1
|
Zhuang Z, Huang S, Zhang X, Han X, Hua M, Liang Z, Lou N, Lv L, Zheng F, Zhang L, Liu X, Yu S, Chen S, Zhuang X. Lipin1 ameliorates cognitive ability of diabetic encephalopathy via regulating Ca 2+ transfer through mitochondria-associated endoplasmic reticulum membranes. Int Immunopharmacol 2025; 150:114266. [PMID: 39961213 DOI: 10.1016/j.intimp.2025.114266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/28/2025] [Accepted: 02/06/2025] [Indexed: 03/03/2025]
Abstract
Diabetic encephalopathy (DE) is a common central nervous system complication resulting from diabetes mellitus (DM). While the exact pathogenesis remains unclear, a homeostatic imbalance of mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs) within neurons has been shown to be closely associated with the dysfunctional cognitive pathology of this condition. Our previous work has revealed that phosphatidate phosphatase Lipin1 plays a critical role in the cognitive processes of DE via regulating mitochondrial function. In this study, we reported that the integrity of neuronal MAMs was disrupted in DE mice, which was accompanied by a decrease in the expression of hippocampal Lipin1. With a knock-down of hippocampal Lipin1 in normal mice, ER stress was induced, MAMs structures were impaired and Ca2+ transfer was suppressed. Such effects resulted in mitochondrial dysfunction, synaptic plasticity impairments, and finally cognitive dysfunctions. In contrast, an up-regulation of hippocampal Lipin1 in the DE model partially alleviated these dysfunctions. These results suggest that Lipin1 may ameliorate the cognitive dysfunctions associated with DE via regulating Ca2+ transfers through MAMs. Therefore, targeting Lipin1 may serve as a therapeutic strategy for the clinical treatment of DE.
Collapse
Affiliation(s)
- Ziyun Zhuang
- Department of Endocrinology and Metabolism, The Second Hospital of Shandong University, Jinan 250033, China; Department of Endocrinology and Metabolism, The First People's Hospital of Jinan, Jinan 250011, China
| | - Shan Huang
- Department of Endocrinology and Metabolism, The Second Hospital of Shandong University, Jinan 250033, China
| | - Xiaochen Zhang
- Department of Clinical Medicine, Heze Medical College, Heze 274009, China
| | - Xiaolin Han
- Department of Endocrinology and Metabolism, The Second Hospital of Shandong University, Jinan 250033, China
| | - Mengyu Hua
- Department of Endocrinology and Metabolism, The Second Hospital of Shandong University, Jinan 250033, China
| | - Zhonghao Liang
- Department of Endocrinology and Metabolism, The Second Hospital of Shandong University, Jinan 250033, China
| | - Nengjun Lou
- Department of Endocrinology and Metabolism, The Second Hospital of Shandong University, Jinan 250033, China; Multidisciplinary Innovation Center for Nephrology of the Second Hospital of Shandong University, Jinan 250033, China
| | - Li Lv
- Department of Endocrinology and Metabolism, The Second Hospital of Shandong University, Jinan 250033, China; Multidisciplinary Innovation Center for Nephrology of the Second Hospital of Shandong University, Jinan 250033, China
| | - Fengjie Zheng
- Department of Endocrinology and Metabolism, The Second Hospital of Shandong University, Jinan 250033, China; Multidisciplinary Innovation Center for Nephrology of the Second Hospital of Shandong University, Jinan 250033, China
| | - Liang Zhang
- Department of Endocrinology and Metabolism, The Second Hospital of Shandong University, Jinan 250033, China; Multidisciplinary Innovation Center for Nephrology of the Second Hospital of Shandong University, Jinan 250033, China
| | - Xiaojing Liu
- Department of Endocrinology and Metabolism, The Second Hospital of Shandong University, Jinan 250033, China.
| | - Shuyan Yu
- Department of Endocrinology and Metabolism, The Second Hospital of Shandong University, Jinan 250033, China; Department of Physiology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.
| | - Shihong Chen
- Department of Endocrinology and Metabolism, The Second Hospital of Shandong University, Jinan 250033, China; Multidisciplinary Innovation Center for Nephrology of the Second Hospital of Shandong University, Jinan 250033, China.
| | - Xianghua Zhuang
- Department of Endocrinology and Metabolism, The Second Hospital of Shandong University, Jinan 250033, China; Multidisciplinary Innovation Center for Nephrology of the Second Hospital of Shandong University, Jinan 250033, China.
| |
Collapse
|
2
|
Chen Y, Yin N, Jin S, Yang L, He Y, Guo L, Feng M. ROS fueled autonomous sol-gel-sol transitions for on-demand modulation of inflammation in osteoarthritis. J Control Release 2025; 379:1006-1021. [PMID: 39880042 DOI: 10.1016/j.jconrel.2025.01.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/17/2024] [Accepted: 01/26/2025] [Indexed: 01/31/2025]
Abstract
Osteoarthritis is the most prevalent form of arthritis, and a leading cause of pain and long-term disability. Dysregulation of redox homeostasis is a key feature in the pathological progression of osteoarthritis that amplifies the inflammatory response, aggravates synovitis and accelerates cartilage degradation. Herein, a hemin and chitosan-mediated antioxidant gel inducing ROS conversion (hc-MAGIC) was constructed to targeting oxidative stress for osteoarthritis treatment. The optimized hc-MAGIC exhibited autonomous sol-gel-sol transition properties, which enable to be administered via intra-articular injections, prolong retention in the joint cavity, and controlled modulation of inflammation in response to ROS. Notably, with extracellular ROS fueled, hc-MAGIC could address hypoxia in the osteoarthritic joint cavity through spatiotemporally controlled generation of oxygen (O2). Moreover, hc-MAGIC restored the impaired antioxidative capacity of macrophages by upregulating HO-1 on demand, resulting in suppressing excessive intracellular ROS generation. Consequently, by restoring both extracellular and intracellular redox homeostasis in osteoarthritic joints, hc-MAGIC markedly reversed the inflammatory microenvironment to support chondrogenesis, prevented cartilage degradation, and promoted cartilage repair by augmenting cartilage matrix formation. Therefore, featuring its sol-gel-sol transition properties,ROS-to-O2 conversion, and dual-mode redox regulation, hc-MAGIC offers a potent novel therapy for on-demand modulation of inflammation in osteoarthritis.
Collapse
Affiliation(s)
- Yuling Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-Sen University, University Town, Guangzhou 510006, China
| | - Na Yin
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-Sen University, University Town, Guangzhou 510006, China
| | - Shenyao Jin
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-Sen University, University Town, Guangzhou 510006, China
| | - Liya Yang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-Sen University, University Town, Guangzhou 510006, China
| | - Yanyun He
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-Sen University, University Town, Guangzhou 510006, China
| | - Ling Guo
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China.
| | - Min Feng
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-Sen University, University Town, Guangzhou 510006, China.
| |
Collapse
|
3
|
Okasha AH, Hegab II, Seleem MA, Azzam AR, Ibrahim S, Ghalwash AA, El-Gohary RM. Effects of Fisetin and Nicorandil on adjuvant-induced rheumatoid arthritis in rats: Emerging role of TLR4/NF-κB-induced Pyroptosis, Nrf-2/HO-1, and OPG/RANKL pathways. Cytokine 2025; 187:156876. [PMID: 39884184 DOI: 10.1016/j.cyto.2025.156876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/04/2025] [Accepted: 01/24/2025] [Indexed: 02/01/2025]
Abstract
AIM AND BACKGROUND Our study explored the novel mechanisms implicated in the anti-rheumatic potential of fisetin and/or nicorandil (NIC) intervention. METHODS AND MATERIALS Fifty male rats were categorized into; control, rheumatoid arthritis (RA), fisetin-treated RA, NIC-treated RA, and co-treated RA groups. We assessed paw thickness, arthritis indices, serum CRP, RF, OPG, RANKL, and gene expressions of synovial TLR4, NLRP3, caspase-1, GSDMD, Nrf-2, and HO, along with synovial histopathology and NF-κB immunoreactivity. RESULTS The combined therapy demonstrated significantly better anti-rheumatic potential, suppressing oxidative stress and NF-κB, downregulating synovial TLR4, NLRP3, caspase-1, GSDMD, and increasing serum OPG while decreasing RANKL, confirmed by histopathological findings. CONCLUSION Our investigation uncovered the TLR4/NF-κB pyroptotic signaling, Nrf-2/HO-1, and OPG/RANKL pathways as novel mechanistic insights into the anti-rheumatoid potential of fisetin and/or NIC, with superiority of combination approach, providing a beacon of hope for RA patients in terms of optimizing treatment protocol effectiveness and patient outcomes.
Collapse
Affiliation(s)
- Asmaa H Okasha
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt.
| | - Islam Ibrahim Hegab
- Physiology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt,; Department of Bio-Physiology, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| | - Monira A Seleem
- Medical Pharmacology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt.
| | - Asmaa R Azzam
- Human Anatomy and Embryology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt.
| | - Sarah Ibrahim
- Human Anatomy and Embryology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt.
| | - Asmaa A Ghalwash
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt.
| | - Rehab M El-Gohary
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt.
| |
Collapse
|
4
|
Martins CC, Reis AS, da Motta KP, Blödorn EB, Domingues W, do Sacramento M, Roehrs JA, Alves D, Campos VF, Mesko MF, Luchese C, Wilhelm EA. 4-amino-3-(phenylselanyl) benzenesulfonamide attenuates intermittent cold stress-induced fibromyalgia in mice: Targeting to the Nrf2-NFκB axis. Biochem Pharmacol 2025; 232:116651. [PMID: 39581532 DOI: 10.1016/j.bcp.2024.116651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/14/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
Stress is widely recognized as the primary environmental factor associated with chronic pain conditions, including fibromyalgia. A recent study demonstrated the potential antinociceptive effects of 4-amino-3-(phenylselanyl) benzenesulfonamide (4-APSB) in acute nociceptive animal models due to its antioxidant and anti-inflammatory properties. However, the efficacy of 4-APSB in managing chronic painful conditions, such as fibromyalgia, has not been explored so far. This study investigated the pharmacological effects of 4-APSB in an experimental model of fibromyalgia induced by intermittent cold stress (ICS). Male and female mice were divided into Control, ICS, 4-APSB, and ICS + 4-APSB. After the ICS, the animals were treated with 4-APSB (1 mg kg-1) or vehicle by the intragastric route until the tenth day. The behavioral tasks were performed on days 5, 8, and 10. The findings showed a negative correlation between paw withdrawal threshold and Nrf2 or NFκB mRNA expression levels caused by ICS exposure. The 4-APSB suppressed the nociceptive signs and a depressive like-phenotype in male and female mice exposed to ICS. 4-APBS normalized the elevated levels of TBARS and the up-regulation of Nrf2 and NFκB expression in the cerebral cortex of ICS-exposed mice. This compound also modulated the oxidative stress in the spinal cord of female mice. The 4-APSB attenuated the inhibition of Na+, K+ - ATPase activity in the central nervous system (CNS) of female mice exposed to ICS. 4-APSB attenuated behavioral and redox imbalance triggered by the ICS model in male and female mice, suggesting its beneficial effects for treating fibromyalgia in both sexes.
Collapse
Affiliation(s)
- Carolina C Martins
- Research Laboratory in Biochemical Pharmacology - LaFarBio, CCQFA - Federal University of Pelotas, UFPel, P.O. Box 354 - 96010-900 Pelotas, RS, Brazil
| | - Angélica S Reis
- Research Laboratory in Biochemical Pharmacology - LaFarBio, CCQFA - Federal University of Pelotas, UFPel, P.O. Box 354 - 96010-900 Pelotas, RS, Brazil
| | - Ketlyn P da Motta
- Research Laboratory in Biochemical Pharmacology - LaFarBio, CCQFA - Federal University of Pelotas, UFPel, P.O. Box 354 - 96010-900 Pelotas, RS, Brazil
| | - Eduardo B Blödorn
- Graduate Program in Biotechnology, Laboratory of Structural Genomics, Biotechnology - Federal University of Pelotas, UFPel - CEP, 96010-900 Pelotas, RS, Brazil
| | - William Domingues
- Graduate Program in Biotechnology, Laboratory of Structural Genomics, Biotechnology - Federal University of Pelotas, UFPel - CEP, 96010-900 Pelotas, RS, Brazil
| | - Manoela do Sacramento
- Graduate Program in Chemistry, Clean Organic Synthesis Laboratory - LASOL - CCQFA - Federal University of Pelotas, UFPel - CEP, 96010-900 Pelotas, RS, Brazil
| | - Juliano A Roehrs
- Graduate Program in Chemistry, Clean Organic Synthesis Laboratory - LASOL - CCQFA - Federal University of Pelotas, UFPel - CEP, 96010-900 Pelotas, RS, Brazil; Federal Institute of Education, Science and Technology Sul-rio-grandense, IFSul -CEP, 96015-360 Pelotas, RS, Brazil
| | - Diego Alves
- Graduate Program in Chemistry, Clean Organic Synthesis Laboratory - LASOL - CCQFA - Federal University of Pelotas, UFPel - CEP, 96010-900 Pelotas, RS, Brazil
| | - Vinicius F Campos
- Graduate Program in Biotechnology, Laboratory of Structural Genomics, Biotechnology - Federal University of Pelotas, UFPel - CEP, 96010-900 Pelotas, RS, Brazil
| | - Márcia F Mesko
- Contaminant Control Laboratory in Biomaterials (LCCBio), Federal University of Pelotas, UFPel - CEP, 96010-900 Pelotas, RS, Brazil
| | - Cristiane Luchese
- Research Laboratory in Biochemical Pharmacology - LaFarBio, CCQFA - Federal University of Pelotas, UFPel, P.O. Box 354 - 96010-900 Pelotas, RS, Brazil.
| | - Ethel A Wilhelm
- Research Laboratory in Biochemical Pharmacology - LaFarBio, CCQFA - Federal University of Pelotas, UFPel, P.O. Box 354 - 96010-900 Pelotas, RS, Brazil.
| |
Collapse
|
5
|
Ren G, Geng L, Ren D, Hou H, Yao S, Shi Z, Wang P. Chronic intermittent hypobaric hypoxia alleviates early-stage posttraumatic osteoarthritis via NF-κB/Nrf2 pathway in mice. J Orthop Surg Res 2024; 19:878. [PMID: 39726016 DOI: 10.1186/s13018-024-05376-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Posttraumatic osteoarthritis (PTOA) is directly associated with early acute articular cartilage injury. Inhibition of cartilage destruction immediately following joint damage can effectively slow or prevent PTOA progression. Therefore, we sought to determine intervention targets and therapeutic strategies in the acute stage of cartilage injury. The benefits of chronic intermittent hypobaric hypoxia (CIHH) extend to various body tissues, but its impact on acute cartilage injury remains unclear. We selected PTOA initiation as the therapeutic window and administered CIHH treatment immediately following cartilage injury initiation to investigate its protective effect on cartilage and molecular mechanism changing with time-varying. METHODS The non-invasive PTOA mouse model was established by applying a single rapid specific impact force to the right knee's tibial plateau, initiating load-induced PTOA development, closely resembling the pathological changes in human diseases. Following loading, we inhibited cartilage destruction by treating mice immediately in a hypobaric chamber with a hypobaric hypoxia mimic at 5000 m altitude. Cohorts of mice subjected to distinct experimental conditions were monitored for 3, 7, 14 or 28 days. Safranin O-Fast Green staining, Immunohistochemistry, immunofluorescence, ELISA, and western blotting were performed to evaluate the therapeutic effects of CIHH on cartilage in vivo. The nuclear translocation of NF-κB p65 and Nrf2 were detected by immunofluorescence. RESULTS The results showed that inhibiting cartilage destruction using CIHH immediately following acute articular cartilage injury initiation delayed the progression of PTOA, decreased the Mankin score and suppressed the expression of proinflammatory factors, including iNOS, NO, TNF-α, and IL-1β. Meanwhile, immediate CIHH treatment reduced levels of the catabolic enzymes ADAMTS5 and MMP13 in the cartilage matrix, reversed degradation of Collagen II and COMP, and inhibited oxidative stress by decreasing ROS levels. Moreover, CIHH suppressed NF-κB signaling by activating the Nrf2 in vivo studies. CONCLUSION Our study demonstrated that immediate CIHH treatment following cartilage injury initiation can attenuate load-induced cartilage damage by activating Nrf2/HO-1 and inhibiting the NF-κB p65 signalling pathways to counteract oxidative stress and inflammatory reactions, enhance the metabolic balance of the cartilage matrix and delay cartilage degeneration. This treatment may represent a potential therapeutic strategy for limiting PTOA progression.
