1
|
Pires CL, Moreno MJ. Improving the Accuracy of Permeability Data to Gain Predictive Power: Assessing Sources of Variability in Assays Using Cell Monolayers. MEMBRANES 2024; 14:157. [PMID: 39057665 PMCID: PMC11278619 DOI: 10.3390/membranes14070157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/05/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024]
Abstract
The ability to predict the rate of permeation of new compounds across biological membranes is of high importance for their success as drugs, as it determines their efficacy, pharmacokinetics, and safety profile. In vitro permeability assays using Caco-2 monolayers are commonly employed to assess permeability across the intestinal epithelium, with an extensive number of apparent permeability coefficient (Papp) values available in the literature and a significant fraction collected in databases. The compilation of these Papp values for large datasets allows for the application of artificial intelligence tools for establishing quantitative structure-permeability relationships (QSPRs) to predict the permeability of new compounds from their structural properties. One of the main challenges that hinders the development of accurate predictions is the existence of multiple Papp values for the same compound, mostly caused by differences in the experimental protocols employed. This review addresses the magnitude of the variability within and between laboratories to interpret its impact on QSPR modelling, systematically and quantitatively assessing the most common sources of variability. This review emphasizes the importance of compiling consistent Papp data and suggests strategies that may be used to obtain such data, contributing to the establishment of robust QSPRs with enhanced predictive power.
Collapse
Affiliation(s)
- Cristiana L. Pires
- Coimbra Chemistry Center—Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal
- Chemistry Department, Faculty of Science and Technology, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Maria João Moreno
- Coimbra Chemistry Center—Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal
- Chemistry Department, Faculty of Science and Technology, University of Coimbra, 3004-535 Coimbra, Portugal
| |
Collapse
|
2
|
Júnior MA, Silva LC, Rocha OB, Oliveira AA, Portis IG, Alonso A, Alonso L, Silva KS, Gomes MN, Andrade CH, Soares CM, Pereira M. Proteomic identification of metabolic changes in Paracoccidioides brasiliensis induced by a nitroheteroarylchalcone. Future Microbiol 2023; 18:1077-1093. [PMID: 37424510 DOI: 10.2217/fmb-2022-0150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023] Open
Abstract
Aim: To access the metabolic changes caused by a chalcone derivative (LabMol-75) through a proteomic approach. Methods: Proteomic analysis was performed after 9 h of Paracoccidioides brasiliensis yeast (Pb18) cell incubation with the LabMol-75 at MIC. The proteomic findings were validated through in vitro and in silico assays. Results: Exposure to the compound led to the downregulation of proteins associated with glycolysis and gluconeogenesis, β-oxidation, the citrate cycle and the electron transport chain. Conclusion: LabMol-75 caused an energetic imbalance in the fungus metabolism and deep oxidative stress. Additionally, the in silico molecular docking approach pointed to this molecule as a putative competitive inhibitor of DHPS.
