1
|
Ding Z, Liu C, Zhang Z, Zhang C, Huang F. Effect of mitochondrial calcium homeostasis-mediated endogenous enzyme activation on tenderness of beef muscle based on MCU modulators. Food Chem X 2024; 22:101366. [PMID: 38623508 PMCID: PMC11016958 DOI: 10.1016/j.fochx.2024.101366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/24/2024] [Accepted: 04/05/2024] [Indexed: 04/17/2024] Open
Abstract
The mitochondrial calcium uniporter (MCU) occupies a noteworthy position in the regulation of mitochondrial calcium uptake. This study investigated the effects of MCU modulator-mediated mitochondrial calcium on mitochondrial dysfunction, oxidative stress, endogenous enzyme activities, and tenderness during postmortem aging. Spermine, as an activator of MCU, resulted in an increase in mitochondrial calcium levels, not only disrupting mitochondrial morphology but also triggering mitochondrial oxidative stress and downregulation of antioxidant factors. Additionally, the spermine group underwent later activation of calpain and earlier activation of caspases, as well as the myofibril fragmentation index was initially lower and then higher compared with control group, indicating that endogenous enzymes played an indispensable role in different aging periods. Interestingly, the results of the Ru360 (an inhibitor of MCU) group were opposite to those aforementioned findings. Our data provide a novel perspective on the regulatory mechanism of mitochondrial calcium homeostasis mediated by MCU on tenderness.
Collapse
Affiliation(s)
- Zhenjiang Ding
- Beijing Key Laboratory of the Innovative Development of Functional Staple and Nutritional Intervention for Chronic Diseases, China National Research Institute of Food and Fermentation Industries, Beijing 100015, China
| | - Chunmei Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Zihan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Chunhui Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Feng Huang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| |
Collapse
|
2
|
Alves-Figueiredo H, Silva-Platas C, Estrada M, Oropeza-Almazán Y, Ramos-González M, Bernal-Ramírez J, Vázquez-Garza E, Tellez A, Salazar-Ramírez F, Méndez-Fernández A, Galaz JL, Lobos P, Youker K, Lozano O, Torre-Amione G, García-Rivas G. Mitochondrial Ca 2+ Uniporter-Dependent Energetic Dysfunction Drives Hypertrophy in Heart Failure. JACC Basic Transl Sci 2024; 9:496-518. [PMID: 38680963 PMCID: PMC11055214 DOI: 10.1016/j.jacbts.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 05/01/2024]
Abstract
The role of the mitochondrial calcium uniporter (MCU) in energy dysfunction and hypertrophy in heart failure (HF) remains unknown. In angiotensin II (ANGII)-induced hypertrophic cardiac cells we have shown that hypertrophic cells overexpress MCU and present bioenergetic dysfunction. However, by silencing MCU, cell hypertrophy and mitochondrial dysfunction are prevented by blocking mitochondrial calcium overload, increase mitochondrial reactive oxygen species, and activation of nuclear factor kappa B-dependent hypertrophic and proinflammatory signaling. Moreover, we identified a calcium/calmodulin-independent protein kinase II/cyclic adenosine monophosphate response element-binding protein signaling modulating MCU upregulation by ANGII. Additionally, we found upregulation of MCU in ANGII-induced left ventricular HF in mice, and in the LV of HF patients, which was correlated with pathological remodeling. Following left ventricular assist device implantation, MCU expression decreased, suggesting tissue plasticity to modulate MCU expression.