Collapse
Affiliation(s)
- Guowei Ren
- Department of Orthopaedic Trauma, Hebei Medical University Third Hospital, Ziqiang Road No.139, Shijiazhuang, Hebei Province, 050051, China
| | - Lindan Geng
- Department of Orthopaedic Trauma, Hebei Medical University Third Hospital, Ziqiang Road No.139, Shijiazhuang, Hebei Province, 050051, China
| | - Dong Ren
- Department of Orthopaedic Trauma, Hebei Medical University Third Hospital, Ziqiang Road No.139, Shijiazhuang, Hebei Province, 050051, China
| | - Haowei Hou
- Department of Scientific Research, Hebei Medical University Third Hospital, Shijiazhuang, Hebei Province, 050051, China
| | - Shuangquan Yao
- Department of Orthopaedic Trauma, Hebei Medical University Third Hospital, Ziqiang Road No.139, Shijiazhuang, Hebei Province, 050051, China
| | - Zhenhua Shi
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang, Hebei Province, 050051, China.
| | - Pengcheng Wang
- Department of Orthopaedic Trauma, Hebei Medical University Third Hospital, Ziqiang Road No.139, Shijiazhuang, Hebei Province, 050051, China.
| |
Collapse
|
6
|
Ajibare AJ, Odetayo AF, Akintoye OO, Oladotun AJ, Hamed MA. Zinc abates sodium benzoate -induced testicular dysfunction via upregulation of Nrf2/ HO-1/ Nf-κB signaling and androgen receptor gene. J Trace Elem Med Biol 2024; 86:127505. [PMID: 39106537 DOI: 10.1016/j.jtemb.2024.127505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 08/09/2024]
Abstract
BACKGROUND Sodium Benzoate (SB) is used in daily products such as drinks, juices, sauces, oils, ketchup, toothpaste, mouthwashes, cosmetics, dentifrices, and pharmaceutical products. However, SB has been implicated in gonadotoxicity even at a dosage within the safe limit. Zinc (Zn), on the other hand, has been shown to improve various fertility indices. Hence, this study was designed to explore the possible ameliorative effect of Zn on SB-induced testicular toxicity. METHODS Animals were randomly divided into control, SB, Zn, and SB+Zn. All treatment lasted for 28 days. RESULTS SB treatment caused a derangement in reproductive hormone levels, sperm function, and kinematics and a down-regulation of the Androgen receptor (ANDR). Also, a decrease in testicular levels of SOD, CAT, GSH, Nrf2, and HO- 1 activity and an increase in IL-1β, TNF-α, Nf-κB, and Caspase 3 were observed. These SB-induced distortions were ameliorated in SB-treated rats exposed to Zn. CONCLUSION Our study suggests that zinc abates SB-induced testicular toxicity by modulating Nrf2/HO-1/ Nf-κB signaling and ANDR upregulation.
Collapse
Affiliation(s)
- Ayodeji Johnson Ajibare
- Department of Physiology, College of Medicine, Lead City University, Ibadan, Oyo-State, Nigeria
| | - Adeyemi Fatai Odetayo
- Department of Physiology, Faculty of Basic Medical Sciences, Federal University of Health Sciences, Ila Orangun, Nigeria.
| | - Olabode Oluwadare Akintoye
- Department of Physiology, College of Medicine, Lead City University, Ibadan, Oyo-State, Nigeria; Department of Physiology, College of Medicine, Ekiti State University, Ado-Ekiti, Ekiti State, Nigeria
| | | | - Moses Agbomhere Hamed
- Department of Medical Laboratory Science, Afe Babalola University, Ado-Ekiti, Nigeria; The Brainwill Laboratories and Biomedical Services, Osogbo, Nigeria
| |
Collapse
|
7
|
Cai J, Liao F, Mao Y, Liu S, Wu X, Tang S, Wang S, Shan G, Wu S. Regulation of LAMTOR1 by oxidative stress in retinal pigment epithelium: Implications for age-related macular degeneration pathogenesis. Exp Eye Res 2024; 249:110129. [PMID: 39424220 DOI: 10.1016/j.exer.2024.110129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/23/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Oxidative stress is a critical pathogenic factor for age-related macular degeneration (AMD). Autophagy serves as a mechanism to counteract oxidative stress. LAMTOR1 regulates mTORC1 activity by recruiting or disassembling it on the lysosome under the addition or deprivation of amino acids. This regulation inhibits or enhances autophagy. Our study investigates whether oxidative stress impacts LAMTOR1, thereby adapting to oxidative conditions. We employed oxidative stressors, menadione (VK3) and 4-hydroxynonenal (4-HNE), and observed a reduction of LAMTOR1 in both human and mouse retinal pigment epithelium (RPE) following short-term (1h) and prolonged exposures (24h). Nrf2 overexpression increased both lamtor1 mRNA and LAMTOR1 protein in the RPE. To determine if Nrf2 regulates lamtor1 transcription, we cloned the deletion mutants of the lamtor1 promoter into a luciferase reporter. Although the promoter contained antioxidant response elements, transcriptional activity depended on the interaction between Nrf2 and the constructs containing the transcriptional start site. Moreover, Nrf2-driven transcription was significantly reduced by an inhibitor of histone acetyltransferase, p300. Correspondingly, Nrf2 overexpression increased levels of acetylated histone 3 and p300. The reduction in LAMTOR1 by 4-HNE was reversed by pepstatin A and NH4Cl which block lysosomal degradation. 4-HNE increased TFEB nuclear translocation which was reversed by LAMTOR1 overexpression. In vivo, LAMTOR1 levels decreased in the photoreceptor and RPE layers of NaIO3-injected mice, compared to PBS-injected controls. In conclusion, oxidative injury reduces LAMTOR1, predominantly through lysosomal degradation although Nrf2-mediated histone acetylation enhances lamtor1 transcription. This study reveals a previously unrecognized regulatory mechanism of lamtor1 by oxidative stress, suggesting a novel role for LAMTOR1 in the pathogenesis of AMD.
Collapse
Affiliation(s)
- Jingjing Cai
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Fei Liao
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yandie Mao
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Shuyi Liu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xiong Wu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Shiqi Tang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Simin Wang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Ge Shan
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Shengzhou Wu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
8
|
Gasparro R, Gambino G, Duca G, Majo DD, Di Liberto V, Tinnirello V, Urone G, Ricciardi N, Frinchi M, Rabienezhad Ganji N, Vergilio G, Zummo FP, Rappa F, Fontana S, Conigliaro A, Sardo P, Ferraro G, Alessandro R, Raimondo S. Protective effects of lemon nanovesicles: evidence of the Nrf2/HO-1 pathway contribution from in vitro hepatocytes and in vivo high-fat diet-fed rats. Biomed Pharmacother 2024; 180:117532. [PMID: 39383731 DOI: 10.1016/j.biopha.2024.117532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/26/2024] [Accepted: 10/04/2024] [Indexed: 10/11/2024] Open
Abstract
The cross-talk between plant-derived nanovesicles (PDNVs) and mammalian cells has been explored by several investigations, underlining the capability of these natural nanovesicles to regulate several molecular pathways. Additionally, PDNVs possess biological proprieties that make them applicable against pathological conditions, such as hepatic diseases. In this study we explored the antioxidant properties of lemon-derived nanovesicles, isolated at laboratory (LNVs) and industrial scale (iLNVs) in human healthy hepatocytes (THLE-2) and in metabolic syndrome induced by a high-fat diet (HFD) in the rat. Our findings demonstrate that in THLE-2 cells, LNVs and iLNVs decrease ROS production and upregulate the expression of antioxidant mediators, Nrf2 and HO-1. Furthermore, the in vivo assessment reveals that the oral administration of iLNVs improves glucose tolerance and lipid dysmetabolism, ameliorates biometric parameters and systemic redox homeostasis, and upregulates Nrf2/HO-1 signaling in HFD rat liver. Consequently, we believe LNVs/iLNVs might be a promising approach for managing hepatic and dysmetabolic disorders.
Collapse
Affiliation(s)
- Roberta Gasparro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D), University of Palermo, Section of Biology and Genetics, Palermo 90133, Italy
| | - Giuditta Gambino
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D), University of Palermo, Section of Human Physiology, Palermo 90134, Italy
| | - Giulia Duca
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D), University of Palermo, Section of Biology and Genetics, Palermo 90133, Italy
| | - Danila Di Majo
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D), University of Palermo, Section of Human Physiology, Palermo 90134, Italy
| | - Valentina Di Liberto
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D), University of Palermo, Section of Human Physiology, Palermo 90134, Italy
| | - Vincenza Tinnirello
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D), University of Palermo, Section of Biology and Genetics, Palermo 90133, Italy
| | - Giulia Urone
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D), University of Palermo, Section of Human Physiology, Palermo 90134, Italy
| | - Nicolò Ricciardi
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D), University of Palermo, Section of Human Physiology, Palermo 90134, Italy
| | - Monica Frinchi
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D), University of Palermo, Section of Human Physiology, Palermo 90134, Italy
| | - Nima Rabienezhad Ganji
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D), University of Palermo, Section of Biology and Genetics, Palermo 90133, Italy
| | - Giuseppe Vergilio
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Human Anatomy and Histology, University of Palermo, Palermo 90127, Italy
| | - Francesco Paolo Zummo
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Human Anatomy and Histology, University of Palermo, Palermo 90127, Italy
| | - Francesca Rappa
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Human Anatomy and Histology, University of Palermo, Palermo 90127, Italy; The Institute of Translational Pharmacology, National Research Council of Italy (CNR), 90146 Palermo, Italy
| | - Simona Fontana
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D), University of Palermo, Section of Biology and Genetics, Palermo 90133, Italy
| | - Alice Conigliaro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D), University of Palermo, Section of Biology and Genetics, Palermo 90133, Italy; ATeN (Advanced Technologies Network) Center, Viale Delle Scienze, University of Palermo, 90128, Palermo, Italy; Navhetec s.r.l., Spinoff of the University of Palermo, Palermo, Italy
| | - Pierangelo Sardo
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D), University of Palermo, Section of Human Physiology, Palermo 90134, Italy
| | - Giuseppe Ferraro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D), University of Palermo, Section of Human Physiology, Palermo 90134, Italy
| | - Riccardo Alessandro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D), University of Palermo, Section of Biology and Genetics, Palermo 90133, Italy; Navhetec s.r.l., Spinoff of the University of Palermo, Palermo, Italy; Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), Palermo 90146, Italy
| | - Stefania Raimondo
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D), University of Palermo, Section of Biology and Genetics, Palermo 90133, Italy; Navhetec s.r.l., Spinoff of the University of Palermo, Palermo, Italy.
| |
Collapse
|
9
|
Fang X, Zhao H, Xu T, Wu H, Sheng G. Anti-Inflammatory and Antioxidant Effects of Irigenen Alleviate Osteoarthritis Progression through Nrf2/HO-1 Pathway. Pharmaceuticals (Basel) 2024; 17:1268. [PMID: 39458910 PMCID: PMC11510601 DOI: 10.3390/ph17101268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/07/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Osteoarthritis (OA) is a prevalent degenerative disease globally, characterized by cartilage degradation and joint dysfunction. Current treatments are insufficient for halting OA progression. Irigenin (IRI), a flavonoid extracted from natural plants with anti-inflammatory and antioxidant properties, has demonstrated potential in mitigating inflammation and oxidative stress in various diseases; however, its effects on OA remain unexplored. This study aims to evaluate the therapeutic effects of IRI on OA through in vivo and in vitro experiments and to elucidate the underlying molecular mechanisms. METHODS In vitro, chondrocytes were exposed to hydrogen peroxide (H2O2) to induce an oxidative stress environment and were then treated with IRI. Western blotting, RT-qPCR, immunofluorescence staining assays, flow cytometry, and apoptosis assays were employed to assess the effects of IRI on chondrocyte matrix homeostasis, inflammatory response, and apoptosis. In vivo, an OA rat model was treated with regular IRI injections, and therapeutic effects were evaluated using micro-CT, histological staining, and immunohistochemistry assays. RESULTS IRI treatment restored matrix homeostasis in chondrocytes and effectively suppressed H2O2-induced inflammation and apoptosis. Subsequent studies further revealed that IRI exerts its therapeutic effects by activating the Nrf2/HO-1 pathway. Inhibition of Nrf2 expression in chondrocytes partially blocked the anti-inflammatory and antioxidant effects of IRI. In the OA rat model, regular IRI injections effectively ameliorated cartilage degeneration. CONCLUSIONS This study identifies IRI as a promising strategy for OA treatment by modulating inflammation and apoptosis through the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
| | | | | | | | - Gaohong Sheng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (X.F.); (H.Z.); (T.X.); (H.W.)
| |
Collapse
|
10
|
Cui P, Sheng Y, Wu C, He D. Puerarin modulates proliferation, inflammation and ECM metabolism in human nucleus pulposus mesenchymal stem cells via the lncRNA LINC01535. Heliyon 2024; 10:e33083. [PMID: 39021929 PMCID: PMC11253265 DOI: 10.1016/j.heliyon.2024.e33083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 07/20/2024] Open
Abstract
Background Intervertebral disc degeneration (IVDD) is a highly prevalent musculoskeletal disorder characterized by progressive destruction of the intervertebral disc, leading to chronic low back pain and disability. Emerging evidence suggests that dysregulation of ferroptosis, a recently discovered form of regulated cell death, participates in IVDD pathogenesis. Puerarin, a natural flavonoid compound from Pueraria lobata, has shown promise in modulating ferroptosis in various diseases. Methods Human nucleus pulposus-derived mesenchymal stem cells (NPMSCs) were isolated and identified by flow cytometry. We investigated the effects of puerarin on human NPMSCs and examined the underlying molecular mechanisms. Results Puerarin significantly promoted human NPMSC proliferation, as evidenced by the increased cell viability and colony formation ability. Furthermore, puerarin suppressed the expression of cyclooxygenase-2 and the proinflammatory cytokine interleukin-6 in NPMSCs, demonstrating the anti-inflammatory properties of the compound. Notably, puerarin attenuated ECM breakdown by downregulating the ECM-degrading enzymes MMP3, MMP13 and ADAMTS5, and it increased ECM component synthesis, including collagen type II and aggrecan, by NPMSCs. Moreover, puerarin inhibited ferroptosis in NPMSCs by modulating the expression of key ferroptosis-related genes, including ACSL4, PTGS2 and GPX4. Depletion of LINC01535 abolished the effects of puerarin on proliferation, inflammation and ECM metabolism, suggesting a key role of this lncRNA in mediating the effects of puerarin. Conclusion Our findings show that puerarin promotes the proliferation of human NPMSCs and ECM synthesis by these cells. Furthermore, puerarin inhibits inflammation and ECM degradation by suppressing ferroptosis via LINC01535. These results provide insights into the molecular mechanisms underlying the therapeutic effects of puerarin in IVDD. Targeting ferroptosis and its regulatory factors, such as LINC01535, may have therapeutic potential for the treatment of IDD and other degenerative disorders of the intervertebral disc. Further studies are needed to uncover the translational potential of puerarin and its downstream targets in preclinical and clinical applications.
