1
|
Colao IL, Corteling RL, Bracewell DG, Wall IB. Neural stem cell-derived extracellular vesicles purified by monolith chromatography retain stimulatory effect in in vitro scratch assay. Cytotherapy 2024:S1465-3249(24)00932-0. [PMID: 39755977 DOI: 10.1016/j.jcyt.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 10/25/2024] [Accepted: 11/05/2024] [Indexed: 01/07/2025]
Abstract
BACKGROUND AIMS Extracellular vesicles (EVs) have gained traction as potential cell-free therapeutic candidates. Development of purification methods that are scalable and robust is a major focus of EV research. Yet there is still little in the literature that evaluates purification methods against potency of the EV product. In the present study, we examined two monolith chromatography methods with a focus on assessing the ability of purified EVs to retain stimulatory effects on fibroblasts to connect scalable purification methods with product outputs. METHODS We characterized EVs recovered from CTX0E03 (CTX) neural stem cell-conditioned medium in terms of biomarker distribution, functional capacity and purity. We evaluated the ability of EVs to promote wound closure in an in vitro scratch assay prior to and following two monolith chromatography steps (anion exchange and hydrophobic interaction) to determine whether these options may better serve EV bioprocessing. RESULTS EVs from CTX cells were successful in initiating wound repair in a fibroblast scratch assay over 72 h with a single 20-μg dose. EV preparations presented the markers CD9, CD81 and CD63 but also contained culture albumin and DNA as process impurities. EVs recovered by tangential flow filtration could be successfully purified further by both monolith chromatography steps. Post-monolith EV stimulation was conserved. CONCLUSIONS The results indicate that monolith chromatography is a viable purification method for EVs derived from cell culture that does not detract from the product's ability to stimulate fibroblasts, suggesting that product functionality is conserved. Further work is needed in developing suitable downstream processes and analytics to achieve clinically relevant purities for injectable biologics.
Collapse
Affiliation(s)
- Ivano Luigi Colao
- Department of Biochemical Engineering, University College London, London, UK
| | | | - Daniel G Bracewell
- Department of Biochemical Engineering, University College London, London, UK.
| | - Ivan B Wall
- Institute of Immunology and Immunotherapy, College of Medicine and Health, University of Birmingham, Birmingham, UK.
| |
Collapse
|
2
|
Górska A, Trubalski M, Borowski B, Brachet A, Szymańczyk S, Markiewicz R. Navigating stem cell culture: insights, techniques, challenges, and prospects. Front Cell Dev Biol 2024; 12:1435461. [PMID: 39588275 PMCID: PMC11586186 DOI: 10.3389/fcell.2024.1435461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/09/2024] [Indexed: 11/27/2024] Open
Abstract
Stem cell research holds huge promise for regenerative medicine and disease modeling, making the understanding and optimization of stem cell culture a critical aspect of advancing these therapeutic applications. This comprehensive review provides an in-depth overview of stem cell culture, including general information, contemporary techniques, encountered problems, and future perspectives. The article begins by explaining the fundamental characteristics of various stem cell types, elucidating the importance of proper culture conditions in maintaining pluripotency or lineage commitment. A detailed exploration of established culture techniques sheds light on the evolving landscape of stem cell culture methodologies. Common challenges such as genetic stability, heterogeneity, and differentiation efficiency are thoroughly discussed, with insights into cutting-edge strategies and technologies aimed at addressing these hurdles. Moreover, the article delves into the impact of substrate materials, culture media components, and biophysical cues on stem cell behavior, emphasizing the intricate interplay between the microenvironment and cell fate decisions. As stem cell research advances, ethical considerations and regulatory frameworks become increasingly important, prompting a critical examination of these aspects in the context of culture practices. Lastly, the article explores emerging perspectives, including the integration of artificial intelligence and machine learning in optimizing culture conditions, and the potential applications of stem cell-derived products in personalized medicine. This comprehensive overview aims to serve as a valuable resource for researchers and clinicians, fostering a deeper understanding of stem cell culture and its key role in advancing regenerative medicine and biomedical research.
