. Technol Cancer Res Treat 2021; 20:15330338211055953. [PMID: 34855554 PMCID: PMC8649435 DOI: 10.1177/15330338211055953] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Introduction: DEAD-box helicase 27 (DDX27) belongs to DEAD-Box nucleic acid helicase family. The function of DDX27 in hepatocellular carcinoma (HCC) remain enigmatic. In light of this, we tried to investigate the regulatory role and underlying mechanism of DDX27 in HCC. Materials and methods: DDX27 expression levels were detected by qRT-PCR, Western blot and immunohistochemistry assays in HCC tissues and cells. Colony formation, CCK-8, growth curve, wound healing and transwell assays were conducted to investigate the effect of DDX27 on the proliferation and metastasis of HCC cells. RNA-sequencing was performed to detect the effect of DDX27 on downstream signaling pathway. The effect of DDX27 on HCC progression was evaluated using in vivo murine xenograft model. Results: we found an increased expression of DDX27 in HCC tissues with comparison to its para-tumor tissues. The high expression levels of DDX27 were associated with poor prognosis in HCC patients. DDX27 upregulation promoted cell metastasis. Mechanistic studies suggested that DDX27 overexpression induces the major vault protein (MVP) expression and enhances the phosphorylation levels of ERK1/2. Inhibition of ERK pathway impaired the cellular metastastic abilities induced by DDX27. The induction of DDX27 in HCC progression was further confirmed from tumors in mouse model. Conclusion: our results disclose a novel mechanism by which DDX27 enhances ERK signaling during HCC progression. DDX27 might be used in targeted therapy for HCC patients.
Collapse
Affiliation(s)
- Wang Xiaoqian
- 12476The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhang Bing
- 12476The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Li Yangwei
- 12476The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhi Yafei
- 377327China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Zhang Tingting
- 12476The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wang Yi
- 12476The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Li Qingjun
- 12476The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Luo Suxia
- The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhang Ling
- 12476The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wang Bo
- 12476Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative diseases, Tianjin Neurosurgical Institute, Tianjin, China
| | - Zheng Peng
- 12476The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
13
|
Chen Y, Lee K, Liang Y, Qin S, Zhu Y, Liu J, Yao S. A Cholesterol Homeostasis-Related Gene Signature Predicts Prognosis of Endometrial Cancer and Correlates With Immune Infiltration. Front Genet 2021; 12:763537. [PMID: 34790227 PMCID: PMC8591263 DOI: 10.3389/fgene.2021.763537] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/13/2021] [Indexed: 12/24/2022] Open
Abstract
Background: Endometrial cancer (EC) is one of the most common gynecological malignancies in women. Cholesterol metabolism has been confirmed to be closely related to tumor proliferation, invasion and metastasis. However, the correlation between cholesterol homeostasis-related genes and prognosis of EC remains unclear. Methods: EC patients from the Cancer Genome Atlas (TCGA) database were randomly divided into training cohort and test cohort. Transcriptome analysis, univariate survival analysis and LASSO Cox regression analysis were adopted to construct a cholesterol homeostasis-related gene signature from the training cohort. Subsequently, Kaplan-Meier (KM) plot, receiver operating characteristic (ROC) curve and principal component analysis (PCA) were utilized to verify the predictive performance of the gene signature in two cohorts. Additionally, enrichment analysis and immune infiltration analysis were performed on differentially expressed genes (DEGs) between two risk groups. Results: Seven cholesterol homeostasis-related genes were selected to establish a gene signature. KM plot, ROC curve and PCA in two cohorts demonstrated that the gene signature was an efficient independent prognostic indicator. The enrichment analysis and immune infiltration analysis indicated that the high-risk group generally had lower immune infiltrating cells and immune function. Conclusion: We constructed and validated a cholesterol homeostasis-related gene signature to predict the prognosis of EC, which correlated to immune infiltration and expected to help the diagnosis and precision treatment of EC.
Collapse
Affiliation(s)
- Yili Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kaping Lee
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yanchun Liang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shuhang Qin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuan Zhu
- Department of Obstetrics and Gynecology, Nanjing Maternity and Child Health Care Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Junxiu Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shuzhong Yao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
14
|
Gao X, Guo R, Li Y, Kang G, Wu Y, Cheng J, Jia J, Wang W, Li Z, Wang A, Xu H, Jia Y, Li Y, Qi X, Wei Z, Wei C. Contribution of upregulated aminoacyl-tRNA biosynthesis to metabolic dysregulation in gastric cancer. J Gastroenterol Hepatol 2021; 36:3113-3126. [PMID: 34159625 PMCID: PMC9292402 DOI: 10.1111/jgh.15592] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/04/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIM Metabolic reprogramming is characterized by dysregulated levels of metabolites and metabolic enzymes. Integrated metabolomic and transcriptomic data analysis can help to elucidate changes in the levels of metabolites and metabolic enzymes, screen the core metabolic pathways, and develop novel therapeutic strategies for cancer. METHODS Here, the metabolome of gastric cancer tissues was determined using liquid chromatography-mass spectrometry. The transcriptome data from The Cancer Genome Atlas dataset were integrated with the liquid chromatography-mass spectrometry data to identify the common dysregulated gastric cancer-specific metabolic pathways. Additionally, the protein expression and clinical significance of key metabolic enzymes were examined using a gastric cancer tissue array. RESULTS Metabolomic analysis of 16 gastric cancer tissues revealed that among the 15 dysregulated metabolomic pathways, the aminoacyl-tRNA biosynthesis pathway in the gastric tissues was markedly upregulated relative to that in the adjacent noncancerous tissues, which was consistent with the results of transcriptome analysis. Bioinformatic analysis revealed that among the key regulators in the aminoacyl-tRNA biosynthesis pathway, the expression levels of threonyl-tRNA synthetase (TARS) and phenylalanyl-tRNA synthetase (FARSB) were correlated with tumor grade and poor survival, respectively. Additionally, gastric tissue array data analysis indicated that TARS and FARSB were upregulated in gastric cancer tissues and were correlated with poor prognosis and tumor metastasis. CONCLUSIONS This study demonstrated that the aminoacyl-tRNA biosynthesis pathway is upregulated in gastric cancer and both TARS and FARSB play key roles in the progression of gastric cancer. Additionally, a novel therapeutic strategy for gastric cancer was proposed that involves targeting the aminoacyl-tRNA biosynthesis pathway.