Collapse
Affiliation(s)
- Penglei Cui
- Department of Spine Surgery, Beijing Jishuitan Hospital, Capital Medical University, Xicheng District, Beijing, 100035, PR China
| | - Yueyang Sheng
- Department of Molecular Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Xicheng District, Beijing, 100035, PR China
| | - Chengai Wu
- Department of Molecular Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Xicheng District, Beijing, 100035, PR China
| | - Da He
- Department of Spine Surgery, Beijing Jishuitan Hospital, Capital Medical University, Xicheng District, Beijing, 100035, PR China
| |
Collapse
|
11
|
Deppe L, Mueller-Buehl AM, Tsai T, Erb C, Dick HB, Joachim SC. Protection against Oxidative Stress by Coenzyme Q10 in a Porcine Retinal Degeneration Model. J Pers Med 2024; 14:437. [PMID: 38673065 PMCID: PMC11051541 DOI: 10.3390/jpm14040437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Oxidative stress plays an important role in neurodegenerative diseases, including glaucoma. Therefore, we analyzed if the antioxidant coenzyme Q10 (CoQ10), which is also commercially available, can prevent retinal degeneration induced by hydrogen peroxide (H2O2) in a porcine organ culture model. Retinal explants were cultivated for eight days, and H2O2 (500 µM, 3 h) induced the oxidative damage. CoQ10 therapy was applied (700 µM, 48 h). Retinal ganglion cells (RGCs) and microglia were examined immunohistologically in all groups (control, H2O2, H2O2 + CoQ10). Cellular, oxidative, and inflammatory genes were quantified via RT-qPCR. Strong RGC loss was observed with H2O2 (p ≤ 0.001). CoQ10 elicited RGC protection compared to the damaged group at a histological (p ≤ 0.001) and mRNA level. We detected more microglia cells with H2O2, but CoQ10 reduced this effect (p = 0.004). Cellular protection genes (NRF2) against oxidative stress were stimulated by CoQ10 (p ≤ 0.001). Furthermore, mitochondrial oxidative stress (SOD2) increased through H2O2 (p = 0.038), and CoQ10 reduced it to control level. Our novel results indicate neuroprotection via CoQ10 in porcine retina organ cultures. In particular, CoQ10 appears to protect RGCs by potentially inhibiting apoptosis-related pathways, activating intracellular protection and reducing mitochondrial stress.
Collapse
Affiliation(s)
- Leonie Deppe
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany; (L.D.); (A.M.M.-B.); (T.T.); (H.B.D.)
| | - Ana M. Mueller-Buehl
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany; (L.D.); (A.M.M.-B.); (T.T.); (H.B.D.)
| | - Teresa Tsai
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany; (L.D.); (A.M.M.-B.); (T.T.); (H.B.D.)
| | - Carl Erb
- Private Institute for Applied Ophthalmology, Eye Clinic at Wittenbergplatz, 10787 Berlin, Germany;
| | - H. Burkhard Dick
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany; (L.D.); (A.M.M.-B.); (T.T.); (H.B.D.)
| | - Stephanie C. Joachim
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany; (L.D.); (A.M.M.-B.); (T.T.); (H.B.D.)
| |
Collapse
|
12
|
Long SW, Li SH, Li J, He Y, Tan B, Jing HH, Zheng W, Wu J. Identification of osteoporosis ferroptosis-related markers and potential therapeutic compounds based on bioinformatics methods and molecular docking technology. BMC Med Genomics 2024; 17:99. [PMID: 38650009 PMCID: PMC11036634 DOI: 10.1186/s12920-024-01872-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/09/2024] [Indexed: 04/25/2024] Open
Abstract
RESEARCH BACKGROUND AND PURPOSE Osteoporosis (OP) is one of the most common bone diseases worldwide, characterized by low bone mineral density and susceptibility to pathological fractures, especially in postmenopausal women and elderly men. Ferroptosis is one of the newly discovered forms of cell death regulated by genes in recent years. Many studies have shown that ferroptosis is closely related to many diseases. However, there are few studies on ferroptosis in osteoporosis, and the mechanism of ferroptosis in osteoporosis is still unclear. This study aims to identify biomarkers related to osteoporosis ferroptosis from the GEO (Gene Expression Omnibus) database through bioinformatics technology, and to mine potential therapeutic small molecule compounds through molecular docking technology, trying to provide a basis for the diagnosis and treatment of osteoporosis in the future. MATERIALS AND METHODS We downloaded the ferroptosis-related gene set from the FerrDb database ( http://www.zhounan.org/ferrdb/index.html ), downloaded the data sets GSE56815 and GSE7429 from the GEO database, and used the R software "limma" package to screen differentially expressed genes (DEGs) from GSE56815, and intersected with the ferroptosis gene set to obtain ferroptosis-related DEGs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed by the R software "clusterProfiler" package. The random forest model was further screened to obtain essential ferroptosis genes. R software "corrplot" package was used for correlation analysis of essential ferroptosis genes, and the Wilcox test was used for significance analysis. The lncRNA-miRNA-mRNA-TF regulatory network was constructed using Cytoscape software. The least absolute shrinkage and selection operator (LASSO) was used to construct a disease diagnosis model, and a Receiver operating characteristic (ROC) curve was drawn to evaluate the diagnostic performance, and then GSE7429 was used to verify the reliability of the diagnosis model. Molecular docking technology was used to screen potential small molecule compounds from the Drugbank database. Finally, a rat osteoporosis model was constructed, and peripheral blood mononuclear cells were extracted for qRT-PCR detection to verify the mRNA expression levels of crucial ferroptosis genes. RESULT Six DEGs related to ferroptosis were initially screened out. GO function and KEGG pathway enrichment analysis showed that ferroptosis-related DEGs were mainly enriched in signaling pathways such as maintenance of iron ion homeostasis, copper ion binding function, and ferroptosis. The random forest model identified five key ferroptosis genes, including CP, FLT3, HAMP, HMOX1, and SLC2A3. Gene correlation analysis found a relatively low correlation between these five key ferroptosis genes. The lncRNA-miRNA-mRNA-TF regulatory network shows that BAZ1B and STAT3 may also be potential molecules. The ROC curve of the disease diagnosis model shows that the model has a good diagnostic performance. Molecular docking technology screened out three small molecule compounds, including NADH, Midostaurin, and Nintedanib small molecule compounds. qRT-PCR detection confirmed the differential expression of CP, FLT3, HAMP, HMOX1 and SLC2A3 between OP and normal control group. CONCLUSION This study identified five key ferroptosis genes (CP, FLT3, HAMP, HMOX1, and SLC2A3), they were most likely related to OP ferroptosis. In addition, we found that the small molecule compounds of NADH, Midostaurin, and Nintedanib had good docking scores with these five key ferroptosis genes. These findings may provide new clues for the early diagnosis and treatment of osteoporosis in the future.
Collapse
Affiliation(s)
- Shi-Wei Long
- General Hospital of Western Theater Command, Chengdu, China
| | - Shi-Hong Li
- Department of Orthopedic Oncology, Shanghai Sixth People's Hospital Affilicated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- General Hospital of Western Theater Command, Chengdu, China
| | - Jian Li
- General Hospital of Western Theater Command, Chengdu, China
| | - Yang He
- Southwest Jiao Tong University School of Medicine, Chengdu, China
| | - Bo Tan
- General Hospital of Western Theater Command, Chengdu, China
| | - Hao-Han Jing
- General Hospital of Western Theater Command, Chengdu, China
| | - Wei Zheng
- Department of Orthopedic Oncology, Shanghai Sixth People's Hospital Affilicated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Southwest Jiao Tong University School of Medicine, Chengdu, China.
- General Hospital of Western Theater Command, Chengdu, China.
| | - Juan Wu
- General Hospital of Western Theater Command, Chengdu, China.
| |
Collapse
|
13
|
Saha S. An Overview of Therapeutic Targeting of Nrf2 Signaling Pathway in Rheumatoid Arthritis. ACS OMEGA 2024; 9:10049-10057. [PMID: 38463248 PMCID: PMC10918843 DOI: 10.1021/acsomega.4c00163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 03/12/2024]
Abstract
Rheumatoid arthritis (RA), an autoimmune condition that has a significant inflammatory component and is exacerbated by dysregulated redox-dependent signaling pathways. In RA, the corelationship between oxidative stress and inflammation appears to be regulated by the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway. Furthermore, it has been shown that transcriptional pathways involving Nrf2 and NFκB significantly interact under conditions of oxidative stress and inflammation. Because pathologic cells in RA have a higher chance of surviving, Nrf2's influence on concomitant pathologic mechanisms in the disease is explained by its interaction with key redox-sensitive inflammatory pathways. The current review not only updates knowledge about Nrf2's function in RA but also highlights the complex interactions between Nrf2 and other redox-sensitive transcription factors, which are essential to the self-sustaining inflammatory processes that define RA. This paper also reviews the candidates for treating RA through Nrf2 activation. Finally, future directions for pharmacologic Nrf2 activation in RA are suggested.
Collapse
Affiliation(s)
- Sarmistha Saha
- Department of Biotechnology,
Institute of Applied Sciences & Humanities, GLA University, Mathura 281406, Uttar Pradesh, India
| |
Collapse
|
14
|
Xie X, Fu J, Gou W, Qin Y, Wang D, Huang Z, Wang L, Li X. Potential mechanism of tea for treating osteoporosis, osteoarthritis, and rheumatoid arthritis. Front Med (Lausanne) 2024; 11:1289777. [PMID: 38420363 PMCID: PMC10899483 DOI: 10.3389/fmed.2024.1289777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/08/2024] [Indexed: 03/02/2024] Open
Abstract
Osteoporosis (OP), osteoarthritis (OA), and rheumatoid arthritis (RA) are common bone and joint diseases with a high incidence and long duration. Thus, these conditions can affect the lives of middle-aged and elderly people. Tea drinking is a traditional lifestyle in China, and the long-term intake of tea and its active ingredients is beneficial to human health. However, the mechanisms of action of tea and its active ingredients against OP, OA, and RA are not completely elucidated. This study aimed to assess the therapeutic role and related mechanisms of tea and its active ingredients in OP, OA, and RA. Moreover, it expanded the potential mechanisms of tea efficacy based on network pharmacology and molecular docking. Results showed that tea has potential anti-COX properties and hormone-like effects. Compared with a single component, different tea components synergize or antagonize each other, thereby resulting in a more evident dual effect. In conclusion, tea has great potential in the medical and healthcare fields. Nevertheless, further research on the composition, proportion, and synergistic mechanism of several tea components should be performed.
Collapse
Affiliation(s)
- Xinyu Xie
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jiehui Fu
- Department of Sports Medicine (Orthopedics), Fujian University of Traditional Chinese Medicine Subsidiary Rehabilitation Hospital, Fuzhou, China
| | - Weiying Gou
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yifei Qin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Dingzhen Wang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Zuer Huang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Lili Wang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xihai Li
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
15
|
Wei Z, Li H, Lv S, Yang J. Current situation and trend of non-coding RNA in rheumatoid arthritis: a review and bibliometric analysis. Front Immunol 2024; 14:1301545. [PMID: 38292492 PMCID: PMC10824985 DOI: 10.3389/fimmu.2023.1301545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/28/2023] [Indexed: 02/01/2024] Open
Abstract
Background Rheumatoid arthritis (RA) is a chronic, systemic autoimmune disease that affects multiple joints and has adverse effects on various organs throughout the body, often leading to a poor prognosis. Recent studies have shown significant progress in the research of non-coding RNAs (ncRNAs) in RA. Therefore, this study aims to comprehensively assess the current status and research trends of ncRNAs in RA through a bibliometric analysis. Methods This study retrieved articles relevant to ncRNAs and RA from the Science Citation Index Expanded Database of the Web of Science Core Collection between January 1st, 2003, and July 31st, 2023. The relevant articles were screened based on the inclusion criteria. VOSviewer and CiteSpace are utilized for bibliometric and visual analysis. Results A total of 1697 publications were included in this study, and there was a noticeable increase in annual publications from January 1st, 2003, to July 31st, 2023. China, the United States, and the United Kingdom were the most productive countries in this field, contributing to 43.81%, 13.09%, and 3.87% of the publications. Anhui Medical University and Lu Qianjin were identified as the most influential institution and author. Frontiers In Immunology stood out as the most prolific journal, while Arthritis & Rheumatology was the most co-cited journal. Additionally, the research related to "circular RNA", "oxidative stress", "proliferation", and "migration" have emerged as new hotspots in the field. Conclusion In this study, we have summarized the publication characteristics related to ncRNA and RA and identified the most productive countries, institutions, authors, journals, hot topics, and trends.
Collapse
Affiliation(s)
- Zehong Wei
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Huaiyu Li
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Senhao Lv
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Junping Yang
- Clinical Laboratory, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| |
Collapse
|
16
|
Hung SY, Chen JL, Tu YK, Tsai HY, Lu PH, Jou IM, Mbuyisa L, Lin MW. Isoliquiritigenin inhibits apoptosis and ameliorates oxidative stress in rheumatoid arthritis chondrocytes through the Nrf2/HO-1-mediated pathway. Biomed Pharmacother 2024; 170:116006. [PMID: 38091640 DOI: 10.1016/j.biopha.2023.116006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 01/10/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory condition known for its irreversible destructive impact on the joints. Chondrocytes play a pivotal role in the production and maintenance of the cartilage matrix. However, the presence of inflammatory cytokines can hinder chondrocyte proliferation and promote apoptosis. Isoliquiritigenin (ISL), a flavonoid, potentially exerts protective effects against various inflammatory diseases. However, its specific role in regulating the nuclear factor E2-associated factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway in chondrocytes in RA remains unclear. To investigate this, this study used human chondrocytes and Sprague-Dawley rats to construct in vitro and in vivo RA models, respectively. The study findings reveal that cytokines markedly induced oxidative stress, the activation of matrix metalloproteinases, and apoptosis both in vitro and in vivo. Notably, ISL treatment significantly mitigated these effects. Moreover, Nrf2 or HO-1 inhibitors reversed the protective effects of ISL, attenuated the expression of Nrf2/HO-1 and peroxisome proliferator-activated receptor gamma-coactivator-1α, and promoted chondrocyte apoptosis. This finding indicates that ISL primarily targets the Nrf2/HO-1 pathway in RA chondrocytes. Moreover, ISL treatment led to improved behavior scores, reduced paw thickness, and mitigated joint damage as well as ameliorated oxidative stress in skeletal muscles in an RA rat model. In conclusion, this study highlights the pivotal role of the Nrf2/HO-1 pathway in the protective effects of ISL and demonstrates the potential of ISL as a treatment option for RA.
Collapse
Affiliation(s)
- Shih-Ya Hung
- Graduate Institute of Acupuncture Science, China Medical University, Taichung 40402, Taiwan; Division of Surgery, Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan
| | - Jen-Lung Chen
- Department of Surgery, E-Da Hospital, Kaohsiung 82445, Taiwan
| | - Yuan-Kun Tu
- Department of Orthopaedic Surgery, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan; School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Hsin-Yi Tsai
- Department of Medical Research, E-Da Hospital/ E-Da Cancer Hospital, Kaohsiung 82445, Taiwan
| | - Pin-Hsuan Lu
- Department of Medical Research, E-Da Hospital/ E-Da Cancer Hospital, Kaohsiung 82445, Taiwan
| | - I-Ming Jou
- Department of Orthopaedic Surgery, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Lulekiwe Mbuyisa
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan
| | - Ming-Wei Lin
- Department of Medical Research, E-Da Hospital/ E-Da Cancer Hospital, Kaohsiung 82445, Taiwan; Department of Nursing, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan; Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
17
|
Che J, Yang X, Jin Z, Xu C. Nrf2: A promising therapeutic target in bone-related diseases. Biomed Pharmacother 2023; 168:115748. [PMID: 37865995 DOI: 10.1016/j.biopha.2023.115748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023] Open
Abstract
Nuclear factor erythroid-2-related factor 2 (Nrf2) plays an important role in maintaining cellular homeostasis, as it suppresses cell damage caused by external stimuli by regulating the transcription of intracellular defense-related genes. Accumulating evidence has highlighted the crucial role of reduction-oxidation (REDOX) imbalance in the development of bone-related diseases. Nrf2, a transcription factor linked to nuclear factor-erythrocyte 2, plays a pivotal role in the regulation of oxidative stress and induction of antioxidant defenses. Therefore, further investigation of the mechanism and function of Nrf2 in bone-related diseases is essential. Considerable evidence suggests that increased nuclear transcription of Nrf2 in response to external stimuli promotes the expression of intracellular antioxidant-related genes, which in turn leads to the inhibition of bone remodeling imbalance, improved fracture recovery, reduced occurrence of osteoarthritis, and greater tumor resistance. Certain natural extracts can selectively target Nrf2, potentially offering therapeutic benefits for osteogenic arthropathy. In this article, the biological characteristics of Nrf2 are reviewed, the intricate interplay between Nrf2-regulated REDOX imbalance and bone-related diseases is explored, and the potential preventive and protective effects of natural products targeting Nrf2 in these diseases are elucidated. A comprehensive understanding of the role of Nrf2 in the development of bone-related diseases provides valuable insights into clinical interventions and can facilitate the discovery of novel Nrf2-targeting drugs.