Collapse
Affiliation(s)
- Hugo Alves-Figueiredo
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Cátedra de Cardiología y Medicina Vascular, Monterrey, NL, México
- Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, NL, México
- Tecnologico de Monterrey, Hospital Zambrano Hellion, TecSalud, San Pedro Garza García, NL, México
| | - Christian Silva-Platas
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Cátedra de Cardiología y Medicina Vascular, Monterrey, NL, México
| | - Manuel Estrada
- Programa de Fisiología y Biofísica, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| | - Yuriana Oropeza-Almazán
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Cátedra de Cardiología y Medicina Vascular, Monterrey, NL, México
| | - Martin Ramos-González
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Cátedra de Cardiología y Medicina Vascular, Monterrey, NL, México
| | - Judith Bernal-Ramírez
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Cátedra de Cardiología y Medicina Vascular, Monterrey, NL, México
- Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, NL, México
| | - Eduardo Vázquez-Garza
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Cátedra de Cardiología y Medicina Vascular, Monterrey, NL, México
- Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, NL, México
| | - Armando Tellez
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Cátedra de Cardiología y Medicina Vascular, Monterrey, NL, México
- Alizée Pathology, Thurmont, Maryland, USA
| | - Felipe Salazar-Ramírez
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Cátedra de Cardiología y Medicina Vascular, Monterrey, NL, México
| | - Abraham Méndez-Fernández
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Cátedra de Cardiología y Medicina Vascular, Monterrey, NL, México
| | - José Luis Galaz
- Programa de Fisiología y Biofísica, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| | - Pedro Lobos
- Programa de Fisiología y Biofísica, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| | - Keith Youker
- Weill Cornell Medical College, Methodist DeBakey Heart & Vascular Center, The Methodist Hospital, Houston, Texas, USA
| | - Omar Lozano
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Cátedra de Cardiología y Medicina Vascular, Monterrey, NL, México
- Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, NL, México
- Tecnologico de Monterrey, Hospital Zambrano Hellion, TecSalud, San Pedro Garza García, NL, México
| | - Guillermo Torre-Amione
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Cátedra de Cardiología y Medicina Vascular, Monterrey, NL, México
- Tecnologico de Monterrey, Hospital Zambrano Hellion, TecSalud, San Pedro Garza García, NL, México
- Weill Cornell Medical College, Methodist DeBakey Heart & Vascular Center, The Methodist Hospital, Houston, Texas, USA
| | - Gerardo García-Rivas
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Cátedra de Cardiología y Medicina Vascular, Monterrey, NL, México
- Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, NL, México
- Tecnologico de Monterrey, Hospital Zambrano Hellion, TecSalud, San Pedro Garza García, NL, México
| |
Collapse
|
3
|
Fan K, Liao Q, Yuan P, Xu R, Liu Z. Defective autophagy contributes to bupivacaine-induced aggravation of painful diabetic neuropathy in db/db mice. Neuropharmacology 2024; 245:109814. [PMID: 38104768 DOI: 10.1016/j.neuropharm.2023.109814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/08/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
Current evidence suggests that hyperactivated or impaired autophagy can lead to neuronal death. The effect of local anesthetics on painful diabetic neuropathy (PDN) and the role of autophagy in the above pathological process remain unclear, warranting further studies. So, PDN models were established by assessing the paw withdrawal threshold (PWT) and paw withdrawal latency (PWL) in leptin gene-mutation (db/db) mice. Wild type (WT) and PDN mice received intrathecal 0.75% bupivacaine or/with intraperitoneal drug treatment (rapamycin or bafilomycin A1). Subsequently, the PWT and PWL were measured to assess hyperalgesia at 6 h, 24 h, 30 h, and 48 h after intrathecal bupivacaine. Also, sensory nerve conduction velocity (SNCV) and motor nerve conduction velocity (MNCV) were measured before and 48 h after intrathecal bupivacaine treatment. The spinal cord tissue of L4-L6 segments and serum were harvested to evaluate the change of autophagy, oxidative stress, oxidative injury, and apoptosis. We found that bupivacaine induced the activation of autophagy but did not affect the pain threshold, SNCV and MNCV in WT mice at predefined time points. Conversely, bupivacaine lowered autophagosome generation and degradation, slowed SNCV and aggravated spinal dorsal horn neuron oxidative injury and hyperalgesia in PDN mice. The autophagy activator (rapamycin) could decrease spinal dorsal horn neuron oxidative injury, alleviate the alterations in SNCV and hyperalgesia in bupivacaine-treated PDN mice. Meanwhile, the autophagy inhibitor (bafilomycin A1) could exacerbate spinal dorsal horn neuron oxidative injury, the alterations in SNCV and hyperalgesia in bupivacaine-treated PDN mice. Our results showed that bupivacaine could induce defective autophagy, slowed SNCV and aggravate spinal dorsal horn neuron oxidative injury and hyperalgesia in PDN mice. Restoring autophagy may represent a potential therapeutic approach against nerve injury in PDN patients with local anesthesia and analgesia.
Collapse
Affiliation(s)
- Keke Fan
- Department of Anesthesiology, Shenzhen Children's Hospital, Yantian Road 7019, Shenzhen, 518000, Guangdong Province, China.
| | - Qinming Liao
- Department of Neurosurgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, Guangdong Province, China.
| | - Pengfei Yuan
- Department of Anesthesiology, South China Hospital of Shenzhen University, Fuxin Road 1, ShenZhen, 518116, Guangdong Province, China.
| | - Rui Xu
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Industrial Avenue Central 253, Guangzhou, 510282, Guangdong Province, China.
| | - Zhongjie Liu
- Department of Anesthesiology, Shenzhen Children's Hospital, Yantian Road 7019, Shenzhen, 518000, Guangdong Province, China; Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Industrial Avenue Central 253, Guangzhou, 510282, Guangdong Province, China.