Collapse
Affiliation(s)
- Marcos Abc Júnior
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Lívia C Silva
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Olivia B Rocha
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Amanda A Oliveira
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Igor G Portis
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Antonio Alonso
- Institute of Physics, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Lais Alonso
- Institute of Physics, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Kleber Sf Silva
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Marcelo N Gomes
- InsiChem, Goiás State University, Anápolis, Goiás, Brazil
- Faculdade Metropolitana de Anápolis, Anápolis, Goiás, Brazil
| | - Carolina H Andrade
- Laboratory for Molecular Modeling & Drug Design, Faculty of Pharmacy, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Célia Ma Soares
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Maristela Pereira
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| |
Collapse
|
3
|
Firsov AM, Pfeffermann J, Benditkis AS, Rokitskaya TI, Kozlov AS, Kotova EA, Krasnovsky AA, Pohl P, Antonenko YN. Photodynamic activity rather than drilling causes membrane damage by a light-powered molecular nanomotor. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 239:112633. [PMID: 36608401 DOI: 10.1016/j.jphotobiol.2022.112633] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/08/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
The chase toward endowing chemical compounds with machine-like functions mimicking those of biological molecular machineries has yielded a variety of artificial molecular motors (AMMs). Pharmaceutical applications of photoexcited monomolecular unidirectionally-rotating AMMs have been envisioned in view of their ability to permeabilize biological membranes. Nonetheless, the mechanical properties of lipid membranes render the proposed drilling activity of AMMs doubtful. Here, we show that singlet oxygen released by a photoexcited "molecular drill" oxidized unsaturated lipids composing giant unilamellar vesicles. In contrast, giant liposomes built of saturated lipids were inert to AMM photoactuation. The AMM did not mechanically destroy gramicidin A ion channels in planar bilayer lipid membranes but instead photoinactivated them. Sodium azide, a singlet oxygen quencher, reduced both AMM-mediated light-induced dye release from unsaturated large unilamellar vesicles and protected gramicidin A from photoinactivation. Upon additional consideration of the underlying bilayer mechanics, we conclude that AMMs' envisioned therapeutic and pharmaceutical applications rely on their photodynamic activity rather than their nanomechanical drilling abilities.
Collapse
Affiliation(s)
- Alexander M Firsov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Juergen Pfeffermann
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstraße 40, 4020 Linz, Austria
| | - Anton S Benditkis
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia
| | - Tatyana I Rokitskaya
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Anton S Kozlov
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia
| | - Elena A Kotova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Alexander A Krasnovsky
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia
| | - Peter Pohl
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstraße 40, 4020 Linz, Austria.
| | - Yuri N Antonenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia.
| |
Collapse
|
4
|
Membrane Lipid Reshaping Underlies Oxidative Stress Sensing by the Mitochondrial Proteins UCP1 and ANT1. Antioxidants (Basel) 2022; 11:antiox11122314. [PMID: 36552523 PMCID: PMC9774536 DOI: 10.3390/antiox11122314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
Oxidative stress and ROS are important players in the pathogenesis of numerous diseases. In addition to directly altering proteins, ROS also affects lipids with negative intrinsic curvature such as phosphatidylethanolamine (PE), producing PE adducts and lysolipids. The formation of PE adducts potentiates the protonophoric activity of mitochondrial uncoupling proteins, but the molecular mechanism remains unclear. Here, we linked the ROS-mediated change in lipid shape to the mechanical properties of the membrane and the function of uncoupling protein 1 (UCP1) and adenine nucleotide translocase 1 (ANT1). We show that the increase in the protonophoric activity of both proteins occurs due to the decrease in bending modulus in lipid bilayers in the presence of lysophosphatidylcholines (OPC and MPC) and PE adducts. Moreover, MD simulations showed that modified PEs and lysolipids change the lateral pressure profile of the membrane in the same direction and by the similar amplitude, indicating that modified PEs act as lipids with positive intrinsic curvature. Both results indicate that oxidative stress decreases stored curvature elastic stress (SCES) in the lipid bilayer membrane. We demonstrated that UCP1 and ANT1 sense SCES and proposed a novel regulatory mechanism for the function of these proteins. The new findings should draw the attention of the scientific community to this important and unexplored area of redox biochemistry.