Collapse
Affiliation(s)
- Jingmin Che
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China; Shaanxi Engineering Research Center of Cell Immunology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China.
| | - Xiaoli Yang
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China; Shaanxi Engineering Research Center of Cell Immunology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Zhankui Jin
- Department of Orthopedics, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China.
| | - Cuixiang Xu
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China; Shaanxi Engineering Research Center of Cell Immunology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| |
Collapse
|
18
|
Yan S, Gao Z, Ding J, Chen S, Wang Z, Jin W, Qu B, Zhang Y, Yang L, Guo D, Yin T, Yang Y, Zhang Y, Yang J. Nanocomposites based on nanoceria regulate the immune microenvironment for the treatment of polycystic ovary syndrome. J Nanobiotechnology 2023; 21:412. [PMID: 37936120 PMCID: PMC10631133 DOI: 10.1186/s12951-023-02182-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/26/2023] [Indexed: 11/09/2023] Open
Abstract
The immune system is closely associated with the pathogenesis of polycystic ovary syndrome (PCOS). Macrophages are one of the important immune cell types in the ovarian proinflammatory microenvironment, and ameliorate the inflammatory status mainly through M2 phenotype polarization during PCOS. Current therapeutic approaches lack efficacy and immunomodulatory capacity, and a new therapeutic method is needed to prevent inflammation and alleviate PCOS. Here, octahedral nanoceria nanoparticles with powerful antioxidative ability were bonded to the anti-inflammatory drug resveratrol (CeO2@RSV), which demonstrates a crucial strategy that involves anti-inflammatory and antioxidative efficacy, thereby facilitating the proliferation of granulosa cells during PCOS. Notably, our nanoparticles were demonstrated to possess potent therapeutic efficacy via anti-inflammatory activities and effectively alleviated endocrine dysfunction, inflammation and ovarian injury in a dehydroepiandrosterone (DHEA)-induced PCOS mouse model. Collectively, this study revealed the tremendous potential of the newly developed nanoparticles in ameliorating the proinflammatory microenvironment and promoting the function of granulosa cells, representing the first attempt to treat PCOS by using CeO2@RSV nanoparticles and providing new insights in combating clinical PCOS.
Collapse
Affiliation(s)
- Sisi Yan
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, 430060, China
| | - Zhipeng Gao
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Jinli Ding
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, 430060, China
| | - Suming Chen
- The Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Zehao Wang
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, 430060, China
| | - Wenyi Jin
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, 430060, China
| | - Bing Qu
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yi Zhang
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, 430060, China
| | - Lian Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, 430060, China
| | - Duanying Guo
- Longgang District People's Hospital of Shenzhen, Shenzhen, China.
| | - Tailang Yin
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, 430060, China.
| | - Yanbing Yang
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| | - Yan Zhang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Jing Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, 430060, China.
| |
Collapse
|
19
|
Wagner MA, Koleck TA, Conway A, Bender CM, Conley YP. Variability of DNA Repair and Oxidative Stress Genes Associated with Worst Pain in Breast Cancer Survivors on Aromatase Inhibitors. Genes (Basel) 2023; 14:2031. [PMID: 38002974 PMCID: PMC10671149 DOI: 10.3390/genes14112031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/24/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
Pain is a problem affecting women with breast cancer (HR+BrCa) receiving aromatase inhibitor (AI) therapy. We investigated the relationship between single-nucleotide polymorphisms (SNPs) in DNA repair and oxidative stress genes and perceived worst pain after 6 months of AI therapy. We explored 39 SNPs in genes involved in DNA repair (ERCC2, ERCC3, ERCC5, and PARP1) and oxidative stress (CAT, GPX1, SEPP1, SOD1, and SOD2) in women with HR+BrCa receiving adjuvant therapy (AI ± chemotherapy; n = 138). Pain was assessed via the Brief Pain Inventory. Hurdle regression was used to evaluate the relationship between each associated allele and (1) the probability of pain and (2) the severity of worst pain. ERCC2rs50872 and ERCC5rs11069498 were associated with the probability of pain and had a significant genetic risk score (GRS) model (p = 0.003). ERCC2rs50872, ERCC5rs11069498, ERCC5rs4771436, ERCC5rs4150360, PARP1rs3219058, and SEPP1rs230819 were associated with the severity of worst pain, with a significant GRS model (conditional mean estimate = 0.45; 95% CI = 0.29, 0.60; p < 0.001). These results suggest DNA repair and oxidative stress pathways may play a role in the probability of pain and the severity of worst pain. As healthcare delivery moves towards the model of precision healthcare, nurses may, in the future, be able to use these results to tailor patient care based on GRS.
Collapse
Affiliation(s)
- Monica A. Wagner
- Frances Payne Bolton School of Nursing, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Theresa A. Koleck
- School of Nursing, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Alex Conway
- School of Nursing, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | - Yvette P. Conley
- School of Nursing, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
20
|
Choi H, Kim H, Han S, Park HW, Ha IJ, Kim JS, Lee SG. Antioxidant and Anti-Inflammatory Activities of High-Glucosinolate-Synthesis Lines of Brassica rapa. Antioxidants (Basel) 2023; 12:1693. [PMID: 37759996 PMCID: PMC10525794 DOI: 10.3390/antiox12091693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Excessive oxidative stress and inflammatory responses are associated with the development of various diseases, including cancer. Glucosinolates (GSLs) are phytochemicals known for their antioxidant properties, and doubled haploid lines (DHLs) of Brassica rapa with high GSL contents (HGSL) were intentionally developed from two edible subspecies of Brassica rapa: B. rapa subsp. trilocularis and B. rapa subsp. chinensis. The purpose of the present study is to assess the capacity of HGSL DHLs to mitigate oxidative stress and inflammation in lipopolysaccharide (LPS)-stimulated RAW264.7 cells, compared to pak choi as a parental control. Our findings demonstrate that HGSL DH lines effectively suppressed the expression of inducible nitric oxide synthase, leading to the reduced levels of nitric oxide at non-toxic concentrations. Additionally, these lines exhibited scavenging activity against reactive oxygen species and free radicals. The enhanced antioxidant capacity of HGSL DHLs was mechanistically attributed to the upregulation of antioxidant enzymes, such as NADPH quinone oxidoreductase 1 (NQO1), the glutamate-cysteine ligase catalytic subunit (GCLC), and heme oxygenase-1 (HMOX1). Furthermore, we confirmed that these effects were mediated through the nuclear factor erythroid 2-related factor 2 (NRF2) signaling pathway via p38 phosphorylation. Moreover, HGSL DHLs demonstrated inhibitory effects on pro-inflammatory cytokines and signal transducers and activators of transcription 3 (STAT3) phosphorylation. Collectively, our results indicate that HGSL DHLs possess better antioxidant and anti-inflammatory properties compared to the parental control pak choi in LPS-stimulated RAW264.7 cells, suggesting that HGSL DHLs of Brassica rapa could be considered as a beneficial daily vegetable for reducing the risk of inflammation-associated diseases.
Collapse
Affiliation(s)
- Hyunjin Choi
- Department of Biomedical Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea;
- Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (H.K.); (S.H.); (I.J.H.)
| | - Hail Kim
- Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (H.K.); (S.H.); (I.J.H.)
| | - Sanghee Han
- Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (H.K.); (S.H.); (I.J.H.)
| | - Hyun Woo Park
- Genomic Division, Department of Agricultural Bio-Resources, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea;
| | - In Jin Ha
- Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (H.K.); (S.H.); (I.J.H.)
| | - Jung Sun Kim
- Genomic Division, Department of Agricultural Bio-Resources, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea;
| | - Seok-Geun Lee
- Department of Biomedical Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea;
- Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (H.K.); (S.H.); (I.J.H.)
| |
Collapse
|
21
|
Thabet NM, Abdel-Rafei MK, Amin MM. Fractionated whole body γ-irradiation aggravates arthritic severity via boosting NLRP3 and RANKL expression in adjuvant-induced arthritis model: the mitigative potential of ebselen. Inflammopharmacology 2023:10.1007/s10787-023-01238-5. [PMID: 37131046 DOI: 10.1007/s10787-023-01238-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 04/16/2023] [Indexed: 05/04/2023]
Abstract
Rheumatoid arthritis (RA) is an autoimmune chronic inflammatory disease associated with oxidative stress that causes excruciating pain, discomfort, and joint destruction. Ebselen (EB), a synthesized versatile organo-selenium compound, protects cells from reactive oxygen species (ROS)-induced injury by mimicking glutathione peroxidase (GPx) action. This study aimed to investigate the antioxidant and anti-inflammatory effects of EB in an arthritic irradiated model. This goal was achieved by subjecting adjuvant-induced arthritis (AIA) rats to fractionated whole body γ-irradiation (2 Gy/fraction once per week for 3 consecutive weeks, for a total dose of 6 Gy) and treating them with EB (20 mg/kg/day, p.o) or methotrexate (MTX; 0.05 mg/kg; twice/week, i.p) as a reference anti-RA drug. The arthritic clinical signs, oxidative stress and antioxidant biomarkers, inflammatory response, expression of NOD-like receptor protein-3 (NLRP-3) inflammasome, receptor activator of nuclear factor κB ligand (RANKL), nuclear factor-κB (NF-κB), apoptotic indicators (caspase 1 and caspase 3), cartilage integrity marker (collagen-II), and histopathological examination of ankle joints were assessed. EB notably improved the severity of arthritic clinical signs, alleviated joint histopathological lesions, modulated oxidative stress and inflammation in serum and synovium, as well as reduced NLRP-3, RANKL, and caspase3 expression while boosting collagen-II expression in the ankle joints of arthritic and arthritic irradiated rats with comparable potency to MTX. Our findings suggest that EB, through its antioxidant and anti-inflammatory properties, has anti-arthritic and radioprotective properties in an arthritic irradiated model.
Collapse
Affiliation(s)
- Noura M Thabet
- Radiation Biology Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, 3 Ahmed El-Zomor Street, Nasr City, P.O. Box 29, Cairo, 11787, Egypt.
| | - Mohamed K Abdel-Rafei
- Radiation Biology Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, 3 Ahmed El-Zomor Street, Nasr City, P.O. Box 29, Cairo, 11787, Egypt.
| | - Mohamed M Amin
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Egypt
| |
Collapse
|
22
|
Ji R, Jia F, Chen X, Gao Y, Yang J. Carnosol inhibits KGN cells oxidative stress and apoptosis and attenuates polycystic ovary syndrome phenotypes in mice through Keap1-mediated Nrf2/HO-1 activation. Phytother Res 2023; 37:1405-1421. [PMID: 36786429 DOI: 10.1002/ptr.7749] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/13/2022] [Accepted: 04/22/2022] [Indexed: 02/15/2023]
Abstract
Excessive oxidative stress and apoptosis of ovarian granulosa cells lead to abnormal follicular development and ovulation disorders in polycystic ovary syndrome (PCOS). Carnosol is a plant-derived polyphenol that has been proven to exhibit several cell protective effects. In this study, we established hyperandrogenic PCOS models both in vitro and in vivo. In the human ovarian granulosa cell line, KGN cells, decreased viability and mitochondrial membrane potential, and upregulated reactive oxygen species (ROS) level and apoptosis induced by DHT were partly reversed by carnosol. Western blotting results showed that carnosol treatment inhibited the DHT-activated mitochondrial apoptotic pathway by activating nuclear factor-erythroid 2-related factor (Nrf2)/heme oxygenase 1 (HO-1). Knockdown of Nrf2 by transfecting with siRNA or inhibiting HO-1 by zinc protoporphyrin (ZnPP) blocked the protective effects of carnosol. Computational modeling and pull-down assay results confirmed the direct binding of carnosol to kelch-like ECH-associated protein 1 (Keap1). In vivo results showed that the intraperitoneal administration of carnosol (50 and 100 mg/kg) improved estrous cycle disorders, polycystic ovary, and decreased elevated androgen in the PCOS mice. In summary, Carnosol has an effective role in inhibiting oxidative stress and apoptosis in DHT-treated KGN cells and protecting against mouse PCOS phenotypes through the Keap1-mediated activation of Nrf2/HO-1 signaling.
Collapse
Affiliation(s)
- Rui Ji
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China.,Ascientific Research Platform, Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Fangyuan Jia
- Department of Vascular and Endovascular Surgery, Henan Provincial People's Hospital, Zhengzhou City, Henan, China.,Department of Aortic Surgery, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xin Chen
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China.,Ascientific Research Platform, Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Yue Gao
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China.,Ascientific Research Platform, Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Jing Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China.,Ascientific Research Platform, Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| |
Collapse
|
23
|
Xiong L, Bao H, Li S, Gu D, Li Y, Yin Q, Li W, Miao L, Liu C. Cerium oxide nanoparticles protect against chondrocytes and cartilage explants from oxidative stress via Nrf2/HO-1 pathway in temporomandibular joint osteoarthritis. Front Bioeng Biotechnol 2023; 11:1076240. [PMID: 36815898 PMCID: PMC9937079 DOI: 10.3389/fbioe.2023.1076240] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/16/2023] [Indexed: 02/08/2023] Open
Abstract
Oxidative stress is closely linked to the etiology of temporomandibular joint osteoarthritis. (TMJ-OA) and is an important therapeutic target. Cerium oxide nanoparticles (CNPs) have been broadly studied owing to their powerful antioxidant properties and potential preventive and therapeutic effects against chronic diseases. The current study was designed to explore the protective effects of CNPs on the progression of TMJ-OA and their potential mechanisms. We detected the ability of CNPs to eliminate reactive oxygen species (ROS) in chondrocytes. Moreover, their protective effects on chondrocytes were detected in the level of gene and protein. Furthermore, TUNEL assay, histology and safranin O-fast green staining were used to detect the beneficial effects of CNPs on cartilage explants. The mechanism of CNPs, protecting condylar cartilage by reducing inflammation, was further explored by knocking down the Nuclear factor-erythroid 2-related factor (Nrf2) gene. CNPs could reduce the ROS levels in chondrocytes and cartilage explants and reverse the IL-1β-induced imbalance of cartilage matrix metabolism and apoptosis. The protective effects of CNPs on cartilage were lost after key antioxidant factors including Nrf2 and heme-oxygenase 1(HO-1) were significantly reduced. In conclusion, this study demonstrated for the first time that activating the Nrf2/HO-1 signaling pathway by CNPs might have therapeutic potential for TMJ-OA.
Collapse
Affiliation(s)
- Liping Xiong
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Han Bao
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Size Li
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Deao Gu
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yuyang Li
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Qianwen Yin
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wen Li
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Leiying Miao
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China,*Correspondence: Leiying Miao, ; Chao Liu,
| | - Chao Liu
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China,*Correspondence: Leiying Miao, ; Chao Liu,
| |
Collapse
|
24
|
Chen T, Hu Y, Lu L, Zhao Q, Tao X, Ding B, Chen S, Zhu J, Guo X, Lin Z. Myricetin attenuates hypoxic-ischemic brain damage in neonatal rats via NRF2 signaling pathway. Front Pharmacol 2023; 14:1134464. [PMID: 36969871 PMCID: PMC10031108 DOI: 10.3389/fphar.2023.1134464] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/27/2023] [Indexed: 03/29/2023] Open
Abstract
Introduction: Hypoxic-ischemic encephalopathy (HIE) is a crucial cause of neonatal death and neurological sequelae, but currently there is no effective therapy drug for HIE. Both oxidative stress and apoptosis play critical roles in the pathological development of HIE. Myricetin, a naturally extracted flavonol compound, exerts remarkable effects against oxidative stress, apoptosis, and inflammation. However, the role and underlying molecular mechanism of myricetin on HIE remain unclear. Methods: In this study, we established the neonatal rats hypoxic-ischemic (HI) brain damage model in vivo and CoCl2 induced PC12 cell model in vitro to explore the neuroprotective effects of myricetin on HI injury, and illuminate the potential mechanism. Results: Our results showed that myricetin intervention could significantly reduce brain infarction volume, glia activation, apoptosis, and oxidative stress marker levels through activating NRF2 (Nuclear factor-E2-related factor 2) and increase the expressions of NRF2 downstream proteins NQO-1 and HO-1. In addition, the NRF2 inhibitor ML385 could significantly reverse the effects of myricetin. Conclusion: This study found that myricetin might alleviate oxidative stress and apoptosis through NRF2 signaling pathway to exert the protective role for HI injury, which suggested that myricetin might be a promising therapeutic agent for HIE.