Collapse
Affiliation(s)
- Xiaoling Gao
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal TumorGansu Provincial HospitalLanzhouChina,The Institute of Clinical Research and Translational MedicineGansu Provincial HospitalLanzhouChina
| | - Rui Guo
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal TumorGansu Provincial HospitalLanzhouChina,The Institute of Clinical Research and Translational MedicineGansu Provincial HospitalLanzhouChina
| | - Yonghong Li
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal TumorGansu Provincial HospitalLanzhouChina,The Institute of Clinical Research and Translational MedicineGansu Provincial HospitalLanzhouChina
| | - Guolan Kang
- Department of Endoscopic Diagnosis and Treatment CenterGansu Provincial HospitalLanzhouChina
| | - Yu Wu
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal TumorGansu Provincial HospitalLanzhouChina
| | - Jia Cheng
- Department of Endoscopic Diagnosis and Treatment CenterGansu Provincial HospitalLanzhouChina
| | - Jing Jia
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal TumorGansu Provincial HospitalLanzhouChina
| | - Wanxia Wang
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal TumorGansu Provincial HospitalLanzhouChina
| | - Zhenhao Li
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal TumorGansu Provincial HospitalLanzhouChina
| | - Anqi Wang
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal TumorGansu Provincial HospitalLanzhouChina
| | - Hui Xu
- The Institute of Clinical Research and Translational MedicineGansu Provincial HospitalLanzhouChina
| | - Yanjuan Jia
- The Institute of Clinical Research and Translational MedicineGansu Provincial HospitalLanzhouChina
| | - Yuanting Li
- The Institute of Clinical Research and Translational MedicineGansu Provincial HospitalLanzhouChina
| | - Xiaoming Qi
- The Institute of Clinical Research and Translational MedicineGansu Provincial HospitalLanzhouChina
| | - Zhenhong Wei
- The Institute of Clinical Research and Translational MedicineGansu Provincial HospitalLanzhouChina
| | - Chaojun Wei
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal TumorGansu Provincial HospitalLanzhouChina,The Institute of Clinical Research and Translational MedicineGansu Provincial HospitalLanzhouChina
| |
Collapse
|
15
|
Luo J, Zheng H, Wang S, Li D, Ma W, Wang L, Crabbe MJC. ABL1 and Cofilin1 promote T-cell acute lymphoblastic leukemia cell migration. Acta Biochim Biophys Sin (Shanghai) 2021; 53:1321-1332. [PMID: 34508625 DOI: 10.1093/abbs/gmab117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/15/2021] [Accepted: 08/07/2021] [Indexed: 11/13/2022] Open
Abstract
The fusion gene of ABL1 is closely related to tumor proliferation, invasion, and migration. It has been reported recently that ABL1 itself is required for T-cell acute lymphoblastic leukemia (T-ALL) cell migration induced by CXCL12. Further experiments revealed that ABL1 inhibitor Nilotinib inhibited leukemia cell migration induced by CXCL12, indicating the possible application of Nilotinib in T-ALL leukemia treatment. However, the interacting proteins of ABL1 and the specific mechanisms of their involvement in this process need further investigation. In the present study, ABL1 interacting proteins were characterized and their roles in the process of leukemia cell migration induced by CXCL12 were investigated. Co-immunoprecipitation in combination with mass spectrometry analysis identified 333 proteins that interact with ABL1, including Cofilin1. Gene ontology analysis revealed that many of them were enriched in the intracellular organelle or cytoplasm, including nucleic acid binding components, transfectors, or co-transfectors. Kyoto Encyclopedia of Genes and Genomes analysis showed that the top three enriched pathways were translation, glycan biosynthesis, and metabolism, together with human diseases. ABL1 and Cofilin1 were in the same complex. Cofilin1 binds the SH3 domain of ABL1 directly; however, ABL1 is not required for the phosphorylation of Cofilin1. Molecular docking analysis shows that ABL1 interacts with Cofilin1 mainly through hydrogen bonds and ionic interaction between amino acid residues. The mobility of leukemic cells was significantly decreased by Cofilin1 siRNA. These results demonstrate that Cofilin1 is a novel ABL1 binding partner. Furthermore, Cofilin1 participates in the migration of leukemia cells induced by CXCL12. These data indicate that ABL1 and Cofilin1 are possible targets for T-ALL treatment.