Collapse
Affiliation(s)
- Aleksandra Górska
- Department of Normal, Clinical and Imaging Anatomy, Medical University of Lublin, Lublin, Poland
| | - Mateusz Trubalski
- Students Scientific Association, Department of Normal, Clinical and Imaging Anatomy, Medical University of Lublin, Lublin, Poland
| | - Bartosz Borowski
- Students Scientific Association, Department of Normal, Clinical and Imaging Anatomy, Medical University of Lublin, Lublin, Poland
| | - Adam Brachet
- Student Scientific Association, Department of Forensic Medicine, Medical University of Lublin, Lublin, Poland
| | - Sylwia Szymańczyk
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| | - Renata Markiewicz
- Occupational Therapy Laboratory, Chair of Nursing Development, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
3
|
Deng H, Zhao J, Li J, Chen C, Hu Z, Wu X, Ge L. Therapeutic Efficacy of Extracellular Vesicles Derived from Stem Cell for Alzheimer's Disease: A Meta-Analysis Study. FRONT BIOSCI-LANDMRK 2024; 29:340. [PMID: 39344329 DOI: 10.31083/j.fbl2909340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/29/2024] [Accepted: 08/06/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) poses a significant public health challenge, increasingly affecting patients' finances, mental health, and functional abilities as the global population ages. Stem cell-derived extracellular vesicles (SC-EVs) have emerged as a promising cell-free therapeutic approach for AD, although their precise mechanisms remain unclear. This meta-analysis aims to evaluate the effectiveness of SC-EVs in treating AD. METHODS We systematically searched PubMed, EMBASE, and Web of Science databases up to December 31, 2023, identifying studies investigating SC-EVs therapy in AD rodent models. Outcome measures included Morris water maze and Y maze tests, β-amyloid pathology, and inflammatory markers. Statistical analyses utilized Stata 15.1 and R software. RESULTS This meta-analysis of 16 studies (2017-2023, 314 animals) demonstrates significant efficacy of SC-EVs therapy in AD models. Pooled analyses demonstrated that SC-EVs therapy significantly increased the learning function as measured by Morris water maze tests (MWM) by -1.83 (95% CI = -2.51 to -1.15, p < 0.0001), Y maze test by 1.66 (95% CI = 1.03 to 2.28, p < 0.0001), decreased Aβ plaques in the hippocampal by -2.10 (95% CI = -2.96 to -1.23, p < 0.0001), and proinflammatory cytokines Tumor necrosis factor alpha (TNFα) by -2.61 (95% CI = -4.87 to -0.35, p < 0.05), Interleukin-1 beta (IL-1β) by -2.37 (95% CI = -3.68 to -1.05, p < 0.001). CONCLUSIONS SC-EVs therapy shows promise in enhancing cognitive function and mitigating AD progression in preclinical models. Future research should focus on standardizing methodologies and comparing SC-EVs isolation techniques and dosing strategies to facilitate clinical translation.
Collapse
Affiliation(s)
- Huiyin Deng
- Department of Neurology, The Second Xiangya Hospital, Central South University, 410011 Changsha, Hunan, China
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, 410011 Changsha, Hunan, China
| | - Jing Zhao
- Department of Neurology, The Second Xiangya Hospital, Central South University, 410011 Changsha, Hunan, China
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, The Second Xiangya Hospital, Central South University, 410011 Changsha, Hunan, China
| | - Jiuyi Li
- Department of Anesthesiology, the Fouth People's Hospital of Changsha, 410006 Changsha, Hunan, China
| | - Chunli Chen
- Department of Neurology, The Second Xiangya Hospital, Central South University, 410011 Changsha, Hunan, China
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, The Second Xiangya Hospital, Central South University, 410011 Changsha, Hunan, China
| | - Zhiping Hu
- Department of Neurology, The Second Xiangya Hospital, Central South University, 410011 Changsha, Hunan, China
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, The Second Xiangya Hospital, Central South University, 410011 Changsha, Hunan, China
| | - Xiaomei Wu
- Department of Neurology, The Second Xiangya Hospital, Central South University, 410011 Changsha, Hunan, China
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, The Second Xiangya Hospital, Central South University, 410011 Changsha, Hunan, China
| | - Lite Ge
- Department of Neurology, The Second Xiangya Hospital, Central South University, 410011 Changsha, Hunan, China
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, The Second Xiangya Hospital, Central South University, 410011 Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Neurorestoratology, the Second Affiliated Hospital, Hunan Normal University, 410003 Changsha, Hunan, China
| |
Collapse
|
4
|
Saneh H, Wanczyk H, Walker J, Finck C. Stem cell-derived extracellular vesicles: a potential intervention for Bronchopulmonary Dysplasia. Pediatr Res 2024:10.1038/s41390-024-03471-2. [PMID: 39251881 DOI: 10.1038/s41390-024-03471-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/06/2024] [Accepted: 07/16/2024] [Indexed: 09/11/2024]