| |
Collapse
|
4
|
Yang Y, Wu J, Feng S, Yu H, Liu C, Wang S. Notoginsenoside R1 attenuates bupivacaine induced neurotoxicity by activating Jak1/Stat3/Mcl1 pathway. Toxicology 2024; 503:153740. [PMID: 38316350 DOI: 10.1016/j.tox.2024.153740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/07/2024]
Abstract
Bupivacaine, a common amide local anesthetic, can provide effective analgesia or pain relief but can also cause neurotoxicity, which remains a mounting concern in clinic and animal care. However, the precise underlying mechanisms have not been fully elucidated. A natural compound, notoginsenoside R1 (NG-R1) has been reported to exhibit a neuroprotective role in stress conditions. In this study, we explored the function and mechanism of NG-R1 in alleviating bupivacaine-induced neurotoxicity in mouse hippocampal neuronal (HT-22) and mouse neuroblastoma (Neuro-2a) cell lines. Our results exhibited that NG-R1 treatment can significantly rescue the decline of cell survival induced by bupivacaine. Tunel staining and western blotting showed that NG-R1 could attenuate BPV‑induced cell apoptosis. Besides, we focused on Mcl1 as a potential target as it showed opposite expression tendency in response to NG-R1 and bupivacaine exposure. Mcl1 knockdown blocked the inhibitory effect of NG-R1 on cell apoptosis against bupivacaine treatment. Intriguingly, we found that NG-R1 can upregulate Mcl1 transcription by activating Stat3 and promote its nuclear translocation. In addition, NG-R1 can also promote Jak1 phosphorylation and docking analysis provide a predicted model for interaction between NG-R1 and phosphorylated Jak1. Taken together, our results demonstrated that NG-R1 can attenuate bupivacaine induced neurotoxicity by activating Jak1/Stat3/Mcl1 pathway.
Collapse
Affiliation(s)
- Yu Yang
- School of Mental Health, Jining Medical University, Jining 272013, China; Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Jining Medical University, Jining, Shandong, China
| | - Jiwen Wu
- School of Mental Health, Jining Medical University, Jining 272013, China; Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Jining Medical University, Jining, Shandong, China
| | - Shicheng Feng
- School of Mental Health, Jining Medical University, Jining 272013, China; Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Jining Medical University, Jining, Shandong, China
| | - Hao Yu
- School of Mental Health, Jining Medical University, Jining 272013, China; Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Jining Medical University, Jining, Shandong, China
| | - Chuanxin Liu
- School of Mental Health, Jining Medical University, Jining 272013, China; Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Jining Medical University, Jining, Shandong, China; Department of Psychiatry, Affiliated Hospital of Jining Medical University, Jining, Shandong, China.
| | - Shuai Wang
- School of Mental Health, Jining Medical University, Jining 272013, China; Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Jining Medical University, Jining, Shandong, China.
| |
Collapse
|
5
|
Wang J, Jiang J, Hu H, Chen L. MCU complex: Exploring emerging targets and mechanisms of mitochondrial physiology and pathology. J Adv Res 2024:S2090-1232(24)00075-4. [PMID: 38417574 DOI: 10.1016/j.jare.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 03/01/2024] Open
Abstract
BACKGROUND Globally, the onset and progression of multiple human diseases are associated with mitochondrial dysfunction and dysregulation of Ca2+ uptake dynamics mediated by the mitochondrial calcium uniporter (MCU) complex, which plays a key role in mitochondrial dysfunction. Despite relevant studies, the underlying pathophysiological mechanisms have not yet been fully elucidated. AIM OF REVIEW This article provides an in-depth analysis of the current research status of the MCU complex, focusing on its molecular composition, regulatory mechanisms, and association with diseases. In addition, we conducted an in-depth analysis of the regulatory effects of agonists, inhibitors, and traditional Chinese medicine (TCM) monomers on the MCU complex and their application prospects in disease treatment. From the perspective of medicinal chemistry, we conducted an in-depth analysis of the structure-activity relationship between these small molecules and MCU and deduced potential pharmacophores and binding pockets. Simultaneously, key structural domains of the MCU complex in Homo sapiens were identified. We also studied the functional expression of the MCU complex in Drosophila, Zebrafish, and Caenorhabditis elegans. These analyses provide a basis for exploring potential treatment strategies targeting the MCU complex and provide strong support for the development of future precision medicine and treatments. KEY SCIENTIFIC CONCEPTS OF REVIEW The MCU complex exhibits varying behavior across different tissues and plays various roles in metabolic functions. It consists of six MCU subunits, an essential MCU regulator (EMRE), and solute carrier 25A23 (SLC25A23). They regulate processes, such as mitochondrial Ca2+ (mCa2+) uptake, mitochondrial adenosine triphosphate (ATP) production, calcium dynamics, oxidative stress (OS), and cell death. Regulation makes it a potential target for treating diseases, especially cardiovascular diseases, neurodegenerative diseases, inflammatory diseases, metabolic diseases, and tumors.