Collapse
Affiliation(s)
- Jixian Luo
- School of Life Sciences, Shanxi University, Taiyuan 030006, China
| | - Huiguang Zheng
- School of Life Sciences, Shanxi University, Taiyuan 030006, China
| | - Sen Wang
- School of Life Sciences, Shanxi University, Taiyuan 030006, China
| | - Dingyun Li
- School of Life Sciences, Shanxi University, Taiyuan 030006, China
| | - Wenli Ma
- School of Life Sciences, Shanxi University, Taiyuan 030006, China
| | - Lan Wang
- School of Life Sciences, Shanxi University, Taiyuan 030006, China
| | - M James C Crabbe
- School of Life Sciences, Shanxi University, Taiyuan 030006, China
- Wolfson College, University of Oxford, Oxford, Oxfordshire OX2 6UD, UK
- Institute of Biomedical and Environmental Science and Technology, University of Bedfordshire, University Square, Luton LU1 3JU, UK
| |
Collapse
|
16
|
Chisari A, Golán I, Campisano S, Gélabert C, Moustakas A, Sancho P, Caja L. Glucose and Amino Acid Metabolic Dependencies Linked to Stemness and Metastasis in Different Aggressive Cancer Types. Front Pharmacol 2021; 12:723798. [PMID: 34588983 PMCID: PMC8473699 DOI: 10.3389/fphar.2021.723798] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/20/2021] [Indexed: 12/26/2022] Open
Abstract
Malignant cells are commonly characterised by being capable of invading tissue, growing self-sufficiently and uncontrollably, being insensitive to apoptosis induction and controlling their environment, for example inducing angiogenesis. Amongst them, a subpopulation of cancer cells, called cancer stem cells (CSCs) shows sustained replicative potential, tumor-initiating properties and chemoresistance. These characteristics make CSCs responsible for therapy resistance, tumor relapse and growth in distant organs, causing metastatic dissemination. For these reasons, eliminating CSCs is necessary in order to achieve long-term survival of cancer patients. New insights in cancer metabolism have revealed that cellular metabolism in tumors is highly heterogeneous and that CSCs show specific metabolic traits supporting their unique functionality. Indeed, CSCs adapt differently to the deprivation of specific nutrients that represent potentially targetable vulnerabilities. This review focuses on three of the most aggressive tumor types: pancreatic ductal adenocarcinoma (PDAC), hepatocellular carcinoma (HCC) and glioblastoma (GBM). The aim is to prove whether CSCs from different tumour types share common metabolic requirements and responses to nutrient starvation, by outlining the diverse roles of glucose and amino acids within tumour cells and in the tumour microenvironment, as well as the consequences of their deprivation. Beyond their role in biosynthesis, they serve as energy sources and help maintain redox balance. In addition, glucose and amino acid derivatives contribute to immune responses linked to tumourigenesis and metastasis. Furthermore, potential metabolic liabilities are identified and discussed as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Andrea Chisari
- Department of Chemistry, School of Sciences, National University of Mar del Plata, Mar del Plata, Argentina
| | - Irene Golán
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Sabrina Campisano
- Department of Chemistry, School of Sciences, National University of Mar del Plata, Mar del Plata, Argentina
| | - Caroline Gélabert
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Aristidis Moustakas
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Patricia Sancho
- Translational Research Unit, Hospital Universitario Miguel Servet, IIS Aragon, Zaragoza, Spain
| | - Laia Caja
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Biomedical Center, Uppsala University, Uppsala, Sweden
| |
Collapse
|
17
|
Jog R, Chen G, Wang J, Leff T. Hormonal regulation of glycine decarboxylase and its relationship to oxidative stress. Physiol Rep 2021; 9:e14991. [PMID: 34342168 PMCID: PMC8329434 DOI: 10.14814/phy2.14991] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 01/16/2023] Open
Abstract
In both humans and rodent models, circulating glycine levels are significantly reduced in obesity, glucose intolerance, type II diabetes, and non-alcoholic fatty liver disease. The glycine cleavage system and its rate-limiting enzyme, glycine decarboxylase (GLDC), is a major determinant of plasma glycine levels. The goals of this study were to determine if the increased expression of GLDC contributes to the reduced plasma glycine levels seen in disease states, to characterize the hormonal regulation of GLDC gene expression, and to determine if altered GLDC expression has physiological effects that might affect the development of diabetes. The findings presented here show that hepatic GLDC gene expression is elevated in mouse models of obesity and diabetes, as well as by fasting. We demonstrated that GLDC gene expression is strongly regulated by the metabolic hormones glucagon and insulin, and we identified the signaling pathways involved in this regulation. Finally, we found that GLDC expression is linked to glutathione levels, with increased expression associated with elevated levels of glutathione and reduced expression associated with a suppression of glutathione and increased cellular ROS levels. These findings suggest that the hormonal regulation of GLDC contributes not only to the changes in circulating glycine levels seen in metabolic disease, but also affects glutathione production, possibly as a defense against metabolic disease-associated oxidative stress.
Collapse
Affiliation(s)
- Ruta Jog
- Department of PathologyCenter for Integrative Endocrine and Metabolic ResearchWayne State University School of MedicineDetroitMIUSA
| | - Guohua Chen
- Department of PathologyCenter for Integrative Endocrine and Metabolic ResearchWayne State University School of MedicineDetroitMIUSA
| | - Jian Wang
- Department of PathologyCenter for Integrative Endocrine and Metabolic ResearchWayne State University School of MedicineDetroitMIUSA
| | - Todd Leff
- Department of PathologyCenter for Integrative Endocrine and Metabolic ResearchWayne State University School of MedicineDetroitMIUSA
| |
Collapse
|
18
|
Kałuzińska Ż, Kołat D, Bednarek AK, Płuciennik E. PLEK2, RRM2, GCSH: A Novel WWOX-Dependent Biomarker Triad of Glioblastoma at the Crossroads of Cytoskeleton Reorganization and Metabolism Alterations. Cancers (Basel) 2021; 13:cancers13122955. [PMID: 34204789 PMCID: PMC8231639 DOI: 10.3390/cancers13122955] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/30/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma is one of the deadliest human cancers. Its malignancy depends on cytoskeleton reorganization, which is related to, e.g., epithelial-to-mesenchymal transition and metastasis. The malignant phenotype of glioblastoma is also affected by the WWOX gene, which is lost in nearly a quarter of gliomas. Although the role of WWOX in the cytoskeleton rearrangement has been found in neural progenitor cells, its function as a modulator of cytoskeleton in gliomas was not investigated. Therefore, this study aimed to investigate the role of WWOX and its collaborators in cytoskeleton dynamics of glioblastoma. Methodology on RNA-seq data integrated the use of databases, bioinformatics tools, web-based platforms, and machine learning algorithm, and the obtained results were validated through microarray data. PLEK2, RRM2, and GCSH were the most relevant WWOX-dependent genes that could serve as novel biomarkers. Other genes important in the context of cytoskeleton (BMP4, CCL11, CUX2, DUSP7, FAM92B, GRIN2B, HOXA1, HOXA10, KIF20A, NF2, SPOCK1, TTR, UHRF1, and WT1), metabolism (MTHFD2), or correlation with WWOX (COL3A1, KIF20A, RNF141, and RXRG) were also discovered. For the first time, we propose that changes in WWOX expression dictate a myriad of alterations that affect both glioblastoma cytoskeleton and metabolism, rendering new therapeutic possibilities.
