1
|
Shelley A, Mark S, Block A, Paul SM, Cooper BA, Hammer MJ, Conley YP, Levine J, Miaskowski C. Worse Morning Energy Profiles Are Associated with Significant Levels of Stress and Decrements in Resilience in Patients Receiving Chemotherapy. Semin Oncol Nurs 2024; 40:151718. [PMID: 39164158 DOI: 10.1016/j.soncn.2024.151718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/08/2024] [Accepted: 07/25/2024] [Indexed: 08/22/2024]
Abstract
OBJECTIVES Evidence suggests that lower levels of morning energy are associated with higher levels of stress and lower levels of resilience in patients receiving chemotherapy. Study purposes were to identify subgroups of patients with distinct morning energy profiles; evaluate for differences among the profiles in demographic and clinical characteristics, as well as measures of stress, resilience, and coping. METHODS A total of 1,343 outpatients receiving chemotherapy completed a demographic questionnaire and measures of global, cancer-related, and cumulative life stress, and resilience at study enrollment. Morning energy was assessed using the Lee Fatigue Scale at six time points over two cycles of chemotherapy. Latent profile analysis was used to identify subgroups of patients with distinct morning energy profiles. Differences among the subgroups were evaluated using parametric and nonparametric tests. RESULTS Three morning energy profiles were identified (i.e., High (17.3%), Low (60.3%), Very Low (22.4%)). Compared to High class, the other two morning energy classes were less likely to be employed; had a lower functional status and a higher comorbidity burden; and were more likely to self-report depression and back pain. For all three types of stress, significant differences were found among the three classes with scores that demonstrated a dose response effect (i.e., High < Low < Very Low; as decrements in morning energy increased, stress scores increased). Compared to High class, Very Low class reported higher rates of physical and sexual abuse. The resilience scores exhibited a dose response effect as well (i.e., High > Low > Very Low). Patients with the two worst energy profiles reported a higher use of disengagement coping strategies. CONCLUSIONS Findings highlight the complex relationships among decrements in morning energy, various types of stress, resilience, and coping in patients undergoing chemotherapy. IMPLICATIONS FOR NURSING PRACTICE Clinicians need to assess for stress and adverse childhood experiences to develop individualized management plans to increase patients' energy levels.
Collapse
Affiliation(s)
- Alexandra Shelley
- School of Nursing, University of California, San Francisco, California
| | - Sueann Mark
- School of Nursing, University of California, San Francisco, California
| | - Astrid Block
- School of Nursing, University of California, San Francisco, California
| | - Steven M Paul
- School of Nursing, University of California, San Francisco, California
| | - Bruce A Cooper
- School of Nursing, University of California, San Francisco, California
| | | | - Yvette P Conley
- School of Nursing, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jon Levine
- School of Medicine, University of California, San Francisco, California
| | - Christine Miaskowski
- School of Nursing, University of California, San Francisco, California; School of Medicine, University of California, San Francisco, California.
| |
Collapse
|
2
|
Junqueira A, Gomes MJ, Lima ARR, Pontes THD, Rodrigues EA, Damatto FC, Depra I, Paschoareli GL, Pagan LU, Fernandes AAH, Oliveira-Jr SA, Pacagnelli FL, Okoshi MP, Okoshi K. Effects of concurrent training and N-acetylcysteine supplementation on cardiac remodeling and oxidative stress in middle-aged spontaneously hypertensive rats. BMC Cardiovasc Disord 2024; 24:409. [PMID: 39103770 PMCID: PMC11299285 DOI: 10.1186/s12872-024-04075-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/24/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND This study evaluated the effects of concurrent isolated training (T) or training combined with the antioxidant N-acetylcysteine (NAC) on cardiac remodeling and oxidative stress in spontaneously hypertensive rats (SHR). METHODS Six-month-old male SHR were divided into sedentary (S, n = 12), concurrent training (T, n = 13), sedentary supplemented with NAC (SNAC, n = 13), and concurrent training with NAC supplementation (TNAC, n = 14) groups. T and TNAC rats were trained three times a week on a treadmill and ladder; NAC supplemented groups received 120 mg/kg/day NAC in rat chow for eight weeks. Myocardial antioxidant enzyme activity and lipid hydroperoxide concentration were assessed by spectrophotometry. Gene expression of NADPH oxidase subunits Nox2, Nox4, p22 phox, and p47 phox was evaluated by real time RT-PCR. Statistical analysis was performed using ANOVA and Bonferroni or Kruskal-Wallis and Dunn. RESULTS Echocardiogram showed concentric remodeling in TNAC, characterized by increased relative wall thickness (S 0.40 ± 0.04; T 0.39 ± 0.03; SNAC 0.40 ± 0.04; TNAC 0.43 ± 0.04 *; * p < 0.05 vs T and SNAC) and diastolic posterior wall thickness (S 1.50 ± 0.12; T 1.52 ± 0.10; SNAC 1.56 ± 0.12; TNAC 1.62 ± 0.14 * mm; * p < 0.05 vs T), with improved contractile function (posterior wall shortening velocity: S 39.4 ± 5.01; T 36.4 ± 2.96; SNAC 39.7 ± 3.44; TNAC 41.6 ± 3.57 * mm/s; * p < 0.05 vs T). Myocardial lipid hydroperoxide concentration was lower in NAC treated groups (S 210 ± 48; T 182 ± 43; SNAC 159 ± 33 *; TNAC 110 ± 23 *# nmol/g tissue; * p < 0.05 vs S, # p < 0.05 vs T and SNAC). Nox 2 and p22 phox expression was higher and p47 phox lower in T than S [S 1.37 (0.66-1.66); T 0.78 (0.61-1.04) *; SNAC 1.07 (1.01-1.38); TNAC 1.06 (1.01-1.15) arbitrary units; * p < 0.05 vs S]. NADPH oxidase subunits did not differ between TNAC, SNAC, and S groups. CONCLUSION N-acetylcysteine supplementation alone reduces oxidative stress in untreated spontaneously hypertensive rats. The combination of N-acetylcysteine and concurrent exercise further decreases oxidative stress. However, the lower oxidative stress does not translate into improved cardiac remodeling and function in untreated spontaneously hypertensive rats.
