1
|
Jiang GY, Yang HR, Li C, Liu N, Ma SJ, Jin BX, Yan C, Gong HD, Li JY, Yan HC, Ye GX, Wang WY, Gao C. Ginsenoside Rd alleviates early brain injury by inhibiting ferroptosis through cGAS/STING/DHODH pathway after subarachnoid hemorrhage. Free Radic Biol Med 2024:S0891-5849(24)01167-5. [PMID: 39746578 DOI: 10.1016/j.freeradbiomed.2024.12.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/25/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
Ferroptosis, a recently identified form of regulated cell death, is characterized by lipid peroxidation and iron accumulation, plays a critical role in early brain injury after subarachnoid hemorrhage. Ginsenoside Rd, an active compound isolated from ginseng, is known for its neuroprotective properties. However, its influence on SAH-induced ferroptosis remains unclear. In this study, we constructed an SAH model using intravascular perforation in vivo and treated HT22 cells with oxyhemoglobin to simulate the condition in vitro. We observed significant changes in ferroptosis markers, including GPX4 and ACSL4, following SAH. Administration of ginsenoside Rd to both rats and HT22 cells effectively inhibited neuronal ferroptosis induced by SAH, alleviating neurological deficits and cognitive dysfunction in rats. Notably, the neuroprotective properties of ginsenoside Rd were countered by the STING pathway agonist 2'3'-cGAMP. Experiments conducted in vitro and in vivo illustrated that the impacts of ginsenoside Rd were counteracted by the BQR inhibitor. Our findings suggest that ginsenoside Rd mitigates EBI after SAH by suppressing neuronal ferroptosis through the cGAS/STING pathway while upregulating DHODH levels. These outcomes emphasize the potential of ginsenoside Rd as a therapeutic candidate for subarachnoid hemorrhage.
Collapse
Affiliation(s)
- Guang-You Jiang
- Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China; Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hong-Rui Yang
- Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China; Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chen Li
- Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China; Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Nan Liu
- Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China; Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Sheng-Ji Ma
- Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China; Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bing-Xuan Jin
- Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China; Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Cong Yan
- Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China; Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hai-Dong Gong
- Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China; Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ji-Yi Li
- Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China; Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hao-Chen Yan
- Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China; Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guang-Xi Ye
- Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China; Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wen-Yu Wang
- Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China; Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Cheng Gao
- Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China; Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
2
|
Wu YH, Sun J, Huang JH, Lu XY. Bioinformatics Identification of angiogenesis-related biomarkers and therapeutic targets in cerebral ischemia-reperfusion. Sci Rep 2024; 14:32096. [PMID: 39738531 PMCID: PMC11685884 DOI: 10.1038/s41598-024-83783-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/17/2024] [Indexed: 01/02/2025] Open
Abstract
Promoting vascular endothelial cell regeneration can enhance recovery from cerebral ischemia reperfusion injury (CIRI), but there is a lack of bioinformatic studies on angiogenesis-related biomarkers in CIRI. In this study, we utilized the GSE97537 and GSE61616 datasets from GEO to identify 181 angiogenesis-related genes (ARGs) and analyzed differentially expressed genes (DEGs) between CIRI and control groups. We converted ARGs to 169 rat homologues and intersected them with DEGs to find DE-ARGs. RF and XGBoost models were employed to identify five biomarkers (Stat3, Hmox1, Egfr, Col18a1, Ptgs2) and conducted GSEA on these biomarkers, revealing their enrichment in pathways such as ECM-receptor interaction and hematopoietic cell lineage. We also analyzed the immune microenvironment, finding significant differences in 21 immune cells between CIRI and control groups. Furthermore, we constructed lncRNA-miRNA-mRNA networks and drug-gene networks. Finally, biomarker expression was compared between the CIRI and control groups by qRT-PCR in tissue and blood samples. Overall, our bioinformatic exploration of angiogenesis-related biomarkers in CIRI provides new insights for the diagnosis and treatment of CIRI.