Collapse
|
5
|
Reis A, Teixeira JPF, Silva AMG, Ferreira M, Gameiro P, de Freitas V. Modelling Hyperglycaemia in an Epithelial Membrane Model: Biophysical Characterisation. Biomolecules 2022; 12:biom12101534. [PMID: 36291743 PMCID: PMC9599690 DOI: 10.3390/biom12101534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
Biomimetic models are valuable platforms to improve our knowledge on the molecular mechanisms governing membrane-driven processes in (patho)physiological conditions, including membrane permeability, transport, and fusion. However, current membrane models are over simplistic and do not include the membrane’s lipid remodelling in response to extracellular stimuli. Our study describes the synthesis of glycated dimyristoyl-phosphatidylethanolamine (DMPE-glyc), which was structurally characterised by mass spectrometry (ESI-MS) and quantified by NMR spectroscopy to be further incorporated in a complex phospholipid (PL) membrane model enriched in cholesterol (Chol) and (glyco)sphingolipids (GSL) designed to mimic epithelial membranes (PL/Chol/GSL) under hyperglycaemia conditions. Characterisation of synthesised DMPE-glyc adducts by tandem mass spectrometry (ESI-MS/MS) show that synthetic DMPE-glyc adducts correspond to Amadori products and quantification by 1H NMR spectroscopy show that the yield of glycation reaction was 8%. The biophysical characterisation of the epithelial membrane model shows that excess glucose alters the thermotropic behaviour and fluidity of epithelial membrane models likely to impact permeability of solutes. The epithelial membrane models developed to mimic normo- and hyperglycaemic scenarios are the basis to investigate (poly)phenol-lipid and drug–membrane interactions crucial in nutrition, pharmaceutics, structural biochemistry, and medicinal chemistry.
Collapse
|
6
|
Sauerland MB, Davies MJ. Electrophile versus oxidant modification of cysteine residues: Kinetics as a key driver of protein modification. Arch Biochem Biophys 2022; 727:109344. [PMID: 35777524 DOI: 10.1016/j.abb.2022.109344] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/09/2022] [Accepted: 06/26/2022] [Indexed: 01/27/2023]
Abstract
Humans have widespread exposure to both oxidants, and soft electrophilic compounds such as alpha,beta-unsaturated aldehydes and quinones. Electrophilic motifs are commonly found in a drugs, industrial chemicals, pollutants and are also generated via oxidant-mediated degradation of biomolecules including lipids (e.g. formation of 4-hydroxynonenal, 4-hydroxyhexenal, prostaglandin J2). All of these classes of compounds react efficiently with Cys residues, and the particularly the thiolate anion, with this resulting in Cys modification via either oxidation or adduct formation. This can result in deleterious or beneficial effects, that are either reversible (e.g. in cell signalling) or irreversible (damaging). For example, acrolein is a well-established toxin, whereas dimethylfumarate is used in the treatment of multiple sclerosis and psoriasis. This short review discusses the targets of alpha,beta-unsaturated aldehydes, and particularly two prototypic cases, acrolein and dimethylfumarate, and the factors that control the selectivity and kinetics of reaction of these species. Comparison is made between the reactivity of oxidants versus soft electrophiles. These rate constants indicate that electrophiles can be significant thiol modifying agents in some situations, as they have rate constants similar to or greater than species such as H2O2, can be present at higher concentrations, and are less efficiently removed by protective systems when compared to H2O2. They may also induce similar or higher levels of modification than highly reactive oxidants, due to the very low concentrations of oxidants formed in most in vivo situations.
Collapse
Affiliation(s)
- Max B Sauerland
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark.
| |
Collapse
|
7
|
Alonso L, Dorta ML, Alonso A. Ivermectin and curcumin cause plasma membrane rigidity in Leishmania amazonensis due to oxidative stress. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183977. [PMID: 35654148 DOI: 10.1016/j.bbamem.2022.183977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/18/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Spin label electron paramagnetic resonance (EPR) spectroscopy was used to study the mechanisms of action of ivermectin and curcumin against Leishmania (L.) amazonensis promastigotes. EPR spectra showed that treatment of the parasites with both compounds results in plasma membrane rigidity due to oxidative processes. With the IC50 and EPR measurements for assays using different parasite concentrations, estimations could be made for the membrane-water partition coefficient (KM/W), and the concentration of the compound in the membrane (cm50) and in the aqueous phase (cw50), which inhibits cell growth by 50%. The KM/W values indicated that ivermectin has a greater affinity than curcumin for the parasite membrane. Therefore, the activity of ivermectin was higher for experiments with low cell concentrations, but for concentrations greater than 1.5 × 108 parasites/mL the compounds did not show significantly different results. The cm50 values indicated that the concentration of compound in the membrane leading to growth inhibition or membrane alteration is approximately 1 M for both ivermectin and curcumin. This high membrane concentration suggests that many ivermectin molecules per chlorine channel are needed to cause an increase in chlorine ion influx.