Collapse
Affiliation(s)
- Jin Wang
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang 421001, China
| | - Jinyong Jiang
- Department of Pharmacy, The First Affiliated Hospital of Jishou University, Jishou 416000, China
| | - Haoliang Hu
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang 421001, China; College of Medicine, Hunan University of Arts and Science, Changde 415000, China.
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang 421001, China.
| |
Collapse
|
6
|
Wu L, Wei S, Pei D, Yao Y, Xiang Z, Yu E, Chen Z, Du Z, Qu S. Activation of the Akt Attenuates Ropivacaine-Induced Myelination Impairment in Spinal Cord and Sensory Dysfunction in Neonatal Rats. Mol Neurobiol 2023; 60:7009-7020. [PMID: 37523045 DOI: 10.1007/s12035-023-03498-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/11/2023] [Indexed: 08/01/2023]
Abstract
Prolonged exposure to local anesthetics (LAs) or intrathecal administration of high doses of LAs can cause spinal cord damage. Intraspinal administration of LAs is increasingly being used in children and neonates. Therefore, it is important to study LA-related spinal cord damage and the underlying mechanism in developmental models. First, neonatal Sprague-Dawley rats received three intrathecal injections of 0.5% ropivacaine, 1% ropivacaine, 2% ropivacaine or saline (90-min interval) on postnatal day 7. Electron microscopy, luxol fast blue staining and behavioral tests were performed to evaluate the spinal neurotoxicity caused by ropivacaine at different concentrations. Western blot analysis and immunostaining was performed to detect the expression changes of p-Akt, Akt, myelin gene regulatory factor (MYRF) and myelin basic protein (MBP) in the spinal cord treated with different concentrations of ropivacaine. Our results showed that 1% or 2% ropivacaine impaired myelination in the spinal cord and induced sensory dysfunction, but 0.5% ropivacaine did not. Moreover, 1% or 2% ropivacaine decreased the expression of p-Akt, MYRF and MBP in the spinal cord. Then, in order to further explore the role of these proteins in this model, the Akt-specific activator (SC79) was intraperitoneally injected 30 min before 2% ropivacaine treatment. Interestingly, SC79-mediated activation of Akt partly rescued ropivacaine-induced myelination impairments and sensory dysfunction. Overall, the results showed that ropivacaine caused spinal neurotoxicity in a dose-dependent manner in neonatal rats and that activation of the Akt partly rescued ropivacaine-induced these changes. These data provide insight into the neurotoxicity to the developing spinal cord caused by LAs.
Collapse
Affiliation(s)
- Lei Wu
- Department of Anesthesiology, Hunan Children's Hospital, No.86 Ziyuan Rd, Changsha, 410007, Hunan, China
| | - Siwei Wei
- Department of Anesthesiology, Hunan Children's Hospital, No.86 Ziyuan Rd, Changsha, 410007, Hunan, China
| | - Dongjie Pei
- Department of Anesthesiology, Hunan Children's Hospital, No.86 Ziyuan Rd, Changsha, 410007, Hunan, China
| | - Yiyi Yao
- Department of Anesthesiology, Hunan Children's Hospital, No.86 Ziyuan Rd, Changsha, 410007, Hunan, China
| | - Zhen Xiang
- Department of Anesthesiology, Hunan Children's Hospital, No.86 Ziyuan Rd, Changsha, 410007, Hunan, China
| | - Eryou Yu
- Department of Anesthesiology, Hunan Children's Hospital, No.86 Ziyuan Rd, Changsha, 410007, Hunan, China
| | - Zheng Chen
- Department of Anesthesiology, Hunan Children's Hospital, No.86 Ziyuan Rd, Changsha, 410007, Hunan, China
| | - Zhen Du
- Department of Anesthesiology, Hunan Children's Hospital, No.86 Ziyuan Rd, Changsha, 410007, Hunan, China.
| | - Shuangquan Qu
- Department of Anesthesiology, Hunan Children's Hospital, No.86 Ziyuan Rd, Changsha, 410007, Hunan, China.