Collapse
|
19
|
Sun J, He D, Fu Y, Zhang R, Guo H, Wang Z, Wang Y, Gao T, Wei Y, Guo Y, Pang Q, Liu Q. A novel lncRNA ARST represses glioma progression by inhibiting ALDOA-mediated actin cytoskeleton integrity. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:187. [PMID: 34099027 PMCID: PMC8183030 DOI: 10.1186/s13046-021-01977-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 05/09/2021] [Indexed: 12/03/2022]
Abstract
Background Glioma is one of the most aggressive malignant brain tumors that is characterized with inevitably infiltrative growth and poor prognosis. ARST is a novel lncRNA whose expression level is significantly decreased in the patients with glioblastoma multiforme. However, the exact mechanisms of ARST in gliomagenesis are largely unknown. Methods The expressions of ARST in the glioma samples and cell lines were analyzed by qRT-PCR. FISH was utilized to detect the distribution of ARST in the glioma cells. CCK-8, EdU and flow cytometry were used to examine cellular viability, proliferation and apoptosis. Transwell and wound-healing assays were performed to determine the migratory and invasive abilities of the cells. Intracranial tumorigenesis models were established to explore the roles of ARST in vivo. RNA pulldown assay was used to examine proteins that bound to ARST. The activities of key enzymes in the glycolysis and production of lactate acid were measured by colorimetry. In addition, RIP, Co-IP, western blot and immunofluorescence were used to investigate the interaction and regulation between ARST, F-actin, ALDOA and cofilin. Results In this study, we reported that ARST was downregulated in the gliomas. Overexpression of ARST in the glioma cells significantly suppressed various cellular vital abilities such as cell growth, proliferation, migration and invasion. The tumorigenic capacity of these cells in vivo was reduced as well. We further demonstrated that the tumor suppressive effects of ARST could be mediated by a direct binding to a glycolytic enzyme aldolase A (ALDOA), which together with cofilin, keeping the polymerization and depolymerization of actin filaments in an orderly dynamic equilibrium. Upregulation of ARST interrupted the interaction between ALDOA and actin cytoskeleton, which led to a rapid cofilin-dependent loss of F-actin stress fibers. Conclusions Taken together, it is concluded that ARST performs its function via a non-metabolic pathway associated with ALDOA, which otherwise modifies the morphology and invasive properties of the glioma cells. This has added new perspective to its role in tumorigenesis, thus providing potential target for glioma diagnosis, therapy, and prognosis. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-01977-9.
Collapse
Affiliation(s)
- Jun Sun
- Department of Neurosurgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China.,Department of Histology and Embryology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Dong He
- Department of Neurosurgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China.,Department of Histology and Embryology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Yibing Fu
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Rui Zhang
- Department of Neurosurgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Hua Guo
- Department of Neurosurgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Zhaojuan Wang
- Department of Physiology, Shandong Medical College, Jinan, 250012, Shandong, People's Republic of China
| | - Yanan Wang
- Department of Histology and Embryology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China.,Department of Pathology, Tai-an Municipal Hospital, Jinan, 250012, Shandong, People's Republic of China
| | - Taihong Gao
- Department of Neurosurgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Yanbang Wei
- Department of Histology and Embryology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Yuji Guo
- Department of Histology and Embryology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Qi Pang
- Department of Neurosurgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China.
| | - Qian Liu
- Department of Histology and Embryology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China.
| |
Collapse
|
20
|
Raj Rai S, Bhattacharyya C, Sarkar A, Chakraborty S, Sircar E, Dutta S, Sengupta R. Glutathione: Role in Oxidative/Nitrosative Stress, Antioxidant Defense, and Treatments. ChemistrySelect 2021. [DOI: 10.1002/slct.202100773] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Sristi Raj Rai
- Amity Institute of Biotechnology Amity University Kolkata 700135, W.B. India
| | | | - Anwita Sarkar
- Amity Institute of Biotechnology Amity University Kolkata 700135, W.B. India
| | - Surupa Chakraborty
- Amity Institute of Biotechnology Amity University Kolkata 700135, W.B. India
| | - Esha Sircar
- Amity Institute of Biotechnology Amity University Kolkata 700135, W.B. India
| | - Sreejita Dutta
- Amity Institute of Biotechnology Amity University Kolkata 700135, W.B. India
| | - Rajib Sengupta
- Amity Institute of Biotechnology Amity University Kolkata 700135, W.B. India
| |
Collapse
|
21
|
Xu J, Huang Y, Zhao J, Wu L, Qi Q, Liu Y, Li G, Li J, Liu H, Wu H. Cofilin: A Promising Protein Implicated in Cancer Metastasis and Apoptosis. Front Cell Dev Biol 2021; 9:599065. [PMID: 33614640 PMCID: PMC7890941 DOI: 10.3389/fcell.2021.599065] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022] Open
Abstract
Cofilin is an actin-binding protein that regulates filament dynamics and depolymerization. The over-expression of cofilin is observed in various cancers, cofilin promotes cancer metastasis by regulating cytoskeletal reorganization, lamellipodium formation and epithelial-to-mesenchymal transition. Clinical treatment of cancer regarding cofilin has been explored in aspects of tumor cells apoptosis and cofilin related miRNAs. This review addresses the structure and phosphorylation of cofilin and describes recent findings regarding the function of cofilin in regulating cancer metastasis and apoptosis in tumor cells.
Collapse
Affiliation(s)
- Jing Xu
- Yueyang Hospital of Integrative Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Huang
- Yueyang Hospital of Integrative Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jimeng Zhao
- Yueyang Hospital of Integrative Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Luyi Wu
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qin Qi
- Yueyang Hospital of Integrative Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanan Liu
- Yueyang Hospital of Integrative Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guona Li
- Yueyang Hospital of Integrative Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Li
- Yueyang Hospital of Integrative Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huirong Liu
- Yueyang Hospital of Integrative Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huangan Wu
- Yueyang Hospital of Integrative Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
22
|
Lewis JE, Forshaw TE, Boothman DA, Furdui CM, Kemp ML. Personalized Genome-Scale Metabolic Models Identify Targets of Redox Metabolism in Radiation-Resistant Tumors. Cell Syst 2021; 12:68-81.e11. [PMID: 33476554 PMCID: PMC7905848 DOI: 10.1016/j.cels.2020.12.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/04/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022]
Abstract
Redox cofactor production is integral toward antioxidant generation, clearance of reactive oxygen species, and overall tumor response to ionizing radiation treatment. To identify systems-level alterations in redox metabolism that confer resistance to radiation therapy, we developed a bioinformatics pipeline for integrating multi-omics data into personalized genome-scale flux balance analysis models of 716 radiation-sensitive and 199 radiation-resistant tumors. These models collectively predicted that radiation-resistant tumors reroute metabolic flux to increase mitochondrial NADPH stores and reactive oxygen species (ROS) scavenging. Simulated genome-wide knockout screens agreed with experimental siRNA gene knockdowns in matched radiation-sensitive and radiation-resistant cancer cell lines, revealing gene targets involved in mitochondrial NADPH production, central carbon metabolism, and folate metabolism that allow for selective inhibition of glutathione production and H2O2 clearance in radiation-resistant cancers. This systems approach represents a significant advancement in developing quantitative genome-scale models of redox metabolism and identifying personalized metabolic targets for improving radiation sensitivity in individual cancer patients.