Collapse
Affiliation(s)
- Lais Alonso
- Instituto de Física, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Miriam Leandro Dorta
- Instituto de Patologia Tropical e Saúde Publica, Departamento de Imunologia e Patologia Geral, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Antonio Alonso
- Instituto de Física, Universidade Federal de Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
8
|
Alonso L, Menegatti R, Dorta ML, Alonso A. Plasma membrane rigidity effects of 4-hydroxy-2-nonenal in Leishmania, erythrocyte and macrophage. Toxicol In Vitro 2021; 79:105294. [PMID: 34896601 DOI: 10.1016/j.tiv.2021.105294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 10/19/2022]
Abstract
4-hydroxy-2-nonenal (HNE) is a reactive aldehyde produced by cells under conditions of oxidative stress, which has been shown to react with proteins and phosphatidylethanolamine in biological membranes. Using electron paramagnetic resonance (EPR) spectroscopy of a spin label it was demonstrated that 2 h of treatment with HNE causes membrane rigidity in promastigotes of Leishmania (L.) amazonensis, J774.A1 macrophages and erythrocytes. Remarkable fluidity-reducing effects on the parasite membrane were observed at HNE concentrations approximately 4-fold lower than in the case of erythrocyte and macrophage membranes. Autofluorescence of the parasites in PBS suspension (1 × 107 cell/mL) with excitation at 354 nm showed a linear increase of intensity in the range of 400 to 600 nm over 3 h after treatment with 30 μM HNE. Parasite ghosts prepared after this period of HNE treatment showed a high degree of membrane rigidity. Bovine serum albumin (BSA) in PBS treated with HNE for 2 h showed an increase in molecular dynamics and suffered a decrease in its ability to bind a lipid probe. In addition, the antiproliferative activity of L. amazonensis promastigotes, macrophage cytotoxicity and hemolytic potential were assessed for HNE. An IC50 of 24 μM was found, which was a concentration > 10 times lower than the cytotoxic and hemolytic concentrations of HNE. These results indicate that the action of HNE has high selectivity indices for the parasite as opposed to the macrophage and erythrocyte.
Collapse
Affiliation(s)
- Lais Alonso
- Institute of Physics, Federal University of Goiás, Goiânia, GO, Brazil
| | - Ricardo Menegatti
- Medical Pharmaceutical Chemistry Laboratory, Faculty of Pharmacy, Federal University of Goiás, Goiânia, GO, Brazil
| | - Miriam Leandro Dorta
- Institute of Tropical Pathology and Public Health, Department of Immunology and General Pathology, Federal University of Goiás, Goiânia, GO, Brazil
| | - Antonio Alonso
- Institute of Physics, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
9
|
Reyes-Jiménez E, Ramírez-Hernández AA, Santos-Álvarez JC, Velázquez-Enríquez JM, Pina-Canseco S, Baltiérrez-Hoyos R, Vásquez-Garzón VR. Involvement of 4-hydroxy-2-nonenal in the pathogenesis of pulmonary fibrosis. Mol Cell Biochem 2021; 476:4405-4419. [PMID: 34463938 DOI: 10.1007/s11010-021-04244-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 08/12/2021] [Indexed: 01/19/2023]
Abstract
Pulmonary fibrosis is a chronic progressive disease with high incidence, prevalence, and mortality rates worldwide. It is characterized by excessive accumulation of extracellular matrix in the lung parenchyma. The cellular and molecular mechanisms involved in its pathogenesis are complex, and some are still unknown. Several studies indicate that oxidative stress, characterized by overproduction of 4-hydroxy-2-nonenal (4-HNE), is an important player in pulmonary fibrosis. 4-HNE is a highly reactive compound derived from polyunsaturated fatty acids that can react with proteins, phospholipids, and nucleic acids. Thus, many of the altered cellular mechanisms that contribute to this disease can be explained by the participation of 4-HNE. Here, we summarize the current knowledge on the molecular states and signal transduction pathways that contribute to the pathogenesis of pulmonary fibrosis. Furthermore, we describe the participation of 4-HNE in various mechanisms involved in pulmonary fibrosis development, with a focus on the cell populations involved in the initiation, development, and maintenance of the fibrotic process, mainly alveolar cells, endothelial cells, macrophages, and inflammatory cells. Due to its characteristic activity as a second messenger, 4-HNE, in addition to being a consequence of oxidative stress, can support maintenance of the inflammatory and fibrotic process by spreading the effects of reactive oxygen species (ROS). Thus, regulation of 4-HNE levels could be a viable strategy to reduce its effects on the mechanisms involved in pulmonary fibrosis development.