| |
Collapse
|
7
|
Lozano O, Marcos P, Salazar-Ramirez FDJ, Lázaro-Alfaro AF, Sobrevia L, García-Rivas G. Targeting the mitochondrial Ca 2+ uniporter complex in cardiovascular disease. Acta Physiol (Oxf) 2023; 237:e13946. [PMID: 36751976 DOI: 10.1111/apha.13946] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023]
Abstract
Cardiovascular diseases (CVDs), the leading cause of death worldwide, share in common mitochondrial dysfunction, in specific a dysregulation of Ca2+ uptake dynamics through the mitochondrial Ca2+ uniporter (MCU) complex. In particular, Ca2+ uptake regulates the mitochondrial ATP production, mitochondrial dynamics, oxidative stress, and cell death. Therefore, modulating the activity of the MCU complex to regulate Ca2+ uptake, has been suggested as a potential therapeutic approach for the treatment of CVDs. Here, the role and implications of the MCU complex in CVDs are presented, followed by a review of the evidence for MCU complex modulation, genetically and pharmacologically. While most approaches have aimed within the MCU complex for the modulation of the Ca2+ pore channel, the MCU subunit, its intra- and extra- mitochondrial implications, including Ca2+ dynamics, oxidative stress, post-translational modifications, and its repercussions in the cardiac function, highlight that targeting the MCU complex has the translational potential for novel CVDs therapeutics.
Collapse
Affiliation(s)
- Omar Lozano
- Cátedra de Cardiología y Medicina Vascular, School of Medicine and Health Sciences, Tecnologico de Monterrey, Monterrey, Mexico
- Biomedical Research Center, Hospital Zambrano-Hellion, TecSalud, Tecnologico de Monterrey, San Pedro Garza García, Mexico
- The Institute for Obesity Research, Tecnologico de Monterrey, Monterrey, Mexico
| | - Patricio Marcos
- Cátedra de Cardiología y Medicina Vascular, School of Medicine and Health Sciences, Tecnologico de Monterrey, Monterrey, Mexico
| | - Felipe de Jesús Salazar-Ramirez
- Cátedra de Cardiología y Medicina Vascular, School of Medicine and Health Sciences, Tecnologico de Monterrey, Monterrey, Mexico
| | - Anay F Lázaro-Alfaro
- Cátedra de Cardiología y Medicina Vascular, School of Medicine and Health Sciences, Tecnologico de Monterrey, Monterrey, Mexico
| | - Luis Sobrevia
- The Institute for Obesity Research, Tecnologico de Monterrey, Monterrey, Mexico
- Cellular and Molecular Physiology Laboratory, Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville, Spain
- University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, Queensland, Australia
| | - Gerardo García-Rivas
- Cátedra de Cardiología y Medicina Vascular, School of Medicine and Health Sciences, Tecnologico de Monterrey, Monterrey, Mexico
- Biomedical Research Center, Hospital Zambrano-Hellion, TecSalud, Tecnologico de Monterrey, San Pedro Garza García, Mexico
- The Institute for Obesity Research, Tecnologico de Monterrey, Monterrey, Mexico
- Center of Functional Medicine, Hospital Zambrano-Hellion, TecSalud, Tecnologico de Monterrey, San Pedro Garza García, Mexico
| |
Collapse
|
8
|
Luo J, Zeng L, Li J, Xu S, Zhao W. Oxidative DNA Damage-induced PARP-1-mediated Autophagic Flux Disruption Contributes to Bupivacaine-induced Neurotoxicity During Pregnancy. Curr Neuropharmacol 2023; 21:2134-2150. [PMID: 37021417 PMCID: PMC10556365 DOI: 10.2174/1570159x21666230404102122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 04/07/2023] Open
Abstract
OBJECTIVE Severe neurologic complications after spinal anesthesia are rare but highly distressing, especially in pregnant women. Bupivacaine is widely used in spinal anesthesia, but its neurotoxic effects have gained attention. METHODS Furthermore, the etiology of bupivacaine-mediated neurotoxicity in obstetric patients remains unclear. Female C57BL/6 mice were intrathecally injected with 0.75% bupivacaine on the 18th day of pregnancy. We used immunohistochemistry to examine DNA damage after bupivacaine treatment in pregnant mice and measured γ-H2AX (Ser139) and 8-OHdG in the spinal cord. A PARP-1 inhibitor (PJ34) and autophagy inhibitor (3-MA) were administered with bupivacaine in pregnant mice. Parp-1flox/flox mice were crossed with Nes-Cre transgenic mice to obtain neuronal conditional knockdown mice. Then, LC3B and P62 staining were performed to evaluate autophagic flux in the spinal cords of pregnant wild-type (WT) and Parp-1-/- mice. We performed transmission electron microscopy (TEM) to evaluate autophagosomes. RESULTS The present study showed that oxidative stress-mediated DNA damage and neuronal injury were increased after bupivacaine treatment in the spinal cords of pregnant mice. Moreover, PARP-1 was significantly activated, and autophagic flux was disrupted. Further studies revealed that PARP-1 knockdown and autophagy inhibitors could alleviate bupivacaine-mediated neurotoxicity in pregnant mice. CONCLUSION Bupivacaine may cause neuronal DNA damage and PARP-1 activation in pregnant mice. PARP-1 further obstructed autophagic flux and ultimately led to neurotoxicity.