Collapse
Affiliation(s)
- Tingting Chen
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yingying Hu
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Liying Lu
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qianlei Zhao
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoyue Tao
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Bingqing Ding
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shangqin Chen
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianghu Zhu
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- *Correspondence: Jianghu Zhu, ; Xiaoling Guo, ; Zhenlang Lin,
| | - Xiaoling Guo
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Basic Medical Research Center, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Children Genitourinary Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- *Correspondence: Jianghu Zhu, ; Xiaoling Guo, ; Zhenlang Lin,
| | - Zhenlang Lin
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- *Correspondence: Jianghu Zhu, ; Xiaoling Guo, ; Zhenlang Lin,
| |
Collapse
|
25
|
Gambari L, Cellamare A, Grassi F, Grigolo B, Panciera A, Ruffilli A, Faldini C, Desando G. Overview of Anti-Inflammatory and Anti-Nociceptive Effects of Polyphenols to Halt Osteoarthritis: From Preclinical Studies to New Clinical Insights. Int J Mol Sci 2022; 23:ijms232415861. [PMID: 36555503 PMCID: PMC9779856 DOI: 10.3390/ijms232415861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/10/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022] Open
Abstract
Knee osteoarthritis (OA) is one of the most multifactorial joint disorders in adults. It is characterized by degenerative and inflammatory processes that are responsible for joint destruction, pain and stiffness. Despite therapeutic advances, the search for alternative strategies to target inflammation and pain is still very challenging. In this regard, there is a growing body of evidence for the role of several bioactive dietary molecules (BDMs) in targeting inflammation and pain, with promising clinical results. BDMs may be valuable non-pharmaceutical solutions to treat and prevent the evolution of early OA to more severe phenotypes, overcoming the side effects of anti-inflammatory drugs. Among BDMs, polyphenols (PPs) are widely studied due to their abundance in several plants, together with their benefits in halting inflammation and pain. Despite their biological relevance, there are still many questionable aspects (biosafety, bioavailability, etc.) that hinder their clinical application. This review highlights the mechanisms of action and biological targets modulated by PPs, summarizes the data on their anti-inflammatory and anti-nociceptive effects in different preclinical in vitro and in vivo models of OA and underlines the gaps in the knowledge. Furthermore, this work reports the preliminary promising results of clinical studies on OA patients treated with PPs and discusses new perspectives to accelerate the translation of PPs treatment into the clinics.
Collapse
Affiliation(s)
- Laura Gambari
- Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Antonella Cellamare
- Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Francesco Grassi
- Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Brunella Grigolo
- Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Alessandro Panciera
- 1st Orthopedic and Traumatology Clinic, IRCCS Istituto Ortopedico Rizzoli, via G.C. Pupilli 1, 40136 Bologna, Italy
| | - Alberto Ruffilli
- 1st Orthopedic and Traumatology Clinic, IRCCS Istituto Ortopedico Rizzoli, via G.C. Pupilli 1, 40136 Bologna, Italy
| | - Cesare Faldini
- 1st Orthopedic and Traumatology Clinic, IRCCS Istituto Ortopedico Rizzoli, via G.C. Pupilli 1, 40136 Bologna, Italy
| | - Giovanna Desando
- Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
- Correspondence: ; Tel.: +39-0516366803
| |
Collapse
|
26
|
Zhu S, Qin W, Liu T, Liu T, Ma H, Hu C, Yue X, Yan Y, Lv Y, Wang Z, Zhao Z, Wang X, Liu Y, Xia Q, Zhang H, Li N. Modified Qing’e Formula protects against UV-induced skin oxidative damage via the activation of Nrf2/ARE defensive pathway. Front Pharmacol 2022; 13:976473. [PMID: 36386207 PMCID: PMC9650274 DOI: 10.3389/fphar.2022.976473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/12/2022] [Indexed: 11/24/2022] Open
Abstract
Exposure to ultraviolet (UV) light triggers the rapid generation and accumulation of reactive oxygen species (ROS) in skin cells, which increases oxidative stress damage and leads to photoaging. Nuclear factor E2-related factor 2 (Nrf2) modulates the antioxidant defense of skin cells against environmental factors, especially ultraviolet radiation. Natural products that target Nrf2-regulated antioxidant reactions are promising candidates for anti-photoaging. The aim of this study was to investigate the protective effect of Modified Qing’e Formula (MQEF) on UV-induced skin oxidative damage and its molecular mechanisms. In this study, the photoaging models of human keratinocytes (HaCaT) and ICR mice were established by UV irradiation. In vitro models showed that MQEF displayed potent antioxidant activity, significantly increased cell viability and reduced apoptosis and excess ROS levels. Meanwhile, the knockdown of Nrf2 reversed the antioxidant and anti-apoptotic effects of MQEF. In vivo experiments indicated that MQEF could protect the skin against UV-exposed injury which manifested by water loss, sensitivity, tanning, wrinkling, and breakage of collagen and elastic fibers. The application of MQEF effectively increased the activity of antioxidant enzymes and reduced the content of malondialdehyde (MDA) in mice. In addition, MQEF was able to activate Nrf2 nuclear translocation in mouse skin tissue. In summary, MQEF may attenuate UV-induced photoaging by upregulating Nrf2 expression and enhancing antioxidant damage capacity. MQEF may be a potential candidate to prevent UV-induced photoaging by restoring redox homeostasis.
Collapse
Affiliation(s)
- Shan Zhu
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Formulation, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wenxiao Qin
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Formulation, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Tao Liu
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Formulation, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Tao Liu
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Formulation, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hongfei Ma
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Formulation, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Cunyu Hu
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Formulation, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaofeng Yue
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Formulation, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yiqi Yan
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Formulation, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yingshuang Lv
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Formulation, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zijing Wang
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Formulation, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhiyue Zhao
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Formulation, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiang Wang
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Formulation, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yan Liu
- Tianjin University of Technology, Tianjin, China
| | - Qingmei Xia
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Formulation, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Han Zhang
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Formulation, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Han Zhang, ; Nan Li,
| | - Nan Li
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Formulation, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Han Zhang, ; Nan Li,
| |
Collapse
|
27
|
Manda G, Milanesi E, Genc S, Niculite CM, Neagoe IV, Tastan B, Dragnea EM, Cuadrado A. Pros and cons of NRF2 activation as adjunctive therapy in rheumatoid arthritis. Free Radic Biol Med 2022; 190:179-201. [PMID: 35964840 DOI: 10.1016/j.freeradbiomed.2022.08.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 10/15/2022]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease with an important inflammatory component accompanied by deregulated redox-dependent signaling pathways that are feeding back into inflammation. In this context, we bring into focus the transcription factor NRF2, a master redox regulator that exerts exquisite antioxidant and anti-inflammatory effects. The review does not intend to be exhaustive, but to point out arguments sustaining the rationale for applying an NRF2-directed co-treatment in RA as well as its potential limitations. The involvement of NRF2 in RA is emphasized through an analysis of publicly available transcriptomic data on NRF2 target genes and the findings from NRF2-knockout mice. The impact of NRF2 on concurrent pathologic mechanisms in RA is explained by its crosstalk with major redox-sensitive inflammatory and cell death-related pathways, in the context of the increased survival of pathologic cells in RA. The proposed adjunctive therapy targeted to NRF2 is further sustained by the existence of promising NRF2 activators that are in various stages of drug development. The interference of NRF2 with conventional anti-rheumatic therapies is discussed, including the cytoprotective effects of NRF2 for alleviating drug toxicity. From another perspective, the review presents how NRF2 activation would be decreasing the efficacy of synthetic anti-rheumatic drugs by increasing drug efflux. Future perspectives regarding pharmacologic NRF2 activation in RA are finally proposed.
Collapse
Affiliation(s)
- Gina Manda
- Radiobiology Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Elena Milanesi
- Radiobiology Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Sermin Genc
- Neurodegeneration and Neuroprotection Laboratory, Izmir Biomedicine and Genome Center, Izmir, Turkey; Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey; Department of Neuroscience, Health Science Institute, Dokuz Eylul University, Izmir, Turkey
| | - Cristina Mariana Niculite
- Radiobiology Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania; Department of Cellular and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Ionela Victoria Neagoe
- Radiobiology Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Bora Tastan
- Neurodegeneration and Neuroprotection Laboratory, Izmir Biomedicine and Genome Center, Izmir, Turkey; Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Elena Mihaela Dragnea
- Radiobiology Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Antonio Cuadrado
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| |
Collapse
|
28
|
Liu X, Wang Z, Qian H, Tao W, Zhang Y, Hu C, Mao W, Guo Q. Natural medicines of targeted rheumatoid arthritis and its action mechanism. Front Immunol 2022; 13:945129. [PMID: 35979373 PMCID: PMC9376257 DOI: 10.3389/fimmu.2022.945129] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease involving joints, with clinical manifestations of joint inflammation, bone damage and cartilage destruction, joint dysfunction and deformity, and extra-articular organ damage. As an important source of new drug molecules, natural medicines have many advantages, such as a wide range of biological effects and small toxic and side effects. They have become a hot spot for the vast number of researchers to study various diseases and develop therapeutic drugs. In recent years, the research of natural medicines in the treatment of RA has made remarkable achievements. These natural medicines mainly include flavonoids, polyphenols, alkaloids, glycosides and terpenes. Among them, resveratrol, icariin, epigallocatechin-3-gallate, ginsenoside, sinomenine, paeoniflorin, triptolide and paeoniflorin are star natural medicines for the treatment of RA. Its mechanism of treating RA mainly involves these aspects: anti-inflammation, anti-oxidation, immune regulation, pro-apoptosis, inhibition of angiogenesis, inhibition of osteoclastogenesis, inhibition of fibroblast-like synovial cell proliferation, migration and invasion. This review summarizes natural medicines with potential therapeutic effects on RA and briefly discusses their mechanisms of action against RA.
Collapse
Affiliation(s)
- Xueling Liu
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Zhiguo Wang
- Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Hua Qian
- Department of Traditional Chinese Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang City, China
| | - Wenhua Tao
- Department of Traditional Chinese Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang City, China
| | - Ying Zhang
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Chunyan Hu
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Weiwei Mao
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Qi Guo
- School of Medicine, Jiangsu University, Zhenjiang, China
- *Correspondence: Qi Guo,
| |
Collapse
|
29
|
Theaflavin-3,3 -Digallate Protects Cartilage from Degradation by Modulating Inflammation and Antioxidant Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3047425. [PMID: 35847580 PMCID: PMC9286955 DOI: 10.1155/2022/3047425] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/15/2022] [Indexed: 12/25/2022]
Abstract
Background Osteoarthritis (OA) is a common degenerative joint disease that may be closely linked to inflammation and oxidative stress destroying the balance of cartilage matrix. Theaflavin-3,3′-digallate (TFDG), a natural substance derived from black tea, has been reported to restrict the activity of inflammatory cytokines and effectively eliminate reactive oxygen species (ROS) in various diseases. However, it is not clear whether TFDG can improve OA. Methods Chondrocytes were treated with or without IL-1β and 20 μM and 40 μM TFDG. The effect of TFDG on the proliferation of chondrocytes was detected by CCK8. RT-qPCR was used to detect the gene expression of inflammatory factors, extracellular matrix synthesis, and degradation genes. Western blot and immunofluorescence assays were used to detect the protein expression. The fluorescence intensity of reactive oxygen species labeled by DCFH-DA was detected by flow cytometry. We established an OA rat model by performing destabilized medial meniscus (DMM) surgery to observe whether TFDG can protect chondrocytes under arthritis in vivo. Results TFDG was found to inhibit proinflammatory factors (IL-6, TNF-α, iNOS, and PGE) and matrix-degrading enzymes (MMP13, MMP3, and ADAMTS5) expression and protected extracellular matrix components of chondrocytes (ACAN, COL2, and SOX9). TFDG accelerated the scavenging of ROS caused by IL-1β according to the Nrf2 signaling pathway activation. At the same time, TFDG suppressed the PI3K/AKT/NF-κB and MAPK signaling pathways to delay the inflammatory process. The cartilage of DMM rats receiving TFDG showed lower Osteoarthritis Research Society International (OARSI) scores and expressed higher levels of COL2 and Nrf2 compared with those of rats in the DMM group. Conclusion TFDG could protect cartilage from degradation and alleviate osteoarthritis in rats, which suggests that TFDG has potential as a drug candidate for OA therapy.
Collapse
|
30
|
Yoneyama H, Hosohata K, Jin D, Yoshida I, Toyoda M, Kitamura I, Takai S, Usami Y. Design, synthesis, and evaluation of new vanin-1 inhibitors based on RR6. Bioorg Med Chem 2022; 65:116791. [PMID: 35537325 DOI: 10.1016/j.bmc.2022.116791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 11/25/2022]
Abstract
Fourteen novel vanin-1 inhibitors coded OMP-# were designed from RR6 and successfully synthesized by a nucleophilic addition-elimination reaction of the pantetheinic acid-derived Weinreb amide as a key step under Barbier conditions. The synthesized OMP compounds exhibited inhibitory activity against human serum vanin-1 in vitro. Among the synthesized compounds, OMP-7, which possesses a trifluoromethoxy group at the para-position on the phenyl ring, exhibited the most potent activity, approximately 20 times that of the mother compound RR6. OMP-7 was further subjected to an in vivo assay using a normal hamster. More potent activity was observed than that of RR6 against both serum and renal vanin-1. The activity lasted for 4 h after injection against serum vanin-1 and 1 h after injection against renal vanin-1, whereas RR6 did not show the desired activity.
Collapse
Affiliation(s)
- Hiroki Yoneyama
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1Nasahara, Takatsuki City, Osaka 569-1094, Japan
| | - Keiko Hosohata
- Education and Research Center of Clinical Pharmacy, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1Nasahara, Takatsuki City, Osaka 569-1094, Japan
| | - Denan Jin
- Department of Innovative Medicine, Graduate School of Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki City, Osaka 569-8686, Japan
| | - Iroha Yoshida
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1Nasahara, Takatsuki City, Osaka 569-1094, Japan
| | - Miyui Toyoda
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1Nasahara, Takatsuki City, Osaka 569-1094, Japan
| | - Ikuko Kitamura
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1Nasahara, Takatsuki City, Osaka 569-1094, Japan
| | - Shinji Takai
- Department of Innovative Medicine, Graduate School of Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki City, Osaka 569-8686, Japan
| | - Yoshihide Usami
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1Nasahara, Takatsuki City, Osaka 569-1094, Japan.
| |
Collapse
|
31
|
Pei W, Deng J, Wang P, Wang X, Zheng L, Zhang Y, Huang C. Sustainable lignin and lignin-derived compounds as potential therapeutic agents for degenerative orthopaedic diseases: A systemic review. Int J Biol Macromol 2022; 212:547-560. [PMID: 35643155 DOI: 10.1016/j.ijbiomac.2022.05.152] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/13/2022] [Accepted: 05/22/2022] [Indexed: 12/12/2022]
Abstract
Lignin, the most abundant natural and sustainable phenolic compound in biomass, has exhibited medicinal values due to its biological activities decided by physicochemical properties. Recently, the lignin and its derivatives (such as lignosulfonates and lignosulfonate) have been proven efficient in regulating cellular process and the extracellular microenvironment, which has been regarded as the key factor in disease progression. In orthopaedic diseases, especially the degenerative diseases represented by osteoarthritis and osteoporosis, excessive activated inflammation has been proven as a key stage in the pathological process. Due to the excellent biocompatibility, antibacterial and antioxidative activities of lignin and its derivatives, they have been applied to stimulate cells and restore the uncoupling bone remodeling in the degenerative orthopaedic diseases. However, there is a lack of a systemic review to state the current research actuality of lignin and lignin-derived compounds in treating degenerative orthopaedic diseases. Herein, we summarized the current application of lignin and lignin-derived compounds in orthopaedic diseases and proposed their possible therapeutic mechanism in treating degenerative orthopaedic diseases. It is hoped this work could guide the future preparation of lignin/lignin-derived drugs and implants as available therapeutic strategies for clinically degenerative orthopaedic diseases.