Collapse
Affiliation(s)
- Edilburga Reyes-Jiménez
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
| | - Alma Aurora Ramírez-Hernández
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
| | - Jovito Cesar Santos-Álvarez
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
| | - Juan Manuel Velázquez-Enríquez
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
| | | | - Rafael Baltiérrez-Hoyos
- CONACYT-Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
| | | |
Collapse
|
10
|
Antileishmanial activity of the chalcone derivative LQFM064 associated with reduced fluidity in the parasite membrane as assessed by EPR spectroscopy. Eur J Pharm Sci 2020; 151:105407. [DOI: 10.1016/j.ejps.2020.105407] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/18/2020] [Accepted: 05/30/2020] [Indexed: 12/11/2022]
|
11
|
Kopecka J, Trouillas P, Gašparović AČ, Gazzano E, Assaraf YG, Riganti C. Phospholipids and cholesterol: Inducers of cancer multidrug resistance and therapeutic targets. Drug Resist Updat 2020; 49:100670. [DOI: 10.1016/j.drup.2019.100670] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/14/2019] [Accepted: 11/17/2019] [Indexed: 12/13/2022]
|
12
|
Pohl EE, Jovanovic O. The Role of Phosphatidylethanolamine Adducts in Modification of the Activity of Membrane Proteins under Oxidative Stress. Molecules 2019; 24:E4545. [PMID: 31842328 PMCID: PMC6943717 DOI: 10.3390/molecules24244545] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/11/2022] Open
Abstract
Reactive oxygen species (ROS) and their derivatives, reactive aldehydes (RAs), have been implicated in the pathogenesis of many diseases, including metabolic, cardiovascular, and inflammatory disease. Understanding how RAs can modify the function of membrane proteins is critical for the design of therapeutic approaches in the above-mentioned pathologies. Over the last few decades, direct interactions of RA with proteins have been extensively studied. Yet, few studies have been performed on the modifications of membrane lipids arising from the interaction of RAs with the lipid amino group that leads to the formation of adducts. It is even less well understood how various multiple adducts affect the properties of the lipid membrane and those of embedded membrane proteins. In this short review, we discuss a crucial role of phosphatidylethanolamine (PE) and PE-derived adducts as mediators of RA effects on membrane proteins. We propose potential PE-mediated mechanisms that explain the modulation of membrane properties and the functions of membrane transporters, channels, receptors, and enzymes. We aim to highlight this new area of research and to encourage a more nuanced investigation of the complex nature of the new lipid-mediated mechanism in the modification of membrane protein function under oxidative stress.
Collapse
Affiliation(s)
- Elena E. Pohl
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna A-1210, Austria
| | - Olga Jovanovic
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna A-1210, Austria
| |
Collapse
|