Collapse
Affiliation(s)
- Jiaming Luo
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou City, Guangdong Province, China
| | - Lei Zeng
- Division of Laboratory Science, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Ji Li
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou City, Guangdong Province, China
| | - Shiyuan Xu
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou City, Guangdong Province, China
| | - Wei Zhao
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou City, Guangdong Province, China
| |
Collapse
|
9
|
Pan N, Gao K, Zhang B, Fan X, Lu L, Wang X. Inhibitory effects of zinc chloride (ZnCl 2), n-acetyl-L-cysteine (NAC), and calcium/calmodulin dependent protein kinase II inhibitor (KN93) on Cd 2+-induced abnormal cell morphology and membrane permeability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155208. [PMID: 35417724 DOI: 10.1016/j.scitotenv.2022.155208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/24/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Cadmium (Cd) could reduce abnormal cell morphology and membrane permeability, however, there are few studies on the detoxification of Cd-reduced cell membrane toxicity. In the present study, we firstly studied the effects of zinc chloride (ZnCl2), n-acetyl-L-cysteine (NAC), and calcium/calmodulin dependent protein kinase II inhibitor (KN93) on cell membrane permeability, respectively; then, we studied the inhibitory effects of ZnCl2, NAC, and KN93 on Cd2+-induced abnormal cell membrane permeability by scanning electrochemical microscopy (SECM) scanning imaging, transverse scanning curve and DPV technology. Our results showed that 10 μmol·L-1 ZnCl2, 0.5 mmol·L-1 NAC and 5 μmol·L-1 KN93 could significantly improve the activity of MCF-7 cells, while did not destroy the cell morphology and membrane permeability. 0.5 mmol·L-1 NAC and 5 μmol·L-1 KN93 could significantly inhibit the effects of Cd2+ on the morphology and membrane permeability of MCF-7 cells (p < 0.01). 10 μmol·L-1 ZnCl2 could significantly inhibit the effect of Cd on the membrane permeability of MCF-7 cells, however, it cannot completely eliminate the morphological changes of MCF-7 cells caused by Cd2+. The results of cell activity experiment showed that 10 μmol·L-1 ZnCl2, 0.5 mmol·L-1 NAC and 5 μmol·L-1 KN93 could inhibit the effect of Cd2+ on the activity of MCF-7 cells. By comparing the inhibitory effects of ZnCl2, NAC and KN93 on Cd2+- induced cytotoxicity, 5 μmol·L-1 KN93 had the robust effect on the maintenance of MCF-7 cell morphology and cell membrane integrity. Our research provided evidence on Zn supplement, NAC as antioxidant drugs, and KN93 as special inhibitor for the detoxification of Cd2+-reduced abnormal cell morphology and membrane permeability.
Collapse
Affiliation(s)
- Na Pan
- Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environmental Science, Beijing University of Technology, Faculty of Environment and Life Sciences, Beijing 100124, PR China
| | - Ke Gao
- Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environmental Science, Beijing University of Technology, Faculty of Environment and Life Sciences, Beijing 100124, PR China.