Abstract
Despite advances in neonatal care, the incidence of Bronchopulmonary Dysplasia (BPD) remains high among extreme preterm infants. The pathogenesis of BPD is multifactorial, with inflammation playing a central role. There is strong evidence that stem cell therapy reduces inflammatory changes and restores normal lung morphology in animal models of hyperoxia-induced lung injury. These therapeutic effects occur without significant engraftment of the stem cells in the host lung, suggesting more of a paracrine mechanism mediated by their secretome. In addition, there are multiple concerns with stem cell therapy which may be alleviated by administering only the effective vesicles instead of the cells themselves. Extracellular vesicles (EVs) are cell-derived components secreted by most eukaryotic cells. They can deliver their bioactive cargo (mRNAs, microRNAs, proteins, growth factors) to recipient cells, which makes them a potential therapeutic vehicle in many diseases, including BPD. The following review will highlight recent studies that investigate the effectiveness of EVs derived from stem cells in preventing or repairing injury in the preterm lung, and the potential mechanisms of action that have been proposed. Current limitations will also be discussed as well as suggestions for advancing the field and easing the transition towards clinical translation in evolving or established BPD. IMPACT: Extracellular vesicles (EVs) derived from stem cells are a potential intervention for neonatal lung diseases. Their use might alleviate the safety concerns associated with stem cell therapy. This review highlights recent studies that investigate the effectiveness of stem cell-derived EVs in preclinical models of bronchopulmonary dysplasia. It adds to the existing literature by elaborating on the challenges associated with EV research. It also provides suggestions to advance the field and ease the transition towards clinical applications. Optimizing EV research could ultimately improve the quality of life of extreme preterm infants born at vulnerable stages of lung development.
Collapse
Affiliation(s)
- Hala Saneh
- Department of Neonatal Medicine, Connecticut Children's Medical Center, Hartford, CT, USA.
- Department of Pediatrics, University of Connecticut Health Center, Farmington, CT, USA.
| | - Heather Wanczyk
- Department of Pediatrics, University of Connecticut Health Center, Farmington, CT, USA
| | - Joanne Walker
- Department of Pediatrics, University of Connecticut Health Center, Farmington, CT, USA
| | - Christine Finck
- Department of Pediatrics, University of Connecticut Health Center, Farmington, CT, USA
- Department of Pediatric Surgery, Connecticut Children's Medical Center, Hartford, CT, USA
| |
Collapse
|
5
|
Shin DI, Jin YJ, Noh S, Yun HW, Park DY, Min BH. Exosomes Secreted During Myogenic Differentiation of Human Fetal Cartilage-Derived Progenitor Cells Promote Skeletal Muscle Regeneration through miR-145-5p. Tissue Eng Regen Med 2024; 21:487-497. [PMID: 38294592 PMCID: PMC10987463 DOI: 10.1007/s13770-023-00618-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/19/2023] [Accepted: 11/23/2023] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Currently, there is no apparent treatment for sarcopenia, which is characterized by diminished myoblast function. We aimed to manufacture exosomes that retain the myogenic differentiation capacity of human fetal cartilage-derived progenitor cells (hFCPCs) and investigate their muscle regenerative efficacy in myoblasts and a sarcopenia rat model. METHODS The muscle regeneration potential of exosomes (F-Exo) secreted during myogenic differentiation of hFCPCs was compared to human bone marrow mesenchymal stem cells-derived (hBMSCs) exosomes (B-Exo) in myoblasts and sarcopenia rat model. The effect of F-Exo was analyzed through known microRNAs (miRNAs) analysis. The mechanism of action of F-Exo was confirmed by measuring the expression of proteins involved in the Wnt signaling pathway. RESULTS F-Exo and B-Exo showed similar exosome characteristics. However, F-Exo induced the expression of muscle markers (MyoD, MyoG, and MyHC) and myotube formation in myoblasts more effectively than B-Exo. Moreover, F-Exo induced greater increases in muscle fiber cross-sectional area and muscle mass compared to B-Exo in a sarcopenia rat. The miR-145-5p, relevant to muscle regeneration, was found in high concentrations in the F-Exo, and RNase pretreatment reduced the efficacy of exosomes. The effects of F-Exo on the expression of myogenic markers in myoblasts were paralleled by the miR-145-5p mimics, while the inhibitor partially negated this effect. F-Exo was involved in the Wnt signaling pathway by enhancing the expression of Wnt5a and β-catenin. CONCLUSION F-Exo improved muscle regeneration by activating the Wnt signaling pathway via abundant miR-145-5p, mimicking the remarkable myogenic differentiation potential of hFCPCs.