Collapse
Affiliation(s)
- Joshua E. Lewis
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Tom E. Forshaw
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - David A. Boothman
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Cristina M. Furdui
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Melissa L. Kemp
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA,Corresponding Author: Correspondence:
| |
Collapse
|
23
|
Wang S, Chen J, Li H, Qi X, Liu X, Guo X. Metabolomic Detection Between Pancreatic Cancer and Liver Metastasis Nude Mouse Models Constructed by Using the PANC1-KAI1/CD 82 Cell Line. Technol Cancer Res Treat 2021; 20:15330338211045204. [PMID: 34605330 PMCID: PMC8493323 DOI: 10.1177/15330338211045204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Background: Pancreatic cancer (PC) has a poor prognosis and is prone to liver metastasis. The KAI1/CD82 gene inhibits PC metastasis. This study aimed to explore differential metabolites and enrich the pathways in serum samples between PC and liver metastasis nude mouse models stably expressing KAI1/CD82. Methods: KAI1/CD82-PLV-EF1α-MCS-IRES-Puro vector and PANC1 cell line stably expressing KAI1/CD82 were constructed for the first time. This cell line was used to construct 3 PC nude mouse models and 3 liver metastasis nude mouse models. The different metabolites and Kyoto encyclopedia of genes and genomes (KEGG) and human metabolome database (HMDB) enrichment pathways were analyzed using the serum samples of the 2 groups of nude mouse models on the basis of untargeted ultra-performance liquid chromatography-tandem mass spectrometry platform. Results: KAI1/CD82-PLV-EF1α-MCS-IRES-Puro vector and PANC1 cell line stably expressing KAI1/CD82 were constructed successfully, and all nude mouse models survived and developed cancers. Among the 1233 metabolites detected, 18 metabolites (9 upregulated and 9 downregulated) showed differences. In agreement with the literature data, the most significant differences between both groups were found in the levels of bile acids (taurocholic acid, chenodeoxycholic acid), glycine, prostaglandin E2, vitamin D, guanosine monophosphate, and inosine. Bile recreation, primary bile acid biosynthesis, and purine metabolism KEGG pathways and a series of HMDB pathways (P < .05) contained differential metabolites that may be associated with liver metastasis from PC. However, the importance of these metabolites on PC liver metastases remains to be elucidated. Conclusions: Our findings suggested that the metabolomic approach may be a useful method to detect potential biomarkers in PC.
Collapse
Affiliation(s)
- Shuo Wang
- General Hospital of Northern Theater Command of China Medical University, Shenyang, Liaoning Province, P.R. China
| | - Jiang Chen
- General Hospital of Northern Theater Command of China Medical University, Shenyang, Liaoning Province, P.R. China
| | - Hongyu Li
- General Hospital of Northern Theater Command of China Medical University, Shenyang, Liaoning Province, P.R. China
| | - Xingshun Qi
- General Hospital of Northern Theater Command of China Medical University, Shenyang, Liaoning Province, P.R. China
| | - Xu Liu
- General Hospital of Northern Theater Command of China Medical University, Shenyang, Liaoning Province, P.R. China
| | - Xiaozhong Guo
- General Hospital of Northern Theater Command of China Medical University, Shenyang, Liaoning Province, P.R. China
- Xiaozhong Guo, PhD, Department of Gastroenterology, General Hospital of Northern Theater Command of China Medical University, No. 83 Wenhua Road, Shenyang, 110840 Liaoning Province, China.
| |
Collapse
|
24
|
Xie Z, Wang F, Lin L, Duan S, Liu X, Li X, Li T, Xue M, Cheng Y, Ren H, Zhu Y. An SGLT2 inhibitor modulates SHH expression by activating AMPK to inhibit the migration and induce the apoptosis of cervical carcinoma cells. Cancer Lett 2020; 495:200-210. [PMID: 32931885 DOI: 10.1016/j.canlet.2020.09.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/21/2020] [Accepted: 09/04/2020] [Indexed: 02/07/2023]
Abstract
In addition to their hypoglycemic effect, sodium-glucose cotransporter 2 (SGLT2) inhibitors have many other benefits. In the present study, we examine the anticancer effect of the SGLT2 inhibitor empagliflozin using cervical carcinoma models. In vivo antitumor activities of empagliflozin were observed in a nude mouse model. Empagliflozin intervention and downregulation of Sonic Hedgehog Signaling Molecule (Shh) inhibited the migration and promoted the apoptosis of cervical cancer cells in nude mice. Compared with the control group, the empagliflozin treatment group had an increased level of AMP-activated protein kinase (AMPK) and decreased levels of Forkhead Box A1 (FOXA1) and SHH in tumor tissue. In vitro experiments also showed that empagliflozin (50 μM) inhibited the migration of cervical cancer cells and induced their apoptosis by activating the AMPK/FOXA1 pathway and inhibiting the expression of SHH. Kaplan-Meier survival analysis was used to determine the relationship between SHH expression and total survival time. The results showed that in cervical cancer patients, high SHH expression resulted in unfavorable overall survival. The downregulation of SHH with small interfering RNA (siRNA) inhibited the migration and invasion and promoted the apoptosis of HeLa cells. These findings show that empagliflozin has a potential therapeutic effect on cervical cancer. This effect was related to the activation of the AMPK pathway and the inhibition of SHH expression.