| | - Biao Zhang
- Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environmental Science, Beijing University of Technology, Faculty of Environment and Life Sciences, Beijing 100124, PR China
| | - Xiaoyin Fan
- Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environmental Science, Beijing University of Technology, Faculty of Environment and Life Sciences, Beijing 100124, PR China
| | - Liping Lu
- Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environmental Science, Beijing University of Technology, Faculty of Environment and Life Sciences, Beijing 100124, PR China; Center of Excellence for Environmental Safety and Biological Effects, Department of Chemistry and Biology, Faculty of Environment and Life Sciences, Beijing University of Technology, Beijing 100124, PR China
| | - Xiayan Wang
- Center of Excellence for Environmental Safety and Biological Effects, Department of Chemistry and Biology, Faculty of Environment and Life Sciences, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
10
|
Lai L, Wang Y, Peng S, Guo W, Li F, Xu S. P53 and taurine upregulated gene 1 promotes the repair of the DeoxyriboNucleic Acid damage induced by bupivacaine in murine primary sensory neurons. Bioengineered 2022; 13:7439-7456. [PMID: 35271399 PMCID: PMC9208530 DOI: 10.1080/21655979.2022.2048985] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The research aimed to explore the biological role of p53 protein and long non-coding RNA (lncRNA) taurine upregulated gene 1 (TUG1) in bupivacaine (bup)-induced neurotoxicity. Our work treated dorsal root ganglion (DRG) cells with bup, detected cell viability through CCK-8, apoptosis through TUNEL assays, DeoxyriboNucleic Acid (DNA) damage through γ-H2AX protein and comet assay, including p53 mRNA, protein and TUG1 expression through q-PCR and western blot, furthermore, cell viability and DNA damage were determined after the silencing of p53 and TUG1, biological information and TUG1 FISH combined with p53 protein immunofluorescence (IF) was performed to determine the cellular localization of these molecule. In vivo experiments, we explored the impact of intrathecal injection of bup on p53 mRNA and protein, TUG1, γ-H2AX protein expression. The results showed that bup was available to signally decreased cell viability, promoted apoptosis rate and DNA damage, additionally, bup increased p53 mRNA and protein and TUG1 expression. P53 siRNA and TUG1 siRNA significantly increased DNA damage. Furthermore, bioinformatics analysis and colocalization experiments revealed that the p53 protein is a transcription factor of TUG1, in vivo experiment, intrathecal injection of bup increased the p53 mRNA, p53 protein, TUG1 and γ-H2AX protein in the murine DRG. In this study, it was found p53 and TUG1 promote the repair of the DNA damage induced by bup in murine dorsal root ganglion cells, suggesting a new strategy for the amelioration of bup-induced neurotoxicity.
Collapse
Affiliation(s)
- Luying Lai
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yongwei Wang
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Shenghui Peng
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Wenjing Guo
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Fengxian Li
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Shiyuan Xu
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
11
|
Lai J, Ji JM, Chen MYZ, Luo YP, Yu Y, Zhou G, Wei LL, Huang LS, Liu JC. Melatonin ameliorates bupivacaine-induced spinal neurotoxicity in rats by suppressing neuronal NLRP3 inflammasome activation. Neurosci Lett 2022; 772:136472. [PMID: 35065245 DOI: 10.1016/j.neulet.2022.136472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 12/27/2022]
Abstract
Bupivacaine is a common local anesthetic that causes neurotoxicity when used at clinical concentrations. Melatonin (MT), is a potent neuroprotective molecule. The study aimed to characterize the neuroprotective effects of MT on spinal neurotoxicity induced by bupivacaine in rats. It showed that bupivacaine, by intrathecal injection, induced spinal injury, and that the protein levels of Nod-like receptor protein 3 (NLRP3), cleaved caspase-1, and the N-terminal region of gasdermin D (GSDMD-N) were significantly increased. NLRP3 was expressed mainly in neurons and microglia. MT treatment ameliorated bupivacaine-induced spinal cord injury in rats by suppressing activation of neuronal NLRP3 inflammasomes.
Collapse
Affiliation(s)
- Jian Lai
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, People's Republic of China
| | - Jie-Mei Ji
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, People's Republic of China
| | - Mei-Yun-Zi Chen
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, People's Republic of China
| | - Yun-Peng Luo
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, People's Republic of China
| | - Yue Yu
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, People's Republic of China
| | - Gang Zhou
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, People's Republic of China
| | - Li-Ling Wei
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, People's Republic of China
| | - Lan-Shan Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, People's Republic of China
| | - Jing-Chen Liu
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, People's Republic of China.
| |
Collapse
|
12
|
Bupivacaine Induces ROS-Dependent Autophagic Damage in DRG Neurons via TUG1/mTOR in a High-Glucose Environment. Neurotox Res 2022; 40:111-126. [PMID: 35043378 DOI: 10.1007/s12640-021-00461-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/27/2021] [Accepted: 12/06/2021] [Indexed: 02/07/2023]
Abstract
Bupivacaine (BP) is a commonly clinically used local anesthetic (LA). Current studies suggest that neurological complications are increased in diabetic patients after LA application, but the molecular mechanism is poorly understood. LA-induced autophagy and neuronal injury have been reported. We hypothesized that a high-glucose environment aggravates BP-induced autophagic damage. Mouse dorsal root ganglion (DRG) neurons were treated with BP in a high-glucose environment, and the results showed that reactive oxygen species (ROS) levels increased, autophagy was activated, autophagy flux was blocked, and cell viability decreased. Pretreatment with the ROS scavenger N-acetyl-cysteine (NAC) attenuated ROS-mediated autophagy regulation. Moreover, the expression of the long noncoding RNA (lncRNA) taurine upregulated gene 1 (TUG1) increased, and NAC and TUG1 siRNA inhibited the expression of TUG1/mammalian target of rapamycin (mTOR) in DRGs treated with BP in a high-glucose environment. Intriguingly, contrary to previous reports on a positive effect on neurons, we found that rapamycin, an autophagy activator, and chloroquine, an autophagy and lysosome inhibitor, both exacerbated autophagic damage. These data suggest that a high-glucose environment exacerbated BP induced ROS-dependent autophagic damage in DRG neurons through the TUG1/mTOR signaling pathway, which provides a theoretical basis and target for the clinical prevention and treatment of BP neurotoxicity in diabeties.