Collapse
Affiliation(s)
- Adriana Junqueira
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil.
- Physiotherapy Department, University of Western Sao Paulo, Presidente Prudente, SP, Brazil.
| | - Mariana J Gomes
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Aline R R Lima
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Thierres H D Pontes
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Eder A Rodrigues
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Felipe C Damatto
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Igor Depra
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Guilherme L Paschoareli
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Luana U Pagan
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Ana A H Fernandes
- Institute of Biosciences, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | | | - Francis L Pacagnelli
- Physiotherapy Department, University of Western Sao Paulo, Presidente Prudente, SP, Brazil
| | - Marina P Okoshi
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Katashi Okoshi
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| |
Collapse
|
3
|
Jones DP. Redox organization of living systems. Free Radic Biol Med 2024; 217:179-189. [PMID: 38490457 PMCID: PMC11313653 DOI: 10.1016/j.freeradbiomed.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/08/2024] [Accepted: 03/13/2024] [Indexed: 03/17/2024]
Abstract
Redox organization governs an underlying simplicity in living systems. Critically, redox reactions enable the essential characteristics of life: extraction of energy from the environment, use of energy to support metabolic and structural organization, use of dynamic redox responses to defend against environmental threats, and use of redox mechanisms to direct differentiation of cells and organ systems essential for reproduction. These processes are sustained through a redox context in which electron donor/acceptor couples are poised at substantially different steady-state redox potentials, some with relatively reducing steady states and others with relatively oxidizing steady states. Redox-sensitive thiols of the redox proteome, as well as low molecular weight redox-active molecules, are maintained individually by the kinetics of oxidation-reduction within this redox system. Recent research has revealed opposing network interactions of the metallome, redox proteome, metabolome and transcriptome, which appear to be an evolved redox response structure to maintain stability of an organism in the presence of variable oxidative environments. Considerable opportunity exists to improve human health through detailed understanding of these redox networks so that targeted interventions can be developed to support new avenues for redox medicine.
Collapse
Affiliation(s)
- Dean P Jones
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University, Whitehead Biomedical Research Building, 615 Michael St, RM205P, Atlanta, GA, 30322, USA.
| |
Collapse
|
4
|
Radulescu D, Mihai FD, Trasca MET, Caluianu EI, Calafeteanu CDM, Radulescu PM, Mercut R, Ciupeanu-Calugaru ED, Marinescu GA, Siloşi CA, Nistor CCE, Danoiu S. Oxidative Stress in Military Missions-Impact and Management Strategies: A Narrative Analysis. Life (Basel) 2024; 14:567. [PMID: 38792589 PMCID: PMC11121804 DOI: 10.3390/life14050567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
This narrative review comprehensively examines the impact of oxidative stress on military personnel, highlighting the crucial role of physical exercise and tailored diets, particularly the ketogenic diet, in minimizing this stress. Through a meticulous analysis of the recent literature, the study emphasizes how regular physical exercise not only enhances cardiovascular, cognitive, and musculoskeletal health but is also essential in neutralizing the effects of oxidative stress, thereby improving endurance and performance during long-term missions. Furthermore, the implementation of the ketogenic diet provides an efficient and consistent energy source through ketone bodies, tailored to the specific energy requirements of military activities, and significantly contributes to the reduction in reactive oxygen species production, thus protecting against cellular deterioration under extreme stress. The study also underlines the importance of integrating advanced technologies, such as wearable devices and smart sensors that allow for the precise and real-time monitoring of oxidative stress and physiological responses, thus facilitating the customization of training and nutritional regimes. Observations from this review emphasize significant variability among individuals in responses to oxidative stress, highlighting the need for a personalized approach in formulating intervention strategies. It is crucial to develop and implement well-monitored, personalized supplementation protocols to ensure that each member of the military personnel receives a regimen tailored to their specific needs, thereby maximizing the effectiveness of measures to combat oxidative stress. This analysis makes a valuable contribution to the specialized literature, proposing a detailed framework for addressing oxidative stress in the armed forces and opening new directions for future research with the aim of optimizing clinical practices and improving the health and performance of military personnel under stress and specific challenges of the military field.