Collapse
Affiliation(s)
- Wenhui Pei
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Junping Deng
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Peng Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Xucai Wang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Liming Zheng
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China.
| | - Yangheng Zhang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, China.
| | - Caoxing Huang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
32
|
López-Armada MJ, Fernández-Rodríguez JA, Blanco FJ. Mitochondrial Dysfunction and Oxidative Stress in Rheumatoid Arthritis. Antioxidants (Basel) 2022; 11:antiox11061151. [PMID: 35740048 PMCID: PMC9220001 DOI: 10.3390/antiox11061151] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 02/04/2023] Open
Abstract
Control of excessive mitochondrial oxidative stress could provide new targets for both preventive and therapeutic interventions in the treatment of chronic inflammation or any pathology that develops under an inflammatory scenario, such as rheumatoid arthritis (RA). Increasing evidence has demonstrated the role of mitochondrial alterations in autoimmune diseases mainly due to the interplay between metabolism and innate immunity, but also in the modulation of inflammatory response of resident cells, such as synoviocytes. Thus, mitochondrial dysfunction derived from several danger signals could activate tricarboxylic acid (TCA) disruption, thereby favoring a vicious cycle of oxidative/mitochondrial stress. Mitochondrial dysfunction can act through modulating innate immunity via redox-sensitive inflammatory pathways or direct activation of the inflammasome. Besides, mitochondria also have a central role in regulating cell death, which is deeply altered in RA. Additionally, multiple evidence suggests that pathological processes in RA can be shaped by epigenetic mechanisms and that in turn, mitochondria are involved in epigenetic regulation. Finally, we will discuss about the involvement of some dietary components in the onset and progression of RA.
Collapse
Affiliation(s)
- María José López-Armada
- Grupo de Investigación en Envejecimiento e Inflamación (ENVEINF), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain;
- Correspondence: (M.J.L.-A.); (F.J.B.); Tel./Fax: +34-981-178272-73 (M.J.L.-A.)
| | - Jennifer Adriana Fernández-Rodríguez
- Grupo de Investigación en Envejecimiento e Inflamación (ENVEINF), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain;
| | - Francisco Javier Blanco
- Grupo de Investigación de Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
- Grupo de Investigación de Reumatología y Salud (GIR-S), Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Fisioterapia, Campus de Oza, Universidade da Coruña, 15001 A Coruña, Spain
- Correspondence: (M.J.L.-A.); (F.J.B.); Tel./Fax: +34-981-178272-73 (M.J.L.-A.)
| |
Collapse
|
33
|
Primary Human Trophoblasts Mimic the Preeclampsia Phenotype after Acute Hypoxia-Reoxygenation Insult. Cells 2022; 11:cells11121898. [PMID: 35741027 PMCID: PMC9221019 DOI: 10.3390/cells11121898] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/30/2022] [Accepted: 06/09/2022] [Indexed: 11/17/2022] Open
Abstract
Preeclampsia (PE) is a pregnancy-specific disorder that affects 3 to 5% of pregnancies worldwide and is one of the leading causes of maternal and fetal morbidity and mortality. Nevertheless, how these events occur remains unclear. We hypothesized that the induction of hypoxic conditions in vitro in primary human trophoblast cells would mimic several characteristics of PE found in vivo. We applied and characterized a model of primary cytotrophoblasts isolated from healthy pregnancies that were placed under different oxygen concentrations: ambient O2 (5% pCO2, 21%pO2, 24 h, termed “normoxia”), low O2 concentration (5% pCO2, 1.5% pO2, 24 h, termed “hypoxia”), or “hypoxia/reoxygenation” (H/R: 6 h intervals of normoxia and hypoxia for 24 h). Various established preeclamptic markers were assessed in this cell model and compared to placental tissues obtained from PE pregnancies. Seventeen PE markers were analyzed by qPCR, and the protein secretion of soluble fms-like tyrosine kinase 1 (sFlT-1) and the placenta growth factor (PlGF) was determined by ELISA. Thirteen of seventeen genes associated with angiogenesis, the renin–angiotensin system, oxidative stress, endoplasmic reticulum stress, and the inflammasome complex were susceptible to H/R and hypoxia, mimicking the expression pattern of PE tissue. In cell culture supernatants, the secretion of sFlT-1 was increased in hypoxia, while PlGF release was significantly reduced in H/R and hypoxia. In the supernatants of our cell models, the sFlT-1/PlGF ratio in hypoxia and H/R was higher than 38, which is a strong indicator for PE in clinical practice. These results suggest that our cellular models reflect important pathological processes occurring in PE and are therefore suitable as PE in vitro models.
Collapse
|
34
|
Chen H, Song L, Xu X, Han Z, Peng F, Zhang Q, Liu C, Liang X. The effect of icariin on autoimmune premature ovarian insufficiency via modulation of Nrf2/HO-1/Sirt1 pathway in mice. Reprod Biol 2022; 22:100638. [PMID: 35344846 DOI: 10.1016/j.repbio.2022.100638] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/17/2022] [Accepted: 03/12/2022] [Indexed: 12/21/2022]
Abstract
Primary ovarian insufficiency (POI) is a common gynecological disease. Autoimmunity is a common cause of POI. Icariin (ICA) plays a therapeutic role in many autoimmune diseases. This study aims to investigate the effect of ICA on autoimmune POI mice and its effect on immune regulation. Sixty-three female BALB/c mice were randomized into three groups (control, POI, POI + ICA). POI and POI + ICA group were hypodermically injected with zona pellucida three peptides (pZP3) to induce autoimmune POI. Then the POI + ICA group was gavaged with ICA. A vaginal smear was to observe estrous cycles, hematoxylin-eosin staining was to count follicles. Enzyme-linked immunosorbent analysis determined serum FSH, LH, AMH, and anti-zona pellucida antibody (AZPAb) levels. In addition, flow cytometry detected the expression of Th1 cells and Treg cells, and Western blot was used to detect the expression of Nuclear factor E2 related factor 2(Nrf2), heme oxygenase-1 (HO-1), and Sirtuin-1 (Sirt1) proteins. pZP3 treatment decreased serum AMH levels and increased FSH, LH, and AZPAb levels. Additionally, decreases in the number of healthy follicles at all stages and an increase in the number of atretic follicles. Abnormal ovarian structure and an arrested estrous cycle were also noted. However, ICA rescued POI through up-regulating Nrf2, HO-1, and Sirt1 expressions and up-regulating Treg expressions. ICA treatment improved the structure of the injured ovarian and its function in autoimmune POI mice. The mechanism is achieved by increasing the expression of Nrf2/HO-1/Sirt1 pathway in the ovary and increasing Treg cells' expression.
Collapse
Affiliation(s)
- Haoran Chen
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Reproductive & Women-Children Hospital, Chengdu, China
| | - Linjiang Song
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Reproductive & Women-Children Hospital, Chengdu, China
| | - Xiaofang Xu
- Department of Gynecology, Leping Maternal and Child Health Care Hospital, Leping, China
| | - Zhongyu Han
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Reproductive & Women-Children Hospital, Chengdu, China
| | - Fang Peng
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Reproductive & Women-Children Hospital, Chengdu, China
| | - Qinxiu Zhang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Reproductive & Women-Children Hospital, Chengdu, China
| | - Chi Liu
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China.
| | - Xin Liang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Reproductive & Women-Children Hospital, Chengdu, China.
| |
Collapse
|
35
|
Almeida LM, Pinho BR, Duchen MR, Oliveira JMA. The PERKs of mitochondria protection during stress: insights for PERK modulation in neurodegenerative and metabolic diseases. Biol Rev Camb Philos Soc 2022; 97:1737-1748. [PMID: 35475315 DOI: 10.1111/brv.12860] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 02/06/2023]
Abstract
Protein kinase RNA-like ER kinase (PERK) is an endoplasmic reticulum (ER) stress sensor that responds to the accumulation of misfolded proteins. Once activated, PERK initiates signalling pathways that halt general protein production, increase the efficiency of ER quality control, and maintain redox homeostasis. PERK activation also protects mitochondrial homeostasis during stress. The location of PERK at the contact sites between the ER and the mitochondria creates a PERK-mitochondria axis that allows PERK to detect stress in both organelles, adapt their functions and prevent apoptosis. During ER stress, PERK activation triggers mitochondrial hyperfusion, preventing premature apoptotic fragmentation of the mitochondria. PERK activation also increases the formation of mitochondrial cristae and the assembly of respiratory supercomplexes, enhancing cellular ATP-generating capacity. PERK strengthens mitochondrial quality control during stress by promoting the expression of mitochondrial chaperones and proteases and by increasing mitochondrial biogenesis and mitophagy, resulting in renewal of the mitochondrial network. But how does PERK mediate all these changes in mitochondrial homeostasis? In addition to the classic PERK-eukaryotic translation initiation factor 2α (eIF2α)-activating transcription factor 4 (ATF4) pathway, PERK can activate other protective pathways - PERK-O-linked N-acetyl-glucosamine transferase (OGT), PERK-transcription factor EB (TFEB), and PERK-nuclear factor erythroid 2-related factor 2 (NRF2) - contributing to broader regulation of mitochondrial dynamics, metabolism, and quality control. The pharmacological activation of PERK is protective in models of neurodegenerative and metabolic diseases, such as Huntington's disease, progressive supranuclear palsy and obesity, while the inhibition of PERK was protective in models of Parkinson's and prion diseases and diabetes. In this review, we address the molecular mechanisms by which PERK regulates mitochondrial dynamics, metabolism and quality control, and discuss the therapeutic potential of targeting PERK in neurodegenerative and metabolic diseases.
Collapse
Affiliation(s)
- Liliana M Almeida
- UCIBIO-REQUIMTE - Applied Molecular Biosciences Unit, Faculty of Pharmacy, Department of Drug Sciences, Pharmacology Lab, University of Porto, 4050-313, Porto, Portugal.,Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, Department of Drug Sciences, Pharmacology Lab, University of Porto, 4050-313, Porto, Portugal
| | - Brígida R Pinho
- UCIBIO-REQUIMTE - Applied Molecular Biosciences Unit, Faculty of Pharmacy, Department of Drug Sciences, Pharmacology Lab, University of Porto, 4050-313, Porto, Portugal.,Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, Department of Drug Sciences, Pharmacology Lab, University of Porto, 4050-313, Porto, Portugal
| | - Michael R Duchen
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, U.K.,Consortium for Mitochondrial Research (CfMR), University College London, Gower Street, London, WC1E 6BT, U.K
| | - Jorge M A Oliveira
- UCIBIO-REQUIMTE - Applied Molecular Biosciences Unit, Faculty of Pharmacy, Department of Drug Sciences, Pharmacology Lab, University of Porto, 4050-313, Porto, Portugal.,Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, Department of Drug Sciences, Pharmacology Lab, University of Porto, 4050-313, Porto, Portugal.,Consortium for Mitochondrial Research (CfMR), University College London, Gower Street, London, WC1E 6BT, U.K
| |
Collapse
|
36
|
Kokai L, Chen J, Wang D, Wang S, Egro F, Schilling B, Sun H, Ejaz A, Rubin JP, Gusenoff J, Vo N, Onishi K, Sowa G. Comparison of Clinically Relevant Adipose Preparations on Articular Chondrocyte Phenotype in a Novel In Vitro Co-Culture Model. Stem Cells Dev 2022; 31:621-629. [PMID: 35442089 DOI: 10.1089/scd.2021.0355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Adipose therapeutics, including isolated cell fractions and tissue emulsifications, have been explored for osteoarthritis (OA) treatment, however the optimal preparation method and bioactive tissue component for healing has yet to be determined. This in-vitro study compared the effects of adipose preparations on cultured knee chondrocytes. De-identified human articular chondrocytes were co-cultured with adipose preparations for 36 or 72 hours. Human adipose tissues were obtained from abdominal panniculectomy procedures and processed using three different techniques: enzymatic digestion to release stromal vascular fraction (SVF), emulsification with luer-to-luer transfer (nanofat), and processing in a bead-mill (Lipogems, Lipogems International SpA, Milan, Italy). Gene expression in both chondrocytes and adipose preparations was measured to assess cellular inflammation, catabolism, and anabolism. Results demonstrated that chondrocytes cultured with SVF consistently showed increased inflammatory and catabolic gene expression compared to control chondrocytes at both 36-and 72-hour timepoints. Alternatively, chondrocytes co-cultured with either nanofat or bead-mill processed adipose derivatives yielded minimal pro-inflammatory effects and instead increased anabolism and regeneration of cartilage extracellular matrix. Interestingly, nanofat preparations induced transient matrix anabolism while Lipogems adipose consistently demonstrated increased matrix synthesis at both study time points following co-culture. This evaluation of the regenerative potential of adipose-derived preparations as a clinical tool for knee OA treatment suggests that mechanically processed preparations may be more efficacious than an isolated SVF cell preparation.
Collapse
Affiliation(s)
- Lauren Kokai
- University of Pittsburgh School of Medicine, 12317, Plastic Surgery, Pittsburgh, Pennsylvania, United States.,University of Pittsburgh, 6614, Bioengineering, Pittsburgh, Pennsylvania, United States.,University of Pittsburgh McGowan Institute for Regenerative Medicine, 536993, Pittsburgh, Pennsylvania, United States;
| | - Joseph Chen
- University of Pittsburgh School of Medicine, 12317, Pittsburgh, Pennsylvania, United States;
| | - Dong Wang
- University of Pittsburgh School of Medicine, 12317, Orthopaedics, Pittsburgh, Pennsylvania, United States;
| | - Sheri Wang
- University of Pittsburgh School of Medicine, 12317, Pittsburgh, Pennsylvania, United States;
| | - Francesco Egro
- University of Pittsburgh School of Medicine, 12317, Plastic Surgery, Pittsburgh, Pennsylvania, United States;
| | - Benjamin Schilling
- University of Pittsburgh School of Medicine, 12317, Plastic Surgery, Pittsburgh, Pennsylvania, United States.,University of Pittsburgh, 6614, Bioengineering, Pittsburgh, Pennsylvania, United States;
| | - Hengyun Sun
- University of Pittsburgh School of Medicine, 12317, Plastic Surgery, Pittsburgh, Pennsylvania, United States.,Chinese Academy of Medical Sciences & Peking Union Medical College Plastic Surgery Hospital and Institute, 74698, The Seventh Department of Plastic Surgery, Shijingshan District, Beijing, China;
| | - Asim Ejaz
- University of Pittsburgh School of Medicine, 12317, Plastic Surgery, Pittsburgh, Pennsylvania, United States.,University of Pittsburgh McGowan Institute for Regenerative Medicine, 536993, Pittsburgh, Pennsylvania, United States;
| | - J Peter Rubin
- University of Pittsburgh, 6614, Plastic Surgery, Pittsburgh, Pennsylvania, United States.,University of Pittsburgh, 6614, Bioengineering, Pittsburgh, Pennsylvania, United States.,University of Pittsburgh McGowan Institute for Regenerative Medicine, 536993, Pittsburgh, Pennsylvania, United States;
| | - Jeffrey Gusenoff
- University of Pittsburgh School of Medicine, 12317, Plastic Surgery, Pittsburgh, Pennsylvania, United States;
| | - Nam Vo
- University of Pittsburgh School of Medicine, 12317, Orthopedics, Pittsburgh, Pennsylvania, United States.,University of Pittsburgh School of Medicine, 12317, Physical Medicine and Rehabilitation, Pittsburgh, Pennsylvania, United States;
| | - Kentaro Onishi
- University of Pittsburgh School of Medicine, 12317, Orthopedics, Pittsburgh, Pennsylvania, United States.,University of Pittsburgh School of Medicine, 12317, Physical Medicine and Rehabilitation, Pittsburgh, Pennsylvania, United States;
| | - Gwendolyn Sowa
- University of Pittsburgh, 6614, Orthopaedics, Pittsburgh, Pennsylvania, United States.,University of Pittsburgh School of Medicine, 12317, Physical Medicine and Rehabilitation, Pittsburgh, Pennsylvania, United States;
| |
Collapse
|
37
|
Zhao T, Yang Q, Xi Y, Xie Z, Shen J, Li Z, Li Z, Qin D. Ferroptosis in Rheumatoid Arthritis: A Potential Therapeutic Strategy. Front Immunol 2022; 13:779585. [PMID: 35185879 PMCID: PMC8847160 DOI: 10.3389/fimmu.2022.779585] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 01/14/2022] [Indexed: 02/05/2023] Open
Abstract
Ferroptosis is one of the newly discovered forms of cell-regulated death characterized by iron-dependent lipid peroxidation. Extensive research has focused on the roles of ferroptosis in tumors, blood diseases, and neurological diseases. Some recent findings have indicated that ferroptosis may also be related to the occurrence and development of inflammatory arthritis. Ferroptosis may be a potential therapeutic target, and few studies in vitro and animal models have shown implications in the pathogenesis of inflammatory arthritis. This mini review discussed the common features between ferroptosis and the pathogenesis of rheumatoid arthritis (RA), and evaluated therapeutic applications of ferroptosis regulators in preclinical and clinical research. Some critical issues worth paying attention to were also raised to guide future research efforts.