Collapse
Affiliation(s)
- Zipeng Xie
- Basic Medical College of Tianjin Medical University, 300070, Tianjin, China.
| | - Fang Wang
- The Second Hospital of Tianjin Medical University, 300211, Tianjin, China
| | - Lingqiang Lin
- Basic Medical College of Tianjin Medical University, 300070, Tianjin, China
| | - Shaoxian Duan
- Basic Medical College of Tianjin Medical University, 300070, Tianjin, China
| | - Xiangyang Liu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, 300070, Tianjin, China
| | - Xiaoyu Li
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, 300070, Tianjin, China
| | - Ting Li
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, 300070, Tianjin, China
| | - Mei Xue
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, 300070, Tianjin, China
| | - Ying Cheng
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, 300070, Tianjin, China
| | - He Ren
- Department of Gastroenterology, Center of Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, 266003, Qingdao, China.
| | - Yi Zhu
- Basic Medical College of Tianjin Medical University, 300070, Tianjin, China.
| |
Collapse
|
25
|
Dang Y, Jiang N, Wang H, Chen X, Gao Y, Zhang X, Qin G, Li Y, Chen R. Proto-Oncogene Serine/Threonine Kinase PIM3 Promotes Cell Migration via Modulating Rho GTPase Signaling. J Proteome Res 2020; 19:1298-1309. [PMID: 31994402 DOI: 10.1021/acs.jproteome.9b00821] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The proto-oncogene serine/threonine-protein kinase PIM3 plays critical roles in cancer, and it has been extensively exploited as a drug target. Here, we investigated the quantitative changes in the cellular proteome and phosphoproteome in liver cancer cells overexpressing PIM3 to obtain a better understanding of the regulatory functions of PIM3 and the underlying molecular mechanisms. This work depicted the landscape of gene expression and protein phosphorylation potentially regulated by PIM3. A signaling network analysis showed that PIM3 may coordinate various cellular processes, for example, signal transduction, cell cycle, apoptosis, and so forth. Intriguingly, quantitative phosphoproteomics revealed that the PIM3 overexpression elevated the phosphorylation of multiple Rho GTPase modulators that target RhoA, a central modulator of cell movement. Further investigations confirmed that PIM3 activated RhoA to subsequently regulate cytoskeletal rearrangements and cell migration. Taken together, this study comprehensively mapped the proteome and phosphoproteome regulated by PIM3 and revealed its role in promoting liver cancer cell migration and invasion by modulating Rho GTPase signaling.
Collapse
Affiliation(s)
- Yamei Dang
- Department of Pathogen Biology and Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Na Jiang
- Department of Pathogen Biology and Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China.,School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Hao Wang
- Department of Pathogen Biology and Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China.,School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Xuechun Chen
- Department of Pathogen Biology and Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Xiangyang Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Guoxuan Qin
- School of Microelectronics, Tianjin University, Tianjin 300072, China
| | - Yongmei Li
- Department of Pathogen Biology and Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Ruibing Chen
- Department of Pathogen Biology and Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China.,School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
26
|
Casadei-Gardini A, Del Coco L, Marisi G, Conti F, Rovesti G, Ulivi P, Canale M, Frassineti GL, Foschi FG, Longo S, Fanizzi FP, Giudetti AM. 1H-NMR Based Serum Metabolomics Highlights Different Specific Biomarkers between Early and Advanced Hepatocellular Carcinoma Stages. Cancers (Basel) 2020; 12:cancers12010241. [PMID: 31963766 PMCID: PMC7016798 DOI: 10.3390/cancers12010241] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/10/2020] [Accepted: 01/15/2020] [Indexed: 12/12/2022] Open
Abstract
The application of non-targeted serum metabolomics profiling represents a noninvasive tool to identify new clinical biomarkers and to provide early diagnostic differentiation, and insight into the pathological mechanisms underlying hepatocellular carcinoma (HCC) progression. In this study, we used proton Nuclear Magnetic Resonance (1H-NMR) Spectroscopy and multivariate data analysis to profile the serum metabolome of 64 HCC patients, in early (n = 28) and advanced (n = 36) disease stages. We found that 1H-NMR metabolomics profiling could discriminate early from advanced HCC patients with a cross-validated accuracy close to 100%. Orthogonal partial least squares discriminant analysis (OPLS-DA) showed significant changes in serum glucose, lactate, lipids and some amino acids, such as alanine, glutamine, 1-methylhistidine, lysine and valine levels between advanced and early HCC patients. Moreover, in early HCC patients, Kaplan-Meier analysis highlighted the serum tyrosine level as a predictor for overall survival (OS). Overall, our analysis identified a set of metabolites with possible clinical and biological implication in HCC pathophysiology.
Collapse
Affiliation(s)
- Andrea Casadei-Gardini
- Division of Medical Oncology, Department of Medical and Surgical Sciences for Children and Adults, University Hospital of Modena, 41125 Modena, Italy; (A.C.-G.); (G.R.)
| | - Laura Del Coco
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (L.D.C.); (S.L.); (A.M.G.)
| | - Giorgia Marisi
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (G.M.); (P.U.); (M.C.)
| | - Fabio Conti
- Department of Internal Medicine, Degli Infermi Hospital, 48018 Faenza, Italy; (F.C.); (F.G.F.)
| | - Giulia Rovesti
- Division of Medical Oncology, Department of Medical and Surgical Sciences for Children and Adults, University Hospital of Modena, 41125 Modena, Italy; (A.C.-G.); (G.R.)
| | - Paola Ulivi
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (G.M.); (P.U.); (M.C.)
| | - Matteo Canale
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (G.M.); (P.U.); (M.C.)
| | - Giovanni Luca Frassineti
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy;
| | | | - Serena Longo
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (L.D.C.); (S.L.); (A.M.G.)
| | - Francesco Paolo Fanizzi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (L.D.C.); (S.L.); (A.M.G.)