Collapse
Affiliation(s)
- Dong Il Shin
- Department of Molecular Science and Technology, Ajou University Graduate School, 206 Worldcup-ro, Youngtong-gu, Suwon, 16499, Republic of Korea
- Cell Therapy Center, Ajou University School of Medicine, 206 Worldcup-ro, Youngtong-gu, Suwon, 16499, Republic of Korea
| | - Yong Jun Jin
- Cell Therapy Center, Ajou University School of Medicine, 206 Worldcup-ro, Youngtong-gu, Suwon, 16499, Republic of Korea
- Department of Orthopedic Surgery, Ajou University School of Medicine, 206 Worldcup-ro, Youngtong-gu, Suwon, 16499, Republic of Korea
| | - Sujin Noh
- Cell Therapy Center, Ajou University School of Medicine, 206 Worldcup-ro, Youngtong-gu, Suwon, 16499, Republic of Korea
- Department of Biomedical Sciences, Ajou University Graduate School, 206 Worldcup-ro, Youngtong-gu, Suwon, 16499, Republic of Korea
| | - Hee-Woong Yun
- Cell Therapy Center, Ajou University School of Medicine, 206 Worldcup-ro, Youngtong-gu, Suwon, 16499, Republic of Korea
- Department of Orthopedic Surgery, Ajou University School of Medicine, 206 Worldcup-ro, Youngtong-gu, Suwon, 16499, Republic of Korea
| | - Do Young Park
- Cell Therapy Center, Ajou University School of Medicine, 206 Worldcup-ro, Youngtong-gu, Suwon, 16499, Republic of Korea
- Department of Biomedical Sciences, Ajou University Graduate School, 206 Worldcup-ro, Youngtong-gu, Suwon, 16499, Republic of Korea
- Department of Orthopedic Surgery, Ajou University School of Medicine, 206 Worldcup-ro, Youngtong-gu, Suwon, 16499, Republic of Korea
| | - Byoung-Hyun Min
- Department of Molecular Science and Technology, Ajou University Graduate School, 206 Worldcup-ro, Youngtong-gu, Suwon, 16499, Republic of Korea.
- Cell Therapy Center, Ajou University School of Medicine, 206 Worldcup-ro, Youngtong-gu, Suwon, 16499, Republic of Korea.
- Department of Orthopedic Surgery, Ajou University School of Medicine, 206 Worldcup-ro, Youngtong-gu, Suwon, 16499, Republic of Korea.
| |
Collapse
|
6
|
Saneh H, Wanczyk H, Walker J, Finck C. Effectiveness of extracellular vesicles derived from hiPSCs in repairing hyperoxia-induced injury in a fetal murine lung explant model. Stem Cell Res Ther 2024; 15:80. [PMID: 38486338 PMCID: PMC10941466 DOI: 10.1186/s13287-024-03687-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/27/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Despite advances in neonatal care, the incidence of Bronchopulmonary Dysplasia (BPD) remains high among preterm infants. Human induced pluripotent stem cells (hiPSCs) have shown promise in repairing injury in animal BPD models. Evidence suggests they exert their effects via paracrine mechanisms. We aim herein to assess the effectiveness of extracellular vesicles (EVs) derived from hiPSCs and their alveolar progenies (diPSCs) in attenuating hyperoxic injury in a preterm lung explant model. METHODS Murine lung lobes were harvested on embryonic day 17.5 and maintained in air-liquid interface. Following exposure to 95% O2 for 24 h, media was supplemented with 5 × 106 particles/mL of EVs isolated from hiPSCs or diPSCs by size-exclusion chromatography. On day 3, explants were assessed using Hematoxylin-Eosin staining with mean linear intercept (MLI) measurements, immunohistochemistry, VEGFa and antioxidant gene expression. Statistical analysis was conducted using one-way ANOVA and Multiple Comparison Test. EV proteomic profiling was performed, and annotations focused on alveolarization and angiogenesis signaling pathways, as well as anti-inflammatory, anti-oxidant, and regenerative pathways. RESULTS Exposure of fetal lung explants to hyperoxia induced airspace enlargement, increased MLI, upregulation of anti-oxidants Prdx5 and Nfe2l2 with decreased VEGFa expression. Treatment with hiPSC-EVs improved parenchymal histologic changes. No overt changes in vasculature structure were observed on immunohistochemistry in our in vitro model. However, VEGFa and anti-oxidant genes were upregulated with diPSC-EVs, suggesting a pro-angiogenic and cytoprotective potential. EV proteomic analysis provided new insights in regard to potential pathways influencing lung regeneration. CONCLUSION This proof-of-concept in vitro study reveals a potential role for hiPSC- and diPSC-EVs in attenuating lung changes associated with prematurity and oxygen exposure. Our findings pave the way for a novel cell free approach to prevent and/or treat BPD, and ultimately reduce the global burden of the disease.