Collapse
|
13
|
Dai SH, Li YW, Hong QX, Su T, Xu SY. Exaggerated activities of TRPM7 underlie bupivacaine-induced neurotoxicity in the SH-SY5Y cells preconditioned with high glucose. J Biochem Mol Toxicol 2021; 35:e22826. [PMID: 34060177 DOI: 10.1002/jbt.22826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/28/2021] [Accepted: 05/18/2021] [Indexed: 11/12/2022]
Abstract
Hyperglycemia is considered a risk factor for the enhancement of local anesthetic-induced neurotoxicity. Transient receptor potential melastatin 7 (TRPM7), a kinase-coupled cation channel, has been implicated in a variety of neuropathological processes, including intracellular calcium disturbance and high glucose-induced neuropathy. In this study, we investigated whether TRPM7-related pathophysiology is involved in bupivacaine-induced neurotoxicity in SH-SY5Y cells and how hyperglycemia acts as a risk factor. For initial neurotoxicity evaluation, it was confirmed that cell damage and apoptosis induced by acute exposure to bupivacaine were dependent on its concentration and glucose preconditioning. High glucose preconditioning facilitated the bupivacaine-induced fast and temporary rise in intracellular free calcium concentration ([Ca2+ ]i ), which was attributed to both calcium influx through TRPM7 and calcium store release. Additionally, bupivacaine was shown to increase TRPM7-like currents, particularly in cells preconditioned with high glucose. Bupivacaine-induced neurotoxicity in hyperglycemia was correlated with extracellular signal-regulated kinase (ERK), but not protein kinase B (AKT) activation. Inhibition of TRPM7 and ERK activity alleviates bupivacaine neurotoxicity. These results suggest that therapeutically targeting TRPM7-related pathophysiological changes could be a potential strategy for treating local anesthetic-induced neurotoxicity exacerbated by hyperglycemia.
Collapse
Affiliation(s)
- Shuang-Hua Dai
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China.,Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Ya-Wen Li
- Department of Anesthesiology, Shenzhen Maternal and Child Health, Hospital of Southern Medical University, Shenzhen, Guangdong, China
| | - Qing-Xiong Hong
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China.,Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Tao Su
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shi-Yuan Xu
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
14
|
He Y, Cai Y, Pai PM, Ren X, Xia Z. The Causes and Consequences of miR-503 Dysregulation and Its Impact on Cardiovascular Disease and Cancer. Front Pharmacol 2021; 12:629611. [PMID: 33762949 PMCID: PMC7982518 DOI: 10.3389/fphar.2021.629611] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 01/20/2021] [Indexed: 12/27/2022] Open
Abstract
microRNAs (miRs) are short, non-coding RNAs that regulate gene expression by mRNA degradation or translational repression. Accumulated studies have demonstrated that miRs participate in various biological processes including cell differentiation, proliferation, apoptosis, metabolism and development, and the dysregulation of miRs expression are involved in different human diseases, such as neurological, cardiovascular disease and cancer. microRNA-503 (miR-503), one member of miR-16 family, has been studied widely in cardiovascular disease and cancer. In this review, we summarize and discuss the studies of miR-503 in vitro and in vivo, and how miR-503 regulates gene expression from different aspects of pathological processes of diseases, including carcinogenesis, angiogenesis, tissue fibrosis and oxidative stress; We will also discuss the mechanisms of dysregulation of miR-503, and whether miR-503 could be applied as a diagnostic marker or therapeutic target in cardiovascular disease or cancer.
Collapse
Affiliation(s)
- Yanjing He
- Department of Anesthesiology, The University of Hong Kong, Hong Kong, China
| | - Yin Cai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Pearl Mingchu Pai
- Department of Medicine, The University of Hong Kong - Shenzhen Hospital, Shenzhen, China
- Department of Medicine, The University of Hong Kong - Queen Mary Hospital, Hong Kong, China
| | - Xinling Ren
- Department of Respiratory Medicine, Shenzhen University General Hospital, Shenzhen, China
| | - Zhengyuan Xia
- Department of Anesthesiology, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|