Collapse
Affiliation(s)
- Dumitru Radulescu
- Department of Surgery, The Military Emergency Clinical Hospital ‘Dr. Stefan Odobleja’ Craiova, 200749 Craiova, Romania; (D.R.); (E.-I.C.); (P.-M.R.); (G.-A.M.)
| | - Florina-Diana Mihai
- Doctoral School, University of Medicine and Pharmacy of Craiova, 2 Petru Rares Street, 200349 Craiova, Romania;
| | - Major Emil-Tiberius Trasca
- Department of Surgery, The Military Emergency Clinical Hospital ‘Dr. Stefan Odobleja’ Craiova, 200749 Craiova, Romania; (D.R.); (E.-I.C.); (P.-M.R.); (G.-A.M.)
| | - Elena-Irina Caluianu
- Department of Surgery, The Military Emergency Clinical Hospital ‘Dr. Stefan Odobleja’ Craiova, 200749 Craiova, Romania; (D.R.); (E.-I.C.); (P.-M.R.); (G.-A.M.)
| | - Captain Dan Marian Calafeteanu
- Department of Ortopedics, The Military Emergency Clinical Hospital ‘Dr. Stefan Odobleja’ Craiova, 200749 Craiova, Romania;
| | - Patricia-Mihaela Radulescu
- Department of Surgery, The Military Emergency Clinical Hospital ‘Dr. Stefan Odobleja’ Craiova, 200749 Craiova, Romania; (D.R.); (E.-I.C.); (P.-M.R.); (G.-A.M.)
| | - Razvan Mercut
- Department of Plastic and Reconstructive Surgery, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | | | - Georgiana-Andreea Marinescu
- Department of Surgery, The Military Emergency Clinical Hospital ‘Dr. Stefan Odobleja’ Craiova, 200749 Craiova, Romania; (D.R.); (E.-I.C.); (P.-M.R.); (G.-A.M.)
| | - Cristian-Adrian Siloşi
- Doctoral School, University of Medicine and Pharmacy of Craiova, 2 Petru Rares Street, 200349 Craiova, Romania;
| | | | - Suzana Danoiu
- Department of Pathophysiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| |
Collapse
|
5
|
Veluthakal R, Esparza D, Hoolachan JM, Balakrishnan R, Ahn M, Oh E, Jayasena CS, Thurmond DC. Mitochondrial Dysfunction, Oxidative Stress, and Inter-Organ Miscommunications in T2D Progression. Int J Mol Sci 2024; 25:1504. [PMID: 38338783 PMCID: PMC10855860 DOI: 10.3390/ijms25031504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/15/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Type 2 diabetes (T2D) is a heterogenous disease, and conventionally, peripheral insulin resistance (IR) was thought to precede islet β-cell dysfunction, promoting progression from prediabetes to T2D. New evidence suggests that T2D-lean individuals experience early β-cell dysfunction without significant IR. Regardless of the primary event (i.e., IR vs. β-cell dysfunction) that contributes to dysglycemia, significant early-onset oxidative damage and mitochondrial dysfunction in multiple metabolic tissues may be a driver of T2D onset and progression. Oxidative stress, defined as the generation of reactive oxygen species (ROS), is mediated by hyperglycemia alone or in combination with lipids. Physiological oxidative stress promotes inter-tissue communication, while pathological oxidative stress promotes inter-tissue mis-communication, and new evidence suggests that this is mediated via extracellular vesicles (EVs), including mitochondria containing EVs. Under metabolic-related stress conditions, EV-mediated cross-talk between β-cells and skeletal muscle likely trigger mitochondrial anomalies leading to prediabetes and T2D. This article reviews the underlying molecular mechanisms in ROS-related pathogenesis of prediabetes, including mitophagy and mitochondrial dynamics due to oxidative stress. Further, this review will describe the potential of various therapeutic avenues for attenuating oxidative damage, reversing prediabetes and preventing progression to T2D.
Collapse
Affiliation(s)
- Rajakrishnan Veluthakal
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope Beckman Research Institute, 1500 E. Duarte Rd, Duarte, CA 91010, USA; (D.E.); (J.M.H.); (R.B.); (M.A.); (E.O.); (C.S.J.)
| | | | | | | | | | | | | | - Debbie C. Thurmond
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope Beckman Research Institute, 1500 E. Duarte Rd, Duarte, CA 91010, USA; (D.E.); (J.M.H.); (R.B.); (M.A.); (E.O.); (C.S.J.)
| |
Collapse
|