Collapse
Affiliation(s)
- Yong-Hong Wu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shanxi Province, China
- School of Medical Technology & Institute of Basic Translational Medicine, Xi'an Medical University, Xi'an, 710021, Shanxi Province, China
| | - Jing Sun
- School of Medical Technology & Institute of Basic Translational Medicine, Xi'an Medical University, Xi'an, 710021, Shanxi Province, China
| | - Jun-Hua Huang
- School of Medical Technology & Institute of Basic Translational Medicine, Xi'an Medical University, Xi'an, 710021, Shanxi Province, China
| | - Xiao-Yun Lu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shanxi Province, China.
| |
Collapse
|
3
|
Yang BSK, Gusdon AM, Ren XS, Jeong HG, Lee CH, Blackburn S, Choi HA. Update on Strategies to Reduce Early Brain Injury after Subarachnoid Hemorrhage. Curr Neurol Neurosci Rep 2024; 25:14. [PMID: 39722093 DOI: 10.1007/s11910-024-01396-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2024] [Indexed: 12/28/2024]
Abstract
PURPOSE OF REVIEW Early brain injury (EBI) after aneurysmal subarachnoid hemorrhage (SAH) is the most influential clinical determinant of outcomes. Despite significant advances in understanding of the pathophysiology of EBI, currently no treatments to target EBI have been developed. This review summarizes recent advances in EBI research over the past five years with a focus on potential therapeutic targets. RECENT FINDINGS Mechanism-specific translational studies are converging on several pathophysiologic pathways: improved antioxidant delivery and the Sirt1/Nrf2 pathway for reactive oxygen species; NLRP3 inflammasome and microglial polarization for inflammation; and the PI3K/Akt pathway for apoptosis. Recently identified mechanistic components, such as microcirculatory failure and ferroptosis, need particular attention. Clinical studies developing radiographic markers and mechanism-specific, biofluid markers are attempting to bridge the translational therapeutic gap. There has been an exponential growth in EBI research. Further clinical studies which address specific pathophysiology mechanisms need to be performed to identify novel therapeutic approaches.
Collapse
Affiliation(s)
- Bosco Seong Kyu Yang
- The NABI institute, Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Aaron M Gusdon
- The NABI institute, Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Xuefang Sophie Ren
- The NABI institute, Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Han-Gil Jeong
- Department of Neurology and Neurosurgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Chang-Hun Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Spiros Blackburn
- The NABI institute, Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Huimahn Alex Choi
- The NABI institute, Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
4
|
He Q, Zhou Y, Wu L, Huang L, Yuan Y, Flores JJ, Luo X, Tao Y, Chen X, Kanamaru H, Dong S, Zhu S, Yu Q, Han M, Sherchan P, Li J, Tang J, Xie Z, Zhang JH. Inhibition of acid-sensing receptor GPR4 attenuates neuronal ferroptosis via RhoA/YAP signaling in a rat model of subarachnoid hemorrhage. Free Radic Biol Med 2024; 225:333-345. [PMID: 39393553 DOI: 10.1016/j.freeradbiomed.2024.10.273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/25/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
BACKGROUND AND PURPOSE Subarachnoid hemorrhage (SAH) is a devastating stroke, in which acidosis is one of detrimental complications. The extracellular pH reduction can activate G protein-coupled receptor 4 (GPR4) in the brain. Yet, the extent to which proton-activated GPR4 contributes to the early brain injury (EBI) post-SAH remains largely unexplored. Ferroptosis, iron-dependent programmed cell death, has recently been shown to contribute to EBI. We aimed to investigate the effects of GPR4 inhibition on neurological deficits and neuronal ferroptosis after SAH in rats. METHODS A total 253 Sprague Dawley (SD) male rats (weighing 275-330g) were utilized in this study. SAH was induced by endovascular perforation. NE-52-QQ57 (NE), a selective antagonist of GPR4 was administered intraperitoneally 1-h post-SAH. To explore the mechanisms, RhoA activator U-46619 and YAP activator PY-60 were delivered intracerebroventricularly. Short- and long-term neurobehavior, SAH grading, Western blot assay, ELISA assay, immunofluorescence staining, and transmission electron microscopy was performed post-SAH. RESULTS Following SAH, there was an upregulation of GPR4 expression in neurons. GPR4 inhibition by NE improved both short-term and long-term neurological outcomes post-SAH. NE also reduced neuronal ferroptosis, as evidenced by decreased lipid peroxidation products 4HNE and MDA levels in brain tissues, and reduced mitochondrial shrinkage, increased mitochondria crista and decreased membrane density. The application of either U-46619 or PY-60 partially offset the neuroprotective effects of NE on neuronal ferroptosis in SAH rats. CONCLUSIONS This study demonstrated that acid-sensing receptor GPR4 contributed to neuronal ferroptosis after SAH via RhoA/YAP pathway, and NE may be a potential therapeutic strategy to attenuate GPR4 mediated neuronal ferroptosis and EBI after SAH.