Collapse
Affiliation(s)
- Hala Saneh
- Department of Neonatal Medicine, Connecticut Children's Medical Center, Hartford, CT, USA.
- Department of Pediatrics, University of Connecticut Health Center, Farmington, CT, USA.
| | - Heather Wanczyk
- Department of Pediatrics, University of Connecticut Health Center, Farmington, CT, USA
| | - Joanne Walker
- Department of Pediatrics, University of Connecticut Health Center, Farmington, CT, USA
| | - Christine Finck
- Department of Pediatrics, University of Connecticut Health Center, Farmington, CT, USA
- Department of Pediatric Surgery, Connecticut Children's Medical Center, Hartford, CT, USA
| |
Collapse
|
7
|
Kim M, Jang H, Kim W, Kim D, Park JH. Therapeutic Applications of Plant-Derived Extracellular Vesicles as Antioxidants for Oxidative Stress-Related Diseases. Antioxidants (Basel) 2023; 12:1286. [PMID: 37372016 PMCID: PMC10295733 DOI: 10.3390/antiox12061286] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/10/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Extracellular vesicles (EVs) composed of a lipid bilayer are released from various cell types, including animals, plants, and microorganisms, and serve as important mediators of cell-to-cell communication. EVs can perform a variety of biological functions through the delivery of bioactive molecules, such as nucleic acids, lipids, and proteins, and can also be utilized as carriers for drug delivery. However, the low productivity and high cost of mammalian-derived EVs (MDEVs) are major barriers to their practical clinical application where large-scale production is essential. Recently, there has been growing interest in plant-derived EVs (PDEVs) that can produce large amounts of electricity at a low cost. In particular, PDEVs contain plant-derived bioactive molecules such as antioxidants, which are used as therapeutic agents to treat various diseases. In this review, we discuss the composition and characteristics of PDEVs and the appropriate methods for their isolation. We also discuss the potential use of PDEVs containing various plant-derived antioxidants as replacements for conventional antioxidants.
Collapse
Affiliation(s)
| | | | | | | | - Ju Hyun Park
- Department of Biomedical Science, Kangwon National University, Chuncheon-si 24341, Republic of Korea; (M.K.); (H.J.); (W.K.); (D.K.)
| |
Collapse
|
8
|
Extracellular Vesicles: The Future of Diagnosis in Solid Organ Transplantation? Int J Mol Sci 2023; 24:ijms24065102. [PMID: 36982182 PMCID: PMC10048932 DOI: 10.3390/ijms24065102] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/10/2023] Open
Abstract
Solid organ transplantation (SOT) is a life-saving treatment for end-stage organ failure, but it comes with several challenges, the most important of which is the existing gap between the need for transplants and organ availability. One of the main concerns in this regard is the lack of accurate non-invasive biomarkers to monitor the status of a transplanted organ. Extracellular vesicles (EVs) have recently emerged as a promising source of biomarkers for various diseases. In the context of SOT, EVs have been shown to be involved in the communication between donor and recipient cells and may carry valuable information about the function of an allograft. This has led to an increasing interest in exploring the use of EVs for the preoperative assessment of organs, early postoperative monitoring of graft function, or the diagnosis of rejection, infection, ischemia-reperfusion injury, or drug toxicity. In this review, we summarize recent evidence on the use of EVs as biomarkers for these conditions and discuss their applicability in the clinical setting.