Collapse
Affiliation(s)
- Ting Zhao
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Qi Yang
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Yujiang Xi
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Zhaohu Xie
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Jiayan Shen
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Zhenmin Li
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Zhaofu Li
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Dongdong Qin
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
38
|
Tian Y, Duan J, Cao Y, Zhou H, Diwan AD, Tu J. Bardoxolone Methyl Ameliorates Compression-Induced Oxidative Stress Damage of Nucleus Pulposus Cells and Intervertebral Disc Degeneration Ex Vivo. Front Bioeng Biotechnol 2022; 9:814040. [PMID: 35178384 PMCID: PMC8843873 DOI: 10.3389/fbioe.2021.814040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
Intervertebral disc degeneration (IDD) is the main cause of low back pain, and little is known about its molecular and pathological mechanisms. According to reports, excessive compression is a high-risk factor for IDD; compressive stress can induce oxidative stress in nucleus pulposus (NP) cells during IDD progression that, in turn, promotes cell apoptosis and extracellular matrix (ECM) degradation. Currently, NP tissue engineering is considered a potential method for IDD treatment. However, after transplantation, NP cells may experience oxidative stress and induce apoptosis and ECM degradation due to compressive stress. Therefore, the development of strategies to protect NP cells under excessive compressive stress, including pretreatment of NP cells with antioxidants, has important clinical significance. Among the various antioxidants, bardoxolone methyl (BARD) is used to protect NP cells from damage caused by compressive stress. Our results showed that BARD can protect the viability of NP cells under compression. BARD inhibits compression-induced oxidative stress in NP cells by reducing compression-induced overproduction of reactive oxygen species (ROS) and malondialdehyde. Thus, BARD has a protective effect on the compression-induced apoptosis of NP cells. This is also supported by changes in the expression levels of proteins related to the mitochondrial apoptosis pathway. In addition, BARD can inhibit ECM catabolism and promote ECM anabolism in NP cells. Finally, the experimental results of the mechanism show that the activation of the Nrf2 signaling pathway participates in the protection induced by BARD in compressed NP cells. Therefore, to improve the viability and biological functions of NP cells under compression, BARD should be used during transplantation.
Collapse
Affiliation(s)
- Yueyang Tian
- School of Medicine, Nankai University, Tianjin, China
| | - Jiaqi Duan
- Queen Mary College, Nanchang University, Nanchang, China
| | - Yang Cao
- Zhengzhou University of Light Industry, Zhengzhou, China
| | - Huichao Zhou
- School of Medicine, Nankai University, Tianjin, China
| | - Ashish D Diwan
- Spine Labs, St.George and Sutherland Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Ji Tu
- Spine Labs, St.George and Sutherland Clinical School, University of New South Wales, Sydney, NSW, Australia
- *Correspondence: Ji Tu,
| |
Collapse
|
39
|
Zhou X, Yuan W, Xiong X, Zhang Z, Liu J, Zheng Y, Wang J, Liu J. HO-1 in Bone Biology: Potential Therapeutic Strategies for Osteoporosis. Front Cell Dev Biol 2021; 9:791585. [PMID: 34917622 PMCID: PMC8669958 DOI: 10.3389/fcell.2021.791585] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/12/2021] [Indexed: 02/05/2023] Open
Abstract
Osteoporosis is a prevalent bone disorder characterized by bone mass reduction and deterioration of bone microarchitecture leading to bone fragility and fracture risk. In recent decades, knowledge regarding the etiological mechanisms emphasizes that inflammation, oxidative stress and senescence of bone cells contribute to the development of osteoporosis. Studies have demonstrated that heme oxygenase 1 (HO-1), an inducible enzyme catalyzing heme degradation, exhibits anti-inflammatory, anti-oxidative stress and anti-apoptosis properties. Emerging evidence has revealed that HO-1 is critical in the maintenance of bone homeostasis, making HO-1 a potential target for osteoporosis treatment. In this Review, we aim to provide an introduction to current knowledge of HO-1 biology and its regulation, focusing specifically on its roles in bone homeostasis and osteoporosis. We also examine the potential of HO-1-based pharmacological therapeutics for osteoporosis and issues faced during clinical translation.
Collapse
Affiliation(s)
- Xueman Zhou
- State Key Laboratory of Oral Diseases and National Clinical Research Center for West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Lab for Aging Research, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Wenxiu Yuan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Lab for Aging Research, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Xiong
- State Key Laboratory of Oral Diseases and National Clinical Research Center for West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhenzhen Zhang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Lab for Aging Research, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jiaqi Liu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Lab for Aging Research, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yingcheng Zheng
- State Key Laboratory of Oral Diseases and National Clinical Research Center for West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Lab for Aging Research, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jun Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jin Liu
- Lab for Aging Research, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
40
|
Chen J, Luo Y, Li Y, Chen D, Yu B, He J. Chlorogenic Acid Attenuates Oxidative Stress-Induced Intestinal Epithelium Injury by Co-Regulating the PI3K/Akt and IκBα/NF-κB Signaling. Antioxidants (Basel) 2021; 10:antiox10121915. [PMID: 34943017 PMCID: PMC8750628 DOI: 10.3390/antiox10121915] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/24/2021] [Accepted: 11/27/2021] [Indexed: 12/26/2022] Open
Abstract
Chlorogenic acid (CGA) is a natural polyphenol compound abundant in green plants with antioxidant and anti-inflammatory activities. Here, we explore its protective effects and potential mechanisms of action on intestinal epithelium exposure to oxidative stress (OS). We show that CGA attenuated OS-induced intestinal inflammation and injury in weaned pigs, which is associated with elevated antioxidant capacity and decreases in inflammatory cytokine secretion and cell apoptosis. In vitro study showed that CGA elevated phosphorylation of two critical signaling proteins of the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt) pathway, Akt and nuclear factor erythroid-derived-related factor 2, leading to the elevated expression of intracellular antioxidant enzymes and heme oxygenase-1 (HO-1). Specific inhibition of HO-1 partially abolished its anti-inflammatory effect in IPEC-J2 cells exposure to OS. Interestingly, CGA suppressed the tumor necrosis factor-α (TNF-α) induced inflammatory responses in IPEC-J2 cells by decreasing phosphorylation of two critical inflammatory signaling proteins, NF-kappa-B inhibitor alpha (IκBα) and nuclear factor-κB (NF-κB). Specific inhibition of HO-1 cannot fully abolish its anti-inflammatory effect on the TNF-α-challenged cells. These results strongly suggested that CGA is a natural anti-inflammatory agent that can attenuate OS-induced inflammation and injury of intestinal epithelium via co-regulating the PI3K/Akt and IκBα/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Jiali Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (J.C.); (Y.L.); (Y.L.); (D.C.); (B.Y.)
- Key Laboratory of Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Chengdu 611130, China
| | - Yuheng Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (J.C.); (Y.L.); (Y.L.); (D.C.); (B.Y.)
- Key Laboratory of Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Chengdu 611130, China
| | - Yan Li
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (J.C.); (Y.L.); (Y.L.); (D.C.); (B.Y.)
- Guilin Fengpeng Bio-Tech Co., Ltd., Guilin 541199, China
| | - Daiwen Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (J.C.); (Y.L.); (Y.L.); (D.C.); (B.Y.)
- Key Laboratory of Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Chengdu 611130, China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (J.C.); (Y.L.); (Y.L.); (D.C.); (B.Y.)
- Key Laboratory of Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Chengdu 611130, China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (J.C.); (Y.L.); (Y.L.); (D.C.); (B.Y.)
- Key Laboratory of Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Chengdu 611130, China
- Correspondence:
| |
Collapse
|
41
|
Protective Role of 4-Octyl Itaconate in Murine LPS/D-GalN-Induced Acute Liver Failure via Inhibiting Inflammation, Oxidative Stress, and Apoptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9932099. [PMID: 34457120 PMCID: PMC8387163 DOI: 10.1155/2021/9932099] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/29/2021] [Indexed: 01/21/2023]
Abstract
Oxidative stress, inflammation, and apoptosis are crucial in the pathogenesis of acute liver failure (ALF). 4-Octyl itaconate (OI) showed antioxidative and anti-inflammatory properties in many disease models. However, its role in lipopolysaccharide- (LPS-)/D-galactosamine- (D-GalN-) induced ALF is still not investigated. Here, we established an ALF murine model induced by LPS/D-GalN administration. And we found that OI improved survival rate in the murine ALF model. Our results also showed that OI alleviated LPS/D-GalN-induced hepatic histopathological injury and reduced the serum activities of alanine transaminase and aspartate transaminase. Moreover, OI reduced serum levels of proinflammatory cytokines such as monocyte chemotactic protein-1, tumor necrosis factors-α, and interlukin-6. Additionally, OI mitigated oxidative stress and alleviated lipid peroxidation in a murine model of ALF. This was evaluated by a reduction of thiobarbituric acid reactive substances (TBARS) in liver tissues. In addition, OI increased the ratio of reduced glutathione/oxidized glutathione and the activities of antioxidant enzymes including catalase and superoxide dismutase. Moreover, the apoptosis of hepatocytes in the liver was inhibited by OI. Furthermore, we found that OI inhibited LPS-induced nuclear translocation and activation of factor-kappa B (NF-κB) p65 in macrophages which could be inhibited by OI-induced activation of nuclear factor erythroid-2-related factor (Nrf2) signaling. Additionally, D-GalN-induced reactive oxygen species (ROS) generation and apoptosis in hepatocytes were inhibited by OI-induced activation of Nrf2 signaling. Therefore, the underlying mechanism for OI's protective effect in LPS/D-GalN-induced ALF may be associated with deactivation of NF-κB signaling in macrophages to reduce inflammation and inhibition of ROS-related hepatocyte apoptosis by activating Nrf2. In conclusion, OI showed a protective role in LPS/D-GalN-induced ALF by reducing inflammation, enhancing antioxidant capacity, and inhibiting cell apoptosis.
Collapse
|
42
|
Zhen X, Jindong L, Yang Z, Yashi R, Wei G, Wei J, Wei Z, Sudong L. Activation of Nrf2 Pathway by Dimethyl Fumarate Attenuates Renal Ischemia-Reperfusion Injury. Transplant Proc 2021; 53:2133-2139. [PMID: 34426023 DOI: 10.1016/j.transproceed.2021.07.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/19/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Dimethyl fumarate (DMF) is a novel antioxidant that selectively reduces hydroxyl radicals. This study aimed to investigate the potential role of DMF in the pathogenesis of renal ischemia-reperfusion injury (IRI) and the mechanisms involved. METHODS C57BL/6 wild-type mice were treated with DMF or a vehicle. Subsequently, renal IRI was induced in mice by a model of right kidney nephrectomy and left renal ischemia for 30 minutes followed by reperfusion for 24 hours. Sham operation and phosphate-buffered saline were used as controls. Serum and renal tissues were collected at 24 hours after IRI to evaluate the influence of DMF on the recovery of renal function after IRI. Blood urea nitrogen and serum creatinine levels were measured. Kidney cell apoptosis was evaluated using terminal deoxynucleotidyl transferase dUTP nick end labeling-positive staining. Interleukin 6 and tumor necrosis factor α cytokines in the kidney tissues were measured. Indicators of oxidative stress in the kidneys were detected. Finally, Nrf2-deficient mice were used to determine the protective role of the nuclear factor erythroid 2-related factor 2 (Nrf2)/hemeoxygenase-1 (HO-1) and NAD(P)H dehydrogenase quinone 1 (NQO1) signaling pathways induced by DMF using western blot assay. RESULTS DMF significantly attenuated renal dysfunction in mice and showed reductions in the severity of renal tubular injury, cell necrosis, and apoptosis. Moreover, DMF significantly reduced the amount of key inflammatory mediators. Additionally, DMF attenuated the malondialdehyde levels 24 hours after IRI but upregulated the superoxide dismutase activities. Western blot assay showed that DMF significantly increased the protein levels of Nrf2, HO-1, and NQO-1. Importantly, these DMF-mediated beneficial effects were not observed in Nrf2-deficient mice. CONCLUSIONS DMF attenuates renal IRI by reducing inflammation and upregulating the antioxidant capacity, which may be through Nrf2/HO-1and NQO1 signaling pathway.
Collapse
Affiliation(s)
- Xu Zhen
- Department of Urology, Taizhou People's Hospital, Taizhou, China
| | - Li Jindong
- Department of Pharmacy, Taizhou People's Hospital, Taizhou, China
| | - Zhou Yang
- Department of Pathology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Ruan Yashi
- Department of Urology, Taizhou People's Hospital, Taizhou, China
| | - Guo Wei
- Department of Urology, Taizhou People's Hospital, Taizhou, China
| | - Jiang Wei
- Department of Urology, Taizhou People's Hospital, Taizhou, China
| | - Zhang Wei
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Liang Sudong
- Department of Urology, Taizhou People's Hospital, Taizhou, China.
| |
Collapse
|
43
|
Kaur G, Sharma A, Bhatnagar A. Role of oxidative stress in pathophysiology of rheumatoid arthritis: insights into NRF2-KEAP1 signalling. Autoimmunity 2021; 54:385-397. [PMID: 34415206 DOI: 10.1080/08916934.2021.1963959] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Rheumatoid arthritis is one of the most prevalent, chronic, inflammatory disorders involving multiple articular and extra-articular complications. Immune deregulation owing to a combinatorial network of cells, inflammatory components, degrading enzymes, angiogenetic factors, exhibiting pleiotropy, synergy, or redundancy, is a critical hallmark for synovial inflammatory milieu reasoning clinical heterogeneity and variability of the disease. As a prototype of autoimmune disease, the pathophysiology of rheumatoid arthritis has been linked to oxidative stress. However, the exact mechanism for these potential driving factors contributing to disease inception and perpetuation is yet elusive. Nuclear factor erythroid 2-related factor 2 - Kelch ECH associating protein 1 (Nrf2-Keap1) pathway, controlled via multifactorial regulation, functions as a ubiquitous, evolutionarily conserved intracellular defense mechanism. Nrf2-Keap1 signalling maintains homeostatic responses against a plethora of environmental or endogenous deviations in cellular growth, death, redox metabolism, inflammation, bone remodelling, detoxification, etc. Administration of antioxidants as an add-on pharmacotherapy along with conventional drugs has been elucidated as a better measure for disease management. Some of the most promising natural and synthetic redox-based therapeutic compounds function as either scavengers of reactive species, or inhibitors of their sources, or activators of an endogenous antioxidant system (Nrf2-Keap1). The present review focuses on the binomial "rheumatoid arthritis-oxidative stress", bringing insights into their pathophysiological interrelationships and Nrf2 signalling, as well as the implications of potential diagnostic oxidative stress biomarkers and therapeutic interventions directed for disease management in patients with rheumatoid arthritis.Highlights:RA has complex etiopathogenesis, evolving from multiple endogenous and exogenous factors with oxidative stress as a critical pathogenic signature.Oxidative damage and damaged compounds could serve as potent biomarkers for disease diagnosis, therapeutic response, and prognosis.One of the supreme cytoprotective signalling cascades, the Nrf2-Keap1 pathway has been known to elicit a protective effect against RA and various other autoimmune, inflammatory, degenerative disorders.Inclusion of natural and synthetic antioxidants has been encouraged by various studies for additional therapy to conventional drugs for better management of the disease.