Collapse
Affiliation(s)
- Qiuguang He
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Chongqing, 400010, China; Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - You Zhou
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA; Department of Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Chongqing, 400010, China
| | - Lei Wu
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA; Department of Neurology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, 510317, China
| | - Lei Huang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA; Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Ye Yuan
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Chongqing, 400010, China; Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Jerry J Flores
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Xu Luo
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Chongqing, 400010, China
| | - Yihao Tao
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Chongqing, 400010, China
| | - Xionghui Chen
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Hideki Kanamaru
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Siyuan Dong
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Shiyi Zhu
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Qian Yu
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Mingyang Han
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Prativa Sherchan
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Jiani Li
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Chongqing, 400010, China
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Zongyi Xie
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Chongqing, 400010, China.
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA; Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA; Department of Anesthesiology and Neurology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA.
| |
Collapse
|
5
|
Gao N, Liu XY, Chen J, Hu TP, Wang Y, Zhang GQ. Menaquinone-4 Alleviates Sepsis-Associated Acute Lung Injury via Activating SIRT3-p53/SLC7A11 Pathway. J Inflamm Res 2024; 17:7675-7685. [PMID: 39469061 PMCID: PMC11514946 DOI: 10.2147/jir.s486984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 10/15/2024] [Indexed: 10/30/2024] Open
Abstract
Background Sepsis-associated acute lung injury (SI-ALI) is triggered by various direct or indirect noncardiogenic factors affecting the alveolar epithelium and capillary endothelial cells. Menaquinone-4 (MK-4), a major component of vitamin K, plays a crucial role as an antioxidant by effectively neutralizing reactive oxygen species (ROS) and safeguarding critical biomolecules from oxidative harm within cells. However, the specific mechanisms and clinical implications of MK-4 in SI-ALI are unclear and require further study. Methods Cecal ligation and puncture (CLP) surgery is a commonly used method to induce sepsis in C57BL/6N wild-type mice, and the mice were administered MK-4 at a dosage of 200 mg/kg/day and 3-TYP at 5 mg/kg/day via intraperitoneal injection for 3 days, or erastin (5 mg/kg) 0.5 hours before CLP surgery. The mice were sacrificed 24 hours after CLP surgery, and blood and lung tissue samples were collected. Pathological changes in the lung tissue and oxidative stress levels were detected. The expression levels of Sirt3, acetylated lysine, p53, SLC7A11 ALOX12 and ferroptosis-related proteins were determined. ligation and puncture (CLP). Results In this study, we observed that the lung inflammation was associated with reduced Sirt3 expression and increased acetylated lysine levels. The progression of SI-ALI was mitigated by MK-4 through its role in upregulating Sirt3 expression. MK-4 achieved antioxidant effects by downregulating ROS and inflammatory factor levels. Mechanistically, MK-4 inhibited the p53/SLC7A11 signalling pathway in ferroptosis by inhibiting the acetylation of p53, independent of p53 levels. In addition, MK-4 inhibited ferroptosis independent of GPX4. These findings indicate that MK-4 is a promising novel therapeutic agent for treating SI-ALI and possibly sepsis. Conclusion These experiments revealed that MK-4 acts as a ferroptosis suppressor, increasing the expression of Sirt3, inhibiting the p53/SLC7A11 signalling pathway, and reducing oxidative stress and inflammatory responses, thereby exerting a protective effect against ALI in sepsis.