Collapse
|
9
|
Sanz-Ros J, Mas-Bargues C, Romero-García N, Huete-Acevedo J, Dromant M, Borrás C. Extracellular Vesicles as Therapeutic Resources in the Clinical Environment. Int J Mol Sci 2023; 24:2344. [PMID: 36768664 PMCID: PMC9917082 DOI: 10.3390/ijms24032344] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023] Open
Abstract
The native role of extracellular vesicles (EVs) in mediating the transfer of biomolecules between cells has raised the possibility to use them as therapeutic vehicles. The development of therapies based on EVs is now expanding rapidly; here we will describe the current knowledge on different key points regarding the use of EVs in a clinical setting. These points are related to cell sources of EVs, isolation, storage, and delivery methods, as well as modifications to the releasing cells for improved production of EVs. Finally, we will depict the application of EVs therapies in clinical trials, considering the impact of the COVID-19 pandemic on the development of these therapies, pointing out that although it is a promising therapy for human diseases, we are still in the initial phase of its application to patients.
Collapse
Affiliation(s)
- Jorge Sanz-Ros
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
- Department of Cardiology, Hospital Universitari i Politècnic La Fe, 46026 Valencia, Spain
| | - Cristina Mas-Bargues
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| | - Nekane Romero-García
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
- Department of Anesthesiology and Surgical Trauma Intensive Care, Hospital Clinic Universitari de Valencia, University of Valencia, 46010 Valencia, Spain
| | - Javier Huete-Acevedo
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| | - Mar Dromant
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| | - Consuelo Borrás
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| |
Collapse
|
10
|
Romero-García N, Huete-Acevedo J, Mas-Bargues C, Sanz-Ros J, Dromant M, Borrás C. The Double-Edged Role of Extracellular Vesicles in the Hallmarks of Aging. Biomolecules 2023; 13:165. [PMID: 36671550 PMCID: PMC9855573 DOI: 10.3390/biom13010165] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 01/14/2023] Open
Abstract
The exponential growth in the elderly population and their associated socioeconomic burden have recently brought aging research into the spotlight. To integrate current knowledge and guide potential interventions, nine biochemical pathways are summarized under the term hallmarks of aging. These hallmarks are deeply inter-related and act together to drive the aging process. Altered intercellular communication is particularly relevant since it explains how damage at the cellular level translates into age-related loss of function at the organismal level. As the main effectors of intercellular communication, extracellular vesicles (EVs) might play a key role in the aggravation or mitigation of the hallmarks of aging. This review aims to summarize this role and to provide context for the multiple emerging EV-based gerotherapeutic strategies that are currently under study.
Collapse
Affiliation(s)
- Nekane Romero-García
- Department of Anesthesiology and Surgical Trauma Intensive Care, Hospital Clinic Universitari Valencia, University of Valencia, 46010 Valencia, Spain
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| | - Javier Huete-Acevedo
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| | - Cristina Mas-Bargues
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| | - Jorge Sanz-Ros
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
- Cardiology Department, Hospital Universitari i Politècnic La Fe, 46026 Valencia, Spain
| | - Mar Dromant
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| | - Consuelo Borrás
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| |
Collapse
|
11
|
Extracellular Vesicles and Cellular Ageing. Subcell Biochem 2023; 102:271-311. [PMID: 36600137 DOI: 10.1007/978-3-031-21410-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Ageing is a complex process characterized by deteriorated performance at multiple levels, starting from cellular dysfunction to organ degeneration. Stem cell-based therapies aim to administrate stem cells that eventually migrate to the injured site to replenish the damaged tissue and recover tissue functionality. Stem cells can be easily obtained and cultured in vitro, and display several qualities such as self-renewal, differentiation, and immunomodulation that make them suitable candidates for stem cell-based therapies. Current animal studies and clinical trials are being performed to assess the safety and beneficial effects of stem cell engraftments for regenerative medicine in ageing and age-related diseases.Since alterations in cell-cell communication have been associated with the development of pathophysiological processes, new research is focusing on the modulation of the microenvironment. Recent research has highlighted the important role of some microenvironment components that modulate cell-cell communication, thus spreading signals from damaged ageing cells to neighbor healthy cells, thereby promoting systemic ageing. Extracellular vesicles (EVs) are small-rounded vesicles released by almost every cell type. EVs cargo includes several bioactive molecules, such as lipids, proteins, and genetic material. Once internalized by target cells, their specific cargo can induce epigenetic modifications and alter the fate of the recipient cells. Also, EV's content is dependent on the releasing cells, thus, EVs can be used as biomarkers for several diseases. Moreover, EVs have been proposed to be used as cell-free therapies that focus on their administration to slow or even reverse some hallmarks of physiological ageing. It is not surprising that EVs are also under study as next-generation therapies for age-related diseases.