Collapse
Affiliation(s)
- Gurjasmine Kaur
- Department of Biochemistry, Panjab University, Chandigarh, India
| | - Aman Sharma
- Department of Internal Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | |
Collapse
|
44
|
Promoting Nrf2/Sirt3-Dependent Mitophagy Suppresses Apoptosis in Nucleus Pulposus Cells and Protects against Intervertebral Disc Degeneration. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6694964. [PMID: 34211633 PMCID: PMC8211502 DOI: 10.1155/2021/6694964] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/11/2021] [Accepted: 04/29/2021] [Indexed: 12/22/2022]
Abstract
One of the causes of intervertebral disc degeneration (IVDD) is nucleus pulposus cell (NPC) death, possibly apoptosis. In this study, we explored the role of the Nrf2/Sirt3 pathway and tert-butylhydroquinone (t-BHQ) in IVDD and elucidated the potential working mechanism. Reactive oxygen species (ROS) assay kits and malondialdehyde (MDA) assay kits were used to assess oxidative stress. Western blot and TUNEL staining were used to examine apoptosis. After siRNA against Nrf2 or lentivirus against Sirt3 was transfected into NPCs, the mechanism of the effect of the Nrf2/Sirt3 pathway on NPCs was assessed. The interaction between t-BHQ and its potential interacting protein NRF2 was further investigated through protein docking analysis. ChIP examined the binding affinity between Nrf2 and Sirt3 promoter. In vivo experiments, X-ray, hematoxylin-eosin (HE) staining, Safranin O staining, and immunohistochemistry were used to evaluate IVDD grades. The results demonstrated that activation of the Nrf2/Sirt3 pathway inhibited tert-butyl hydroperoxide- (TBHP-) induced apoptosis and mitochondrial dysfunction in vitro. In addition to apoptosis, upregulation of the Nrf2/Sirt3 pathway induced by t-BHQ restored TBHP-induced autophagic flux disturbances. However, its protective effect was reversed by chloroquine and Si-ATG5. Furthermore, t-BHQ ameliorated IVDD development in a rat model. In conclusion, our findings indicate that the Nrf2/Sirt3 pathway and its agonist represent a potential candidate for treating IVDD.
Collapse
|
45
|
Li R, Yang W, Yin Y, Ma X, Zhang P, Tao K. 4-OI Attenuates Carbon Tetrachloride-Induced Hepatic Injury via Regulating Oxidative Stress and the Inflammatory Response. Front Pharmacol 2021; 12:651444. [PMID: 34113251 PMCID: PMC8185275 DOI: 10.3389/fphar.2021.651444] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 05/05/2021] [Indexed: 12/12/2022] Open
Abstract
The liver is an important metabolic organ, and acute liver injury (ALI) is potentially lethal. Itaconate, a metabolic intermediate from the tricarboxylic acid cycle, showed emerging anti-oxidative and anti-inflammation properties, and an accumulating protective effect in multiple diseases, but its role in ALI still needs to be further explored. Here we established an ALI model induced by carbon tetrachloride in mice. Our results showed that 4-Octyl itaconate (OI), a derivate of itaconate, mitigated hepatic damage by improving liver function, reducing histopathological damage, and decreasing the death of hepatocytes. Additionally, OI decreased myeloperoxidase and thiobarbituric acid reactive substances (TBARS) levels in the ALI model. OI also inhibited the inflammatory response by reducing pro-inflammatory cytokine secretion (IL-6, TNF-α, IL-1β, and MCP-1) and infiltration of macrophages and neutrophils in the ALI model. However, administration of ML385, a specified Nrf2 inhibitor, eliminated the protective properties of OI in the CCl4-induced liver injury model by increasing hepatic damage and oxidative stress. Furthermore, OI increased the expression and nuclear translocation of Nrf2 and elevated the expression of heme oxygenase-1 and NAD(P)H quinone oxidoreductase 1, while knockdown of Nrf2 eliminated these effects in murine hepatocyte NCTC 1469 under CCl4 treatment. Moreover, we found that OI reduced serum High-mobility group box 1 (HMGB1) levels in CCl4-treated mice. Finally, OI inhibited nuclear translocation of factor-kappa B (NF-𝜅B) and inflammatory cytokine production in murine macrophages. In conclusion, these results indicated that OI ameliorated CCl4-induced ALI by mitigating oxidative stress and the inflammatory response. The possible mechanism was associated with the elevation of Nrf2 nuclear translocation and inhibition of HMGB1 mediated the nuclear translocation of NF-𝜅B.
Collapse
Affiliation(s)
- Ruidong Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenchang Yang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuping Yin
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xianxiong Ma
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Zhang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
46
|
Lv Z, Xu X, Sun Z, Yang YX, Guo H, Li J, Sun K, Wu R, Xu J, Jiang Q, Ikegawa S, Shi D. TRPV1 alleviates osteoarthritis by inhibiting M1 macrophage polarization via Ca 2+/CaMKII/Nrf2 signaling pathway. Cell Death Dis 2021; 12:504. [PMID: 34006826 PMCID: PMC8131608 DOI: 10.1038/s41419-021-03792-8] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 05/04/2021] [Accepted: 05/04/2021] [Indexed: 02/04/2023]
Abstract
Osteoarthritis (OA) is the major course of joint deterioration, in which M1 macrophage-driven synovitis exacerbates the pathological process. However, precise therapies for M1 macrophage to decrease synovitis and attenuate OA progression have been scarcely proposed. Transient receptor potential vanilloid 1 (TRPV1) is a cation channel that has been implicated in pain perception and inflammation. In this study, we investigated the role of TRPV1 in the M1 macrophage polarization and pathogenesis of OA. We demonstrated that TRPV1 expression and M1 macrophage infiltration were simultaneously increased in both human and rat OA synovium. More than 90% of the infiltrated M1 macrophages expressed TRPV1. In the rat OA model, intra-articular injection of capsaicin (CPS), a specific TRPV1 agonist, significantly attenuated OA phenotypes, including joint swelling, synovitis, cartilage damage, and osteophyte formation. CPS treatment markedly reduced M1 macrophage infiltration in the synovium. Further mechanistic analyses showed that TRPV1-evoked Ca2+ influx promoted the phosphorylation of calcium/calmodulin-dependent protein kinase II (CaMKII) and facilitated the nuclear localization of nuclear factor-erythroid 2-related factor 2 (Nrf2), which ultimately resulted in the inhibition of M1 macrophage polarization. Taken together, our findings establish that TRPV1 attenuates the progression of OA by inhibiting M1 macrophage polarization in synovium via the Ca2+/CaMKII/Nrf2 signaling pathway. These results highlight the effect of targeting TRPV1 for the development of a promising therapeutic strategy for OA.
Collapse
Affiliation(s)
- Zhongyang Lv
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, People's Republic of China
- Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing, 210093, Jiangsu, People's Republic of China
| | - Xingquan Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, People's Republic of China
- Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing, 210093, Jiangsu, People's Republic of China
| | - Ziying Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, People's Republic of China
- Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing, 210093, Jiangsu, People's Republic of China
| | - Yannick Xiaofan Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, People's Republic of China
- Drum Tower of Clinical Medicine, Nanjing Medical University, Nanjing, 210008, Jiangsu, People's Republic of China
| | - Hu Guo
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, People's Republic of China
- Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing, 210093, Jiangsu, People's Republic of China
| | - Jiawei Li
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, People's Republic of China
- Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing, 210093, Jiangsu, People's Republic of China
| | - Kuoyang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, People's Republic of China
- Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing, 210093, Jiangsu, People's Republic of China
| | - Rui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, People's Republic of China
- Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing, 210093, Jiangsu, People's Republic of China
| | - Jia Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, People's Republic of China
- Drum Tower of Clinical Medicine, Nanjing Medical University, Nanjing, 210008, Jiangsu, People's Republic of China
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, People's Republic of China
- Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing, 210093, Jiangsu, People's Republic of China
| | - Shiro Ikegawa
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, People's Republic of China
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Science (IMS, RIKEN), Tokyo, 108-8639, Japan
| | - Dongquan Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, People's Republic of China.
- Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing, 210093, Jiangsu, People's Republic of China.
| |
Collapse
|
47
|
Hou M, Zhang Y, Zhou X, Liu T, Yang H, Chen X, He F, Zhu X. Kartogenin prevents cartilage degradation and alleviates osteoarthritis progression in mice via the miR-146a/NRF2 axis. Cell Death Dis 2021; 12:483. [PMID: 33986262 PMCID: PMC8119954 DOI: 10.1038/s41419-021-03765-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023]
Abstract
Osteoarthritis (OA) is a common articular degenerative disease characterized by loss of cartilage matrix and subchondral bone sclerosis. Kartogenin (KGN) has been reported to improve chondrogenic differentiation of mesenchymal stem cells. However, the therapeutic effect of KGN on OA-induced cartilage degeneration was still unclear. This study aimed to explore the protective effects and underlying mechanisms of KGN on articular cartilage degradation using mice with post-traumatic OA. To mimic the in vivo arthritic environment, in vitro cultured chondrocytes were exposed to interleukin-1β (IL-1β). We found that KGN barely affected the cell proliferation of chondrocytes; however, KGN significantly enhanced the synthesis of cartilage matrix components such as type II collagen and aggrecan in a dose-dependent manner. Meanwhile, KGN markedly suppressed the expression of matrix degradation enzymes such as MMP13 and ADAMTS5. In vivo experiments showed that intra-articular administration of KGN ameliorated cartilage degeneration and inhibited subchondral bone sclerosis in an experimental OA mouse model. Molecular biology experiments revealed that KGN modulated intracellular reactive oxygen species in IL-1β-stimulated chondrocytes by up-regulating nuclear factor erythroid 2-related factor 2 (NRF2), while barely affecting its mRNA expression. Microarray analysis further revealed that IL-1β significantly up-regulated miR-146a that played a critical role in regulating the protein levels of NRF2. KGN treatment showed a strong inhibitory effect on the expression of miR-146a in IL-1β-stimulated chondrocytes. Over-expression of miR-146a abolished the anti-arthritic effects of KGN not only by down-regulating the protein levels of NRF2 but also by up-regulating the expression of matrix degradation enzymes. Our findings demonstrate, for the first time, that KGN exerts anti-arthritic effects via activation of the miR-146a-NRF2 axis and KGN is a promising heterocyclic molecule to prevent OA-induced cartilage degeneration.
Collapse
Affiliation(s)
- Mingzhuang Hou
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China.,Orthopaedic Institute, Medical College, Soochow University, Suzhou, China
| | - Yijian Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China.,Orthopaedic Institute, Medical College, Soochow University, Suzhou, China
| | - Xinfeng Zhou
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China.,Orthopaedic Institute, Medical College, Soochow University, Suzhou, China
| | - Tao Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Huilin Yang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China.,Orthopaedic Institute, Medical College, Soochow University, Suzhou, China
| | - Xi Chen
- Department of Pathology, The Third Affiliated Hospital of Soochow University, Changzhou, China.
| | - Fan He
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China. .,Orthopaedic Institute, Medical College, Soochow University, Suzhou, China.
| | - Xuesong Zhu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China. .,Orthopaedic Institute, Medical College, Soochow University, Suzhou, China.
| |
Collapse
|
48
|
Kirenol Inhibits B[a]P-Induced Oxidative Stress and Apoptosis in Endothelial Cells via Modulation of the Nrf2 Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5585303. [PMID: 33981385 PMCID: PMC8088375 DOI: 10.1155/2021/5585303] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/18/2021] [Accepted: 04/15/2021] [Indexed: 12/20/2022]
Abstract
Atherosclerosis is a persistent inflammatory disorder specified by the dysfunction of the arteries, the world's leading cause of cardiovascular diseases. We sought to determine the effectiveness of KRL in B[a]P-induced oxidative stress and programmed cell death in endothelial cells. Western blotting, real-time PCR, DCFH2-DA, and TUNEL staining were performed to detect pPI3K, pAKT, Nrf2, HO-1, NQO-1, Bcl2, Bax, and caspase-3 on the HUVECs. Through the pretreatment of KRL, a drastic enhancement was observed in the cell viability of HUVECs, whereas DNA damage and generation of reactive oxygen species induced by B[a]P was suppressed. KRL's potential use as an antioxidant was observed to have a direct correlation with an antioxidant gene's augmented expression and the nuclear translocation activation of Nrf2, even during the event when B[a]P was found to be absent. In addition, this study proved that the signaling cascades of PI3K/AKT mediated Nrf2 translocation. Activation of suppressed nuclear Nrf2 and reduced antioxidant genes across cells interacting with an LY294002 confirmed this phenomenon. In addition, knockdown of Nrf2 by Nrf2-siRNA transfection abolished the protective effects of KRL on HUVECs cells against oxidative damage. Finally, the expression of apoptotic proteins also supported the hypothesis that KRL may inhibit endothelial dysfunction. This study showed that KRL potentially prevents B[a]P-induced redox imbalance in the vascular endothelium by inducing the Nrf2 signaling via the PI3K/AKT pathway.
Collapse
|
49
|
Shen Z, Ji K, Cai Z, Huang C, He X, Xu H, Chen G. Inhibition of HDAC6 by Tubastatin A reduces chondrocyte oxidative stress in chondrocytes and ameliorates mouse osteoarthritis by activating autophagy. Aging (Albany NY) 2021; 13:9820-9837. [PMID: 33744850 PMCID: PMC8064156 DOI: 10.18632/aging.202736] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/22/2021] [Indexed: 06/12/2023]
Abstract
The aim of this study was to determine the effect of HDAC6 inhibition using the selective inhibitor Tubastatin A (TubA) on the regulation of tert-butyl hydroperoxide (TBHP)-treated chondrocytes and a mouse OA model. Using conventional molecular biology methods, our results showed that the level of HDAC6 increases both in the cartilage of osteoarthritis (OA) mice and TBHP-treated chondrocytes in vitro. TubA treatment effectively inhibits the expression of HDAC6, attenuates oxidative stress, reduces the level of apoptotic proteins to maintain chondrocyte survival, and suppresses the extracellular matrix (ECM) degradation. In addition, our results also revealed that HDAC6 inhibition by TubA activates autophagy in chondrocytes, whereas the protective effects of TubA were abolished by autophagy inhibitor intervention. Subsequently, the positive effects of HDAC6 inhibition by TubA were also found in a mouse OA model. Therefore, our study provide evidence that HDAC6 inhibition prevents OA development, and HDAC6 could be applied as a potential therapeutic target for OA management.
Collapse
Affiliation(s)
- Zhonghai Shen
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Kang Ji
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Zhenhai Cai
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Chenglong Huang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Xiaojun He
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Hongwei Xu
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Gang Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| |
Collapse
|
50
|
Chen X, Huang C, Sun H, Hong H, Jin J, Bei C, Lu Z, Zhang X. Puerarin suppresses inflammation and ECM degradation through Nrf2/HO-1 axis in chondrocytes and alleviates pain symptom in osteoarthritic mice. Food Funct 2021; 12:2075-2089. [PMID: 33543180 DOI: 10.1039/d0fo03076g] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Osteoarthritis (OA) is the most common degenerative joint disorder with no effective drugs. Puerarin is a dietary supplement that has wide-ranging pharmacological effects. This study aimed to investigate the effects of Puerarin on OA. The effects of Puerarin on apoptosis, extracellular matrix (ECM) metabolism, and inflammation-related factors were assessed; also, the nuclear factor-κB (NF-κB) signaling pathway and Nrf2/HO-1 (nuclear factor (erythroid-derived 2)-like 2/heme oxygenase-1) axis were evaluated to elucidate the working mechanism of Puerarin. Mice were fed with Puerarin to evaluate the therapeutic effect of Puerarin on Osteoarthritis in vivo. The results showed that Puerarin suppressed inflammatory mediators and apoptosis induced by IL-1β treatment in chondrocytes, it may also suppress ECM degradation in IL-1β treated chondrocytes. The mechanism study revealed that Nrf2/HO-1 pathway is involved in Puerarin induced inhibition of NF-κB signaling pathway. Finally, in vivo study demonstrated that Puerarin could postpone the progression of OA in mice and relieve the symptoms of pain. In conclusion, Puerarin may potentially alleviate OA progression, and the mechanism may relate to the Nrf2/HO-1 pathway regulation.
Collapse
Affiliation(s)
- Ximiao Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China. and Department of Orthopaedics, Affiliated Hospital of Guilin Medical College, Guilin, Guangxi Province, China. and Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China
| | - Chongan Huang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China. and Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China and The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Haiqiu Sun
- Department of Otolaryngology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Haofeng Hong
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China. and The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jie Jin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China. and Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China and The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Chaoyong Bei
- Department of Orthopaedics, Affiliated Hospital of Guilin Medical College, Guilin, Guangxi Province, China.
| | - Zhongqiu Lu
- Department of Emergency, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| | - Xiaolei Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China. and Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China and The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China and Chinese Orthopaedic Regenerative Medicine Society, Hangzhou, Zhejiang Province, China
| |
Collapse
|