1
|
Brunet J, Walsh CL, Wagner WL, Bellier A, Werlein C, Marussi S, Jonigk DD, Verleden SE, Ackermann M, Lee PD, Tafforeau P. Preparation of large biological samples for high-resolution, hierarchical, synchrotron phase-contrast tomography with multimodal imaging compatibility. Nat Protoc 2023; 18:1441-1461. [PMID: 36859614 DOI: 10.1038/s41596-023-00804-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 12/12/2022] [Indexed: 03/03/2023]
Abstract
Imaging across different scales is essential for understanding healthy organ morphology and pathophysiological changes. The macro- and microscale three-dimensional morphology of large samples, including intact human organs, is possible with X-ray microtomography (using laboratory or synchrotron sources). Preparation of large samples for high-resolution imaging, however, is challenging due to limitations such as sample shrinkage, insufficient contrast, movement of the sample and bubble formation during mounting or scanning. Here, we describe the preparation, stabilization, dehydration and mounting of large soft-tissue samples for X-ray microtomography. We detail the protocol applied to whole human organs and hierarchical phase-contrast tomography at the European Synchrotron Radiation Facility, yet it is applicable to a range of biological samples, including complete organisms. The protocol enhances the contrast when using X-ray imaging, while preventing sample motion during the scan, even with different sample orientations. Bubbles trapped during mounting and those formed during scanning (in the case of synchrotron X-ray imaging) are mitigated by multiple degassing steps. The sample preparation is also compatible with magnetic resonance imaging, computed tomography and histological observation. The sample preparation and mounting require 24-36 d for a large organ such as a whole human brain or heart. The preparation time varies depending on the composition, size and fragility of the tissue. Use of the protocol enables scanning of intact organs with a diameter of 150 mm with a local voxel size of 1 μm. The protocol requires users with expertise in handling human or animal organs, laboratory operation and X-ray imaging.
Collapse
Affiliation(s)
- J Brunet
- Department of Mechanical Engineering, University College London, London, UK.
- European Synchrotron Radiation Facility, Grenoble, France.
| | - C L Walsh
- Department of Mechanical Engineering, University College London, London, UK.
| | - W L Wagner
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- Translational Lung Research Centre Heidelberg (TLRC), German Lung Research Centre (DZL), Heidelberg, Germany
| | - A Bellier
- Laboratoire d'Anatomie des Alpes Françaises (LADAF), Université Grenoble Alpes, Grenoble, France
| | - C Werlein
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - S Marussi
- Department of Mechanical Engineering, University College London, London, UK
| | - D D Jonigk
- Institute of Pathology, Hannover Medical School, Hannover, Germany
- Biomedical Research in End-stage and Obstructive Lung Disease Hannover (BREATH), German Lung Research Centre (DZL), Hannover, Germany
| | - S E Verleden
- Antwerp Surgical Training, Anatomy and Research Centre (ASTARC), University of Antwerp, Antwerp, Belgium
| | - M Ackermann
- Institute of Pathology and Molecular Pathology, Helios University Clinic Wuppertal, University of Witten/Herdecke, Wuppertal, Germany
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Peter D Lee
- Department of Mechanical Engineering, University College London, London, UK.
- Research Complex at Harwell, Didcot, UK.
| | - Paul Tafforeau
- European Synchrotron Radiation Facility, Grenoble, France.
| |
Collapse
|