Collapse
|
12
|
Sanz-Ros J, Mas-Bargues C, Romero-García N, Huete-Acevedo J, Dromant M, Borrás C. Therapeutic Potential of Extracellular Vesicles in Aging and Age-Related Diseases. Int J Mol Sci 2022; 23:ijms232314632. [PMID: 36498960 PMCID: PMC9735639 DOI: 10.3390/ijms232314632] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
Aging is associated with an alteration of intercellular communication. These changes in the extracellular environment contribute to the aging phenotype and have been linked to different aging-related diseases. Extracellular vesicles (EVs) are factors that mediate the transmission of signaling molecules between cells. In the aging field, these EVs have been shown to regulate important aging processes, such as oxidative stress or senescence, both in vivo and in vitro. EVs from healthy cells, particularly those coming from stem cells (SCs), have been described as potential effectors of the regenerative potential of SCs. Many studies with different animal models have shown promising results in the field of regenerative medicine. EVs are now viewed as a potential cell-free therapy for tissue damage and several diseases. Here we propose EVs as regulators of the aging process, with an important role in tissue regeneration and a raising therapy for age-related diseases.
Collapse
Affiliation(s)
- Jorge Sanz-Ros
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
- Cardiology Department, Hospital Universitari i Politècnic La Fe, 46026 Valencia, Spain
| | - Cristina Mas-Bargues
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| | - Nekane Romero-García
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| | - Javier Huete-Acevedo
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| | - Mar Dromant
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| | - Consuelo Borrás
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
- Correspondence:
| |
Collapse
|
13
|
Xun C, Deng H, Zhao J, Ge L, Hu Z. Mesenchymal stromal cell extracellular vesicles for multiple sclerosis in preclinical rodent models: A meta-analysis. Front Immunol 2022; 13:972247. [PMID: 36405749 PMCID: PMC9673165 DOI: 10.3389/fimmu.2022.972247] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 10/14/2022] [Indexed: 07/29/2023] Open
Abstract
INTRODUCTION Extracellular vesicles (EVs), especially mesenchymal stem (stromal) cell-derived EVs (MSC-EVs), have gained attention as potential novel treatments for multiple sclerosis (MS). However, their effects remain incompletely understood. Thus, the purpose of this meta-analysis was to systematically review the efficacy of MSC-EVs in preclinical rodent models of MS. METHODS We searched PubMed, EMBASE, and the Web of Science databases up to August 2021 for studies that reported the treatment effects of MSC-EVs in rodent MS models. The clinical score was extracted as an outcome. Articles were peer-reviewed by two authors based on the inclusion and exclusion criteria. This meta-analysis was conducted using Stata 15.1 and R. RESULTS A total of twelve animal studies met the inclusion criteria. In our study, the MSC-EVs had a positive overall effect on the clinical score with a standardized mean difference (SMD) of -2.17 (95% confidence interval (CI)):-3.99 to -0.34, P = 0.01). A significant amount of heterogeneity was observed among the studies. CONCLUSIONS This meta-analysis suggests that transplantation of MSC-EVs in MS rodent models improved functional recovery. Additionally, we identified several critical knowledge gaps, such as insufficient standardized dosage units and uncertainty regarding the optimal dose of MSC-EVs transplantation in MS. These gaps must be addressed before clinical trials can begin with MSC-EVs.
Collapse
Affiliation(s)
- Chengfeng Xun
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincical Key Laboratory of Neurorestoratology, the Second Affiliated Hospital, Hunan Normal University, Changsha, China
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Huiyin Deng
- Department of Anesthesiology, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jing Zhao
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Lite Ge
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincical Key Laboratory of Neurorestoratology, the Second Affiliated Hospital, Hunan Normal University, Changsha, China
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Zhiping Hu
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
14
|
MSC-EV therapy for bone/cartilage diseases. Bone Rep 2022; 17:101636. [DOI: 10.1016/j.bonr.2022.101636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022] Open
|
15
|
Sanz-Ros J, Romero-García N, Mas-Bargues C, Monleón D, Gordevicius J, Brooke RT, Dromant M, Díaz A, Derevyanko A, Guío-Carrión A, Román-Domínguez A, Inglés M, Blasco MA, Horvath S, Viña J, Borrás C. Small extracellular vesicles from young adipose-derived stem cells prevent frailty, improve health span, and decrease epigenetic age in old mice. SCIENCE ADVANCES 2022; 8:eabq2226. [PMID: 36260670 PMCID: PMC9581480 DOI: 10.1126/sciadv.abq2226] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Aging is associated with an increased risk of frailty, disability, and mortality. Strategies to delay the degenerative changes associated with aging and frailty are particularly interesting. We treated old animals with small extracellular vesicles (sEVs) derived from adipose mesenchymal stem cells (ADSCs) of young animals, and we found an improvement in several parameters usually altered with aging, such as motor coordination, grip strength, fatigue resistance, fur regeneration, and renal function, as well as an important decrease in frailty. ADSC-sEVs induced proregenerative effects and a decrease in oxidative stress, inflammation, and senescence markers in muscle and kidney. Moreover, predicted epigenetic age was lower in tissues of old mice treated with ADSC-sEVs and their metabolome changed to a youth-like pattern. Last, we gained some insight into the microRNAs contained in sEVs that might be responsible for the observed effects. We propose that young sEV treatment can promote healthy aging.