- Correspondence: ; Tel.: +39-0832-299265
| | - Anna Maria Giudetti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (L.D.C.); (S.L.); (A.M.G.)
| |
Collapse
|
27
|
Tian S, Feng J, Cao Y, Shen S, Cai Y, Yang D, Yan R, Wang L, Zhang H, Zhong X, Gao P. Glycine cleavage system determines the fate of pluripotent stem cells via the regulation of senescence and epigenetic modifications. Life Sci Alliance 2019; 2:2/5/e201900413. [PMID: 31562192 PMCID: PMC6765226 DOI: 10.26508/lsa.201900413] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 09/15/2019] [Accepted: 09/17/2019] [Indexed: 12/16/2022] Open
Abstract
The glycine cleavage system (GCS) is highly activated to promote stem cell pluripotency. The GCS catabolizes glycine to prevent methylglyoxal accumulation and to fuel H3K4me3 modification, promoting the expression of pluripotency genes. Metabolic remodelling has emerged as critical for stem cell pluripotency; however, the underlying mechanisms have yet to be fully elucidated. Here, we found that the glycine cleavage system (GCS) is highly activated to promote stem cell pluripotency and during somatic cell reprogramming. Mechanistically, we revealed that the expression of Gldc, a rate-limiting GCS enzyme regulated by Sox2 and Lin28A, facilitates this activation. We further found that the activated GCS catabolizes glycine to fuel H3K4me3 modification, thus promoting the expression of pluripotency genes. Moreover, the activated GCS helps to cleave excess glycine and prevents methylglyoxal accumulation, which stimulates senescence in stem cells and during reprogramming. Collectively, our results demonstrate a novel mechanism whereby GCS activation controls stem cell pluripotency by promoting H3K4me3 modification and preventing cellular senescence.
Collapse
Affiliation(s)
- Shengya Tian
- School of Medicine and Institutes for Life Sciences, South China University of Technology, Guangzhou, China.,Hefei National Laboratory for Physical Sciences at Microscale, The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Junru Feng
- Hefei National Laboratory for Physical Sciences at Microscale, The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Yang Cao
- Hefei National Laboratory for Physical Sciences at Microscale, The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Shengqi Shen
- Hefei National Laboratory for Physical Sciences at Microscale, The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Yongping Cai
- Department of Pathology, School of Medicine, Anhui Medical University, Hefei, China
| | - Dongdong Yang
- Hefei National Laboratory for Physical Sciences at Microscale, The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Ronghui Yan
- Hefei National Laboratory for Physical Sciences at Microscale, The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Lihua Wang
- Hefei National Laboratory for Physical Sciences at Microscale, The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Huafeng Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiuying Zhong
- School of Medicine and Institutes for Life Sciences, South China University of Technology, Guangzhou, China
| | - Ping Gao
- School of Medicine and Institutes for Life Sciences, South China University of Technology, Guangzhou, China .,Hefei National Laboratory for Physical Sciences at Microscale, The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| |
Collapse
|
28
|
Chen W, Zhang W, Wu R, Cai Y, Xue X, Cheng J. Identification of biomarkers associated with histological grade and prognosis of gastric cancer by co-expression network analysis. Oncol Lett 2019; 18:5499-5507. [PMID: 31612058 PMCID: PMC6781762 DOI: 10.3892/ol.2019.10869] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 08/23/2019] [Indexed: 12/11/2022] Open
Abstract
The biological characteristics and clinical outcomes of gastric cancer (GC) are largely dependent on the histopathological type and degree of differentiation. The identification of the molecular mechanisms underlying the histological grade of GC may provide information about tumorigenesis and tumor progression, and may subsequently be used to develop novel therapeutic agents. The present study obtained the RNA sequencing data and clinical characteristics of patients with GC from The Cancer Genome Atlas. A total of 1,400 differentially expressed genes (DEGs) were screened between two histological grades. Weighted gene co-expression network analysis (WGCNA) was subsequently used to identify nine co-expressed gene modules, and the black module was found to be the most significant for prognosis prediction of tumor. Additionally, the black module was associated with overall survival time, death event, N stage and tumor-node-metastasis (TNM) stage. Functional enrichment analysis revealed that the biological processes of the genes in the black module included ‘Wnt signaling pathway’ and ‘structural molecule activity’. Additionally, 10 network hub genes that were significantly associated with the progression of GC were identified from the black module, and the significance of each hub gene was determined across different TNM stages. Kaplan-Meier survival curves revealed that keratin 40 and glycine decarboxylase were significantly associated with patient prognosis (P<0.05), suggesting that these genes may serve as potential progression and prognosis biomarkers in GC. The present study identified molecular markers that correlated with histological grade in GC. Therefore, the results obtained in the present study may have important clinical implications on treatment selection, risk stratification and prognosis prediction in patients with GC.
Collapse
Affiliation(s)
- Wenjing Chen
- Department of General Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Weiteng Zhang
- Department of General Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Ruisen Wu
- Department of General Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Yiqi Cai
- Department of General Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Xiangyang Xue
- Department of Microbiology and Immunology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Jun Cheng
- Department of General Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| |
Collapse
|
29
|
Zhuang H, Qiang Z, Shao X, Wang H, Dang Y, Wang Z, Wu F, Wei W, Li Y. Integration of metabolomics and expression of enolase-phosphatase 1 links to hepatocellular carcinoma progression. Theranostics 2019; 9:3639-3652. [PMID: 31281503 PMCID: PMC6587162 DOI: 10.7150/thno.31693] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 04/19/2019] [Indexed: 02/07/2023] Open
Abstract
Reprogramming of cellular metabolism is one of the hallmarks for cancer, in which tumor cells rewire their metabolic fluxes to generate sufficient energy and biosynthetic intermediates. Therefore, elucidating the correlation between cellular metabolism and hepatocellular carcinoma (HCC) progression may provide insights into novel approaches to cancer therapy. Methods: We assembled an integrated pathway-level metabolic profiling by mining metabolomic, transcriptomic and proteomic data of three HCC cell lines with increasing metastatic potentials. Immunohistochemical staining was performed in a tissue microarray from 185 HCC clinical specimens. Kaplan-Meier survival and Cox regression analyses were applied to test the association between gene expression and survival outcome. In vitro assays were conducted to investigate the functional role of enolase-phosphatase 1 (ENOPH1) in HCC malignant behaviors. Reversed genetics analysis was performed to determine the function of ENOPH1 in HCC metastasis. An intrahepatic mouse model further confirmed the role of ENOPH1 in metastasis. Results: We have determined that HCC cell metastasis is associated with alterations in metabolite levels and expressions of metabolic enzymes in the cysteine/methionine metabolism pathway, and show that one of metabolic enzymes, enolase-phosphatase 1 (ENOPH1), is persistently upregulated with an increase in metastatic potential. The upregulation of ENOPH1 expression was observed as an independent prognostic factor for HCC patients. ENOPH1 overexpression promoted cell migration and invasion, whereas ENOPH1 downregulation inhibited cell migration and invasion. Furthermore, an enhanced phosphorylation of AKT with ENOPH1 upregulation was observed. ENOPH1-mediated malignant capacity in HCC cells can be rescued by an AKT inhibitor. Conclusion: Taken together, our findings illustrate that ENOPH1 promotes HCC progression and could serve as a novel biomarker and therapeutic target for HCC.
