1
|
Tetteh PA, Kalvani Z, Stevens D, Sappal R, Kamunde C. Interactions of binary mixtures of metals on rainbow trout (Oncorhynchus mykiss) heart mitochondrial H 2O 2 homeodynamics. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 273:106986. [PMID: 38851027 DOI: 10.1016/j.aquatox.2024.106986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/30/2024] [Accepted: 06/01/2024] [Indexed: 06/10/2024]
Abstract
For continuous pumping of blood, the heart needs a constant supply of energy (ATP) that is primarily met via oxidative phosphorylation in the mitochondria of cardiomyocytes. However, sustained high rates of electron transport for energy conversion redox reactions predisposes the heart to the production of reactive oxygen species (ROS) and oxidative stress. Mitochondrial ROS are fundamental drivers of responses to environmental stressors including metals but knowledge of how combinations of metals alter mitochondrial ROS homeodynamics remains sparse. We explored the effects and interactions of binary mixtures of copper (Cu), cadmium (Cd), and zinc (Zn), metals that are common contaminants of aquatic systems, on ROS (hydrogen peroxide, H2O2) homeodynamics in rainbow trout (Oncorhynchus mykiss) heart mitochondria. Isolated mitochondria were energized with glutamate-malate or succinate and exposed to a range of concentrations of the metals singly and in equimolar binary concentrations. Speciation analysis revealed that Cu was highly complexed by glutamate or Tris resulting in Cu2+ concentrations in the picomolar to nanomolar range. The concentration of Cd2+ was 7.2-7.5 % of the total while Zn2+ was 15 % and 21 % of the total during glutamate-malate and succinate oxidation, respectively. The concentration-effect relationships for Cu and Cd on mitochondrial H2O2 emission depended on the substrate while those for Zn were similar during glutamate-malate and succinate oxidation. Cu + Zn and Cu + Cd mixtures exhibited antagonistic interactions wherein Cu reduced the effects of both Cd and Zn, suggesting that Cu can mitigate oxidative distress caused by Cd or Zn. Binary combinations of the metals acted additively to reduce the rate constant and increase the half-life of H2O2 consumption while concomitantly suppressing thioredoxin reductase and stimulating glutathione peroxidase activities. Collectively, our study indicates that binary mixtures of Cu, Zn, and Cd act additively or antagonistically to modulate H2O2 homeodynamics in heart mitochondria.
Collapse
Affiliation(s)
- Pius Abraham Tetteh
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, PE, Canada
| | - Zahra Kalvani
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, PE, Canada
| | - Don Stevens
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, PE, Canada
| | - Ravinder Sappal
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, PE, Canada; Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, New York, USA
| | - Collins Kamunde
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, PE, Canada.
| |
Collapse
|
2
|
Kamunde C, Wijayakulathilake Y, Okoye C, Chinnappareddy N, Kalvani Z, Tetteh P, van den Heuvel M, Sappal R, Stevens D. Effect of skeletal muscle mitochondrial phenotype on H 2O 2 emission. Comp Biochem Physiol B Biochem Mol Biol 2024; 271:110940. [PMID: 38190961 DOI: 10.1016/j.cbpb.2024.110940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/24/2023] [Accepted: 01/03/2024] [Indexed: 01/10/2024]
Abstract
Reactive oxygen species (ROS) are a key output of the skeletal muscle mitochondrial information processing system both at rest and during exercise. In skeletal muscle, mitochondrial ROS release depends on multiple factors; however, fiber-type specific differences remain ambiguous in part owing to the use of mitochondria from mammalian muscle that consist of mixed fibers. To elucidate fiber-type specific differences, we used mitochondria isolated from rainbow trout (Oncorhynchus mykiss) red and white skeletal muscles that consist of spatially distinct essentially pure red and white fibers. We first characterized the assay conditions for measuring ROS production (as H2O2) in isolated fish red and white skeletal muscle mitochondria (RMM and WMM) and thereafter compared the rates of emission during oxidation of different substrates and the responses to mitochondrial electron transport system (ETS) pharmacological modulators. Our results showed that H2O2 emission rates by RMM and WMM can be quantified using the same protein concentration and composition of the Amplex UltraRed-horseradish peroxidase (AUR-HRP) detection system. For both RMM and WMM, protein normalized H2O2 emission rates were highest at the lowest protein concentration tested and decreased exponentially thereafter. However, the absolute values of H2O2 emission rates depended on the calibration curves used to convert fluorescent signals to H2O2 while the trends depended on the normalization strategy. We found substantial qualitative and quantitative differences between RMM and WMM in the H2O2 emission rates depending on the substrates being oxidized and their concentrations. Similarly, pharmacological modulators of the ETS altered the magnitudes and trends of the H2O2 emission differently in RMM and WMM. While comparable concentrations of substrates elicited maximal albeit quantitively different emission rates in RMM and WMM, different concentrations of pharmacological ETS modulators may be required for maximal H2O2 emission rates depending on muscle fiber-type. Taken together, our study suggests that biochemical differences exist in RMM compared with WMM that alter substrate oxidation and responses to ETS modulators resulting in fiber-type specific mitochondrial H2O2 emission rates.
Collapse
Affiliation(s)
- Collins Kamunde
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, PE, Canada.
| | - Yashodya Wijayakulathilake
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, PE, Canada
| | - Chidozie Okoye
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, PE, Canada
| | - Nirmala Chinnappareddy
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, PE, Canada
| | - Zahra Kalvani
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, PE, Canada
| | - Pius Tetteh
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, PE, Canada
| | | | - Ravinder Sappal
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, New York, USA
| | - Don Stevens
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, PE, Canada
| |
Collapse
|
3
|
Liu K, Li X, Liu Z, Ming X, Han B, Cai W, Yang X, Huang Z, Shi Z, Wu J, Hao B, Chen X. Orientin Promotes Antioxidant Capacity, Mitochondrial Biogenesis, and Fiber Transformation in Skeletal Muscles through the AMPK Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6226-6235. [PMID: 38492240 DOI: 10.1021/acs.jafc.3c08039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2024]
Abstract
The sleep-breathing condition obstructive sleep apnea (OSA) is characterized by repetitive upper airway collapse, which can exacerbate oxidative stress and free radical generation, thereby detrimentally impacting both motor and sensory nerve function and inducing muscular damage. OSA development is promoted by increasing proportions of fast-twitch muscle fibers in the genioglossus. Orientin, a water-soluble dietary C-glycosyl flavonoid with antioxidant properties, increased the expression of slow myosin heavy chain (MyHC) and signaling factors associated with AMP-activated protein kinase (AMPK) activation both in vivo and in vitro. Inhibiting AMPK signaling diminished the effects of orientin on slow MyHC, fast MyHC, and Sirt1 expression. Overall, orientin enhanced type I muscle fibers in the genioglossus, enhanced antioxidant capacity, increased mitochondrial biogenesis through AMPK signaling, and ultimately improved fatigue resistance in C2C12 myotubes and mouse genioglossus. These findings suggest that orientin may contribute to upper airway stability in patients with OSA, potentially preventing airway collapse.
Collapse
Affiliation(s)
- Keshu Liu
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Sleep Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xufeng Li
- Department of Orthopedics, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo 315040, China
| | - Zhihui Liu
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Sleep Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xiaoping Ming
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Sleep Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Baoai Han
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Sleep Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Weisong Cai
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Sleep Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xiuping Yang
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Sleep Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Zilin Huang
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Sleep Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Zhenxiang Shi
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Sleep Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jianghao Wu
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Sleep Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Bin Hao
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Sleep Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xiong Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Sleep Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| |
Collapse
|