Collapse
Affiliation(s)
- Jorge Sanz-Ros
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| | - Nekane Romero-García
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| | - Cristina Mas-Bargues
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| | - Daniel Monleón
- Department of Pathology, Faculty of Medicine, University of Valencia, CIBERFES, INCLIVA, Avenida Blasco Ibáñez, 15, Valencia, Spain
| | | | | | - Mar Dromant
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| | - Ana Díaz
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| | - Aksinya Derevyanko
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre, 28029 Madrid, Spain
| | - Ana Guío-Carrión
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre, 28029 Madrid, Spain
| | - Aurora Román-Domínguez
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| | - Marta Inglés
- Freshage Research Group, Department of Physiotherapy, Faculty of Physiotherapy, University of Valencia, CIBERFES, INCLIVA, Avenida Blasco Ibáñez, 15, Valencia Spain
| | - María A. Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre, 28029 Madrid, Spain
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA
- Altos Labs, San Diego, CA, USA
| | - Jose Viña
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| | - Consuelo Borrás
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
- Corresponding author.
| |
Collapse
|
16
|
Zucker IH, Mann GE, Ghezzi P. Special issue "Extracellular Vesicles and Exosomes". Free Radic Biol Med 2022; 184:12-13. [PMID: 35358619 DOI: 10.1016/j.freeradbiomed.2022.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Irving H Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Giovanni E Mann
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, Kings College London 150 Stamford Street, London, SE1 9NH, UK.
| | - Pietro Ghezzi
- Department of Clinical Experimental Medicine, Brighton and Sussex Medical School, Brighton, UK.
| |
Collapse
|
17
|
Esquivel-Ruiz S, González-Rodríguez P, Lorente JA, Pérez-Vizcaíno F, Herrero R, Moreno L. Extracellular Vesicles and Alveolar Epithelial-Capillary Barrier Disruption in Acute Respiratory Distress Syndrome: Pathophysiological Role and Therapeutic Potential. Front Physiol 2021; 12:752287. [PMID: 34887773 PMCID: PMC8650589 DOI: 10.3389/fphys.2021.752287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/27/2021] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) mediate intercellular communication by transferring genetic material, proteins and organelles between different cells types in both health and disease. Recent evidence suggests that these vesicles, more than simply diagnostic markers, are key mediators of the pathophysiology of acute respiratory distress syndrome (ARDS) and other lung diseases. In this review, we will discuss the contribution of EVs released by pulmonary structural cells (alveolar epithelial and endothelial cells) and immune cells in these diseases, with particular attention to their ability to modulate inflammation and alveolar-capillary barrier disruption, a hallmark of ARDS. EVs also offer a unique opportunity to develop new therapeutics for the treatment of ARDS. Evidences supporting the ability of stem cell-derived EVs to attenuate the lung injury and ongoing strategies to improve their therapeutic potential are also discussed.
Collapse
Affiliation(s)
- Sergio Esquivel-Ruiz
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.,Ciber de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Paloma González-Rodríguez
- Ciber de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Department of Critical Care, Hospital Universitario de Getafe, Madrid, Spain
| | - José A Lorente
- Ciber de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Department of Critical Care, Hospital Universitario de Getafe, Madrid, Spain.,Clinical Section, School of Medicine, European University of Madrid, Madrid, Spain
| | - Francisco Pérez-Vizcaíno
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.,Ciber de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Raquel Herrero
- Ciber de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Department of Critical Care, Hospital Universitario de Getafe, Madrid, Spain
| | - Laura Moreno
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.,Ciber de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| |
Collapse
|