Collapse
Affiliation(s)
- Nan Gao
- China-Japan Friendship Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Department of Emergency, China-Japan Friendship Hospital, Beijing, 100029, People’s Republic of China
| | - Xiao-Yu Liu
- China-Japan Friendship Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Department of Emergency, China-Japan Friendship Hospital, Beijing, 100029, People’s Republic of China
| | - Jie Chen
- China-Japan Friendship Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Department of Emergency, China-Japan Friendship Hospital, Beijing, 100029, People’s Republic of China
| | - Tian-Peng Hu
- China-Japan Friendship Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Department of Emergency, China-Japan Friendship Hospital, Beijing, 100029, People’s Republic of China
| | - Yu Wang
- Department of Emergency, China-Japan Friendship Hospital, Beijing, 100029, People’s Republic of China
- Graduate School, Capital Medical University, Beijing, 100069, People’s Republic of China
| | - Guo-Qiang Zhang
- Department of Emergency, China-Japan Friendship Hospital, Beijing, 100029, People’s Republic of China
| |
Collapse
|
6
|
Wang H, Mao W, Zhang Y, Feng W, Bai B, Ji B, Chen J, Cheng B, Yan F. NOX1 triggers ferroptosis and ferritinophagy, contributes to Parkinson's disease. Free Radic Biol Med 2024; 222:331-343. [PMID: 38876456 DOI: 10.1016/j.freeradbiomed.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
The progressive loss of dopaminergic neurons in the midbrain is the hallmark of Parkinson's disease (PD). A newly emerging form of lytic cell death, ferroptosis, has been implicated in PD. However, it remains unclear in terms of PD-associated ferroptosis underlying causative genes and effective therapeutic approaches. This research explored the underlying mechanism of ferroptosis-related genes in PD. Here, Firstly, we found NOX1 associated with ferroptosis differently in PD patients by bioinformatics analysis. In vitro and in vivo models of PD were constructed to explore the underlying mechanism. qPCR, Western blot analysis, immunohistochemistry, immunofluorescence, Ferro orange, and BODIPY C11 were utilized to analyze the levels of ferroptosis. Transcriptomics sequencing was to investigate the downstream pathway and the analysis of immunoprecipitation to validate the upstream factor. In conclusion, NOX1 upregulation and activation of ferroptosis-related neurodegeneration, therefore, might be useful as a clinical therapeutic agent.
Collapse
Affiliation(s)
- Huiqing Wang
- School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Wenwei Mao
- Jining Medical University, Jining, 272067, People's Republic of China
| | - Yuhan Zhang
- Jining Medical University, Jining, 272067, People's Republic of China
| | - Wenhui Feng
- Jining Medical University, Jining, 272067, People's Republic of China
| | - Bo Bai
- Jining Medical University, Jining, 272067, People's Republic of China
| | - Bingyuan Ji
- Institute of Precision Medicine, Jining Medical University, Jining, 272067, People's Republic of China
| | - Jing Chen
- Neurobiology Institute, Jining Medical University, 272067, Jining, People's Republic of China; Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Baohua Cheng
- Neurobiology Institute, Jining Medical University, 272067, Jining, People's Republic of China; College of Basic Medicine, Jining Medical University, Jining, 272067, People's Republic of China.
| | - Fuling Yan
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, No. 87 Dingjiaqiao Road, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
7
|
Feng X, Zheng Y, Mao N, Shen M, Chu L, Fang Y, Pang M, Wang Z, Lin Z. Menaquinone-4 alleviates hypoxic-ischemic brain damage in neonatal rats by reducing mitochondrial dysfunction via Sirt1-PGC-1α-TFAM signaling pathway. Int Immunopharmacol 2024; 134:112257. [PMID: 38759366 DOI: 10.1016/j.intimp.2024.112257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/01/2024] [Accepted: 05/10/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND Hypoxic-ischemic encephalopathy (HIE) is a major contributor to neonatal mortality and neurodevelopmental disorders, but currently there is no effective therapy drug for HIE. Mitochondrial dysfunction plays a pivotal role in hypoxic-ischemic brain damage(HIBD). Menaquinone-4 (MK-4), a subtype of vitamin K2 prevalent in the brain, has been shown to enhance mitochondrial function and exhibit protective effects against ischemia-reperfusion injury. However, the impact and underlying molecular mechanism of MK-4 in HIE have not been fully elucidated. METHODS In this study, we established the neonatal rats HIBD model in vivo and oxygen-glucose deprivation and reperfusion (OGD/R) of primary neurons in vitro to explore the neuroprotective effects of MK-4 on HI damage, and illuminate the potential mechanism. RESULTS Our findings revealed that MK-4 ameliorated mitochondrial dysfunction, reduced oxidative stress, and prevented HI-induced neuronal apoptosis by activating the Sirt1-PGC-1α-TFAM signaling pathway through Sirt1 mediation. Importantly, these protective effects were partially reversed by EX-527, a Sirt1 inhibitor. CONCLUSION Our study elucidated the potential therapeutic mechanism of MK-4 in neonatal HIE, suggesting its viability as an agent for enhancing recovery from HI-induced cerebral damage in newborns. Further exploration into MK-4 could lead to novel interventions for HIE therapy.