Collapse
Affiliation(s)
- Hao Zhuang
- Department of Hepatic Biliary Pancreatic Surgery, Cancer Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan Province 450000, China
- Department of Pathogen Biology, School of Basic Medical Sciences, Key Lab of Immune Microenvironment and Disease (Ministry of Education) Tianjin Medical University, Tianjin 300070, China
| | - Zhaoyan Qiang
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xiaowen Shao
- Department of Pathogen Biology, School of Basic Medical Sciences, Key Lab of Immune Microenvironment and Disease (Ministry of Education) Tianjin Medical University, Tianjin 300070, China
| | - Huan Wang
- School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Yamei Dang
- Department of Pathogen Biology, School of Basic Medical Sciences, Key Lab of Immune Microenvironment and Disease (Ministry of Education) Tianjin Medical University, Tianjin 300070, China
| | - Zun Wang
- Department of Pathogen Biology, School of Basic Medical Sciences, Key Lab of Immune Microenvironment and Disease (Ministry of Education) Tianjin Medical University, Tianjin 300070, China
| | - Fei Wu
- Department of Pathogen Biology, School of Basic Medical Sciences, Key Lab of Immune Microenvironment and Disease (Ministry of Education) Tianjin Medical University, Tianjin 300070, China
| | - Wen Wei
- School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Yongmei Li
- Department of Pathogen Biology, School of Basic Medical Sciences, Key Lab of Immune Microenvironment and Disease (Ministry of Education) Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
30
|
Zhuang H, Wu F, Wei W, Dang Y, Yang B, Ma X, Han F, Li Y. Glycine decarboxylase induces autophagy and is downregulated by miRNA-30d-5p in hepatocellular carcinoma. Cell Death Dis 2019; 10:192. [PMID: 30804330 PMCID: PMC6389915 DOI: 10.1038/s41419-019-1446-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 02/07/2023]
Abstract
Glycine decarboxylase (GLDC) belongs to the glycine cleavage system and is involved in one-carbon metabolism. We previously reported that GLDC downregulation enhances hepatocellular carcinoma (HCC) progression and intrahepatic metastasis through decreasing ROS-mediated ubiquitination of cofilin. The role of autophagy in cancer metastasis is still controversial. Redox-dependent autophagy largely relies on the magnitude and the rate of ROS generation. Thus, we aimed to explore the role of GLDC in cellular autophagy during HCC progression. We showed that a high GLDC expression level is associated with better overall survival and is an independent factor for the favorable prognosis of HCC patients. GLDC overexpression significantly induced cell autophagy, whereas GLDC downregulation reduced cell autophagy. Of note, GLDC is the post-transcriptional target of miR-30d-5p. GLDC overexpression could rescue miR-30d-5p-mediated cell metastasis and increase autophagy. Furthermore, upregulation of GLDC could significantly decrease p62 expression and impair intrahepatic metastasis in vivo. Taken together, our results suggest that GLDC may play an important role to increasing miR-30d-5p-reduced autophagy to suppress HCC progress.
Collapse
Affiliation(s)
- Hao Zhuang
- Department of Hepatic Biliary Pancreatic Surgery, Cancer Hospital Affiliated to Zhengzhou University, Zhengzhou, 450000, Henan Province, China.,Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
| | - Fei Wu
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
| | - Wen Wei
- School of Life Sciences, Chongqing University, 400044, Chongqing, China
| | - Yamei Dang
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
| | - Baicai Yang
- Department of Gynaecology and Obstetrics, Jiaxing Maternity and Child Health Care Hospital, Jiaxing, Zhejiang Province, China
| | - Xuda Ma
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
| | - Feng Han
- Department of Hepatic Biliary Pancreatic Surgery, Cancer Hospital Affiliated to Zhengzhou University, Zhengzhou, 450000, Henan Province, China.
| | - Yongmei Li
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China.
| |
Collapse
|
31
|
Chen G, Wu J, Li J, Wang J. Identification and Characterization of Glycine Decarboxylase as a Direct Target of Snail in the Epithelial-Mesenchymal Transition of Cancer Cells. ACTA ACUST UNITED AC 2019; 1:55-62. [PMID: 33869785 PMCID: PMC8049539 DOI: 10.4103/tme.tme_8_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Context/Aims: Metabolic reprogramming and cellular plasticity drive tumorigenesis. However, how these cellular events collectively contribute to the oncogenic process is poorly understood. Epithelial-mesenchymal transition (EMT), a fundamental mechanism of cellular plasticity, is governed by the EMT transcription repressors such as Snail. In the present study, through establishment and characterization of inducible overexpression of Snail in A549 lung cancer cells, we aim to define the metabolic reprogramming in response to Snail in the EMT of lung cancer cells. Methods/Results: Our metabolomic analysis suggests that forced expression of Snail accompanied reduced diversion of glycolytic metabolites to the serine/glycine metabolic shunt, a critical metabolic branch that distributes glucose catabolic intermediates to the major anabolic pathways. Our gene expression profiling and molecular characterization revealed that Snail actively suppressed the expression of glycine decarboxylase (GLDC), a key enzyme on the serine/glycine metabolic shunt, through binding to an evolutionarily conserved E-box motif and thereby inhibiting the promoter of the GLDC gene. Besides, knockdown of GLDC led to a cellular function shift from proliferation to migration. Conclusion: This study has revealed a novel molecular link that integrates the serine/glycine metabolism with the Snail-mediated EMT program in cancer cells.
Collapse
Affiliation(s)
- Guohua Chen
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jianmei Wu
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jing Li
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jian Wang
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI, USA.,Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|