Collapse
Affiliation(s)
- Xiaoli Feng
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang 325027, China
| | - Yihui Zheng
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang 325027, China
| | - Niping Mao
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang 325027, China
| | - Ming Shen
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang 325027, China
| | - Liuxi Chu
- National Key Laboratory of Macromolecular Drug Development and Manufacturing, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Affiliated Cixi Hospital, Wenzhou Medical University, Cixi, Zhejiang 315300, China
| | - Yu Fang
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang 325027, China
| | - Mengdan Pang
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang 325027, China
| | - Zhouguang Wang
- National Key Laboratory of Macromolecular Drug Development and Manufacturing, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Zhenlang Lin
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang 325027, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang 325027, China.
| |
Collapse
|
8
|
Xu Y, Jia B, Li J, Li Q, Luo C. The Interplay between Ferroptosis and Neuroinflammation in Central Neurological Disorders. Antioxidants (Basel) 2024; 13:395. [PMID: 38671843 PMCID: PMC11047682 DOI: 10.3390/antiox13040395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Central neurological disorders are significant contributors to morbidity, mortality, and long-term disability globally in modern society. These encompass neurodegenerative diseases, ischemic brain diseases, traumatic brain injury, epilepsy, depression, and more. The involved pathogenesis is notably intricate and diverse. Ferroptosis and neuroinflammation play pivotal roles in elucidating the causes of cognitive impairment stemming from these diseases. Given the concurrent occurrence of ferroptosis and neuroinflammation due to metabolic shifts such as iron and ROS, as well as their critical roles in central nervous disorders, the investigation into the co-regulatory mechanism of ferroptosis and neuroinflammation has emerged as a prominent area of research. This paper delves into the mechanisms of ferroptosis and neuroinflammation in central nervous disorders, along with their interrelationship. It specifically emphasizes the core molecules within the shared pathways governing ferroptosis and neuroinflammation, including SIRT1, Nrf2, NF-κB, Cox-2, iNOS/NO·, and how different immune cells and structures contribute to cognitive dysfunction through these mechanisms. Researchers' findings suggest that ferroptosis and neuroinflammation mutually promote each other and may represent key factors in the progression of central neurological disorders. A deeper comprehension of the common pathway between cellular ferroptosis and neuroinflammation holds promise for improving symptoms and prognosis related to central neurological disorders.
Collapse
Affiliation(s)
- Yejia Xu
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
- Hebei Key Laboratory of Forensic Medicine, College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Bowen Jia
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
| | - Jing Li
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
| | - Qianqian Li
- NHC Key Laboratory of Drug Addiction Medicine, Department of Forensic Medicine, School of Forensic Medicine, Kunming Medical University, Kunming 650500, China
- School of Forensic Medicine, Wannan Medical College, Wuhu 241002, China
| | - Chengliang Luo
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
- Hebei Key Laboratory of Forensic Medicine, College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China
- NHC Key Laboratory of Drug Addiction Medicine, Department of Forensic Medicine, School of Forensic Medicine, Kunming Medical University, Kunming 650500, China
| |
Collapse
|
9
|
Kang J, Tian S, Zhang L, Yang G. Ferroptosis in early brain injury after subarachnoid hemorrhage: review of literature. Chin Neurosurg J 2024; 10:6. [PMID: 38347652 PMCID: PMC10863120 DOI: 10.1186/s41016-024-00357-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/28/2024] [Indexed: 02/15/2024] Open
Abstract
Spontaneous subarachnoid hemorrhage (SAH), mainly caused by ruptured intracranial aneurysms, is a serious acute cerebrovascular disease. Early brain injury (EBI) is all brain injury occurring within 72 h after SAH, mainly including increased intracranial pressure, decreased cerebral blood flow, disruption of the blood-brain barrier, brain edema, oxidative stress, and neuroinflammation. It activates cell death pathways, leading to neuronal and glial cell death, and is significantly associated with poor prognosis. Ferroptosis is characterized by iron-dependent accumulation of lipid peroxides and is involved in the process of neuron and glial cell death in early brain injury. This paper reviews the research progress of ferroptosis in early brain injury after subarachnoid hemorrhage and provides new ideas for future research.
Collapse
Affiliation(s)
- Junlin Kang
- The First Hospital of Lanzhou University, Lanzhou City, Gansu Province, China
| | - Shilai Tian
- The First Hospital of Lanzhou University, Lanzhou City, Gansu Province, China
| | - Lei Zhang
- Gansu Provincial Hospital, Lanzhou City, Gansu Province, China
| | - Gang Yang
- The First Hospital of Lanzhou University, Lanzhou City, Gansu Province, China.
| |
Collapse
|