1
|
Khatun S, Kim T, Mollah MMI. Heat shock increases the anti-inflammatory and anti-obesity activity of soybean by increasing polyphenol, antioxidant and aglycon form isoflavones. Heliyon 2023; 9:e21944. [PMID: 38034630 PMCID: PMC10682200 DOI: 10.1016/j.heliyon.2023.e21944] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
We know that heat shock can activate the functional components in soybeans, but we don't know the type, level, and duration of heat shock for maximum activation. To address this, the present study investigated the changes in functional components like polyphenols, antioxidants, and isoflavones in soybeans at various temperature levels and durations with their respective functionality or health benefits. For this, treated seed samples were extracted with 70 % ethanol. Heat shock at 60 °C for 2 h increased polyphenol content (60.67 % of control) and antioxidant activity for both ABTS (41.14 % of control) and DPPH (217.72 % of control). This also increased the beneficial aglycone form of isoflavones that includes daidzein (8.36-fold of control), glycitein (3.85-fold of control) and genistein (20.50-fold of control) but decreased the harmful β-glucoside form (3.65-fold) including daiazin (1.84-fold of control); glycitin (1.45-fold of control) and genistin (23.88-fold of control) over untreated dry seed. This may happen because of the conversion of conjugated β-glucoside isoflavones to their aglycone forms that have various health benefits. Maximum inhibition of NO production in RAW 264.7 cells was achieved by samples elicited for 2 h with 300 μg/mL concentration. This sample also confirmed the maximum anti-obesity activity treated against 3-T-3L1 cells. This study summarized that heat shock at 60 °C for 2 h increased polyphenols, antioxidants, and aglycon isoflavone in soybeans resulting in increased anti-inflammatory and anti-obesity activity.
Collapse
Affiliation(s)
- Soyema Khatun
- Crop Physiology Division, Bangladesh Institute of Nuclear Agriculture, Mymensingh-2022, Bangladesh
- Department of Food Science and Biotechnology, Andong National University, Andong-1375, Republic of Korea
| | - Taewan Kim
- Department of Food Science and Biotechnology, Andong National University, Andong-1375, Republic of Korea
| | - Md. Mahi Imam Mollah
- Department of Entomology, Patuakhali Science and Technology University, Patuakhali-8602, Bangladesh
| |
Collapse
|
2
|
A review and meta-analysis of selected plant protein sources as a replacement of fishmeal in the diet of tilapias. ANNALS OF ANIMAL SCIENCE 2023. [DOI: 10.2478/aoas-2022-0084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Abstract
Numerous studies on the replacement of fishmeal with plant protein sources in tilapias have been undertaken. In order to quantify the effect of replacing fishmeal with plant protein sources on the growth performance of tilapias, a meta-analysis approach was applied. Despite the high heterogeneity and funnel plot asymmetry, the meta-analysis showed that replacing fishmeal with plant protein sources has a significant positive effect on the growth performance of tilapias. Thus, tilapias appear to be preadapted to utilizing plant protein sources. Furthermore, the feed value, nutritional quality and cost of the commonly used plant ingredients (soybean, sunflower, canola, cottonseed, kikuyu and azolla meals) were explored. The Solver function in Excel was used to formulate least cost diets using the plant meals. Azolla had the highest nutritional index (9.7436). This was attributed to its excellent amino acid profile that exceeded the requirements of tilapias. Nutritional index and feed value were lowest in kikuyu because of its poor amino acid profile as it registered the lowest amino acid index (0.4918). These results indicate that the amino acid profile is more important in the determination of nutritional quality than the percent protein content. Azolla and soybean meal are good candidates for the replacement of fishmeal in the diets of tilapias.
Collapse
|
3
|
Kusumah J, Gonzalez de Mejia E. Impact of soybean bioactive compounds as response to diet-induced chronic inflammation: A systematic review. Food Res Int 2022; 162:111928. [DOI: 10.1016/j.foodres.2022.111928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/04/2022]
|
4
|
Choi SW, Ly S, Lee JH, Oh HS, Kim SY, Kim NH, Chung JII. Breeding of Penta Null Soybean [ Glycine max (L.) Merr.] for Five Antinutritional and Allergenic Components of Lipoxygenase, KTI, Lectin, 7S α' Subunit, and Stachyose. FRONTIERS IN PLANT SCIENCE 2022; 13:910249. [PMID: 35747881 PMCID: PMC9209763 DOI: 10.3389/fpls.2022.910249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/19/2022] [Indexed: 05/28/2023]
Abstract
Soybean [Glycine max (L.) Merr.] is an excellent source of protein, oil, carbohydrates and many other bioactive ingredients for humans. However, several antinutritional and allergenic components such as lipoxygenase, KTI, lectin, 7S α' subunit, and stachyose exist in the raw mature seed. Genetic removal of these components would be the best method to improve soybean food quality. The objectives of this research were to breed a new soybean line with penta null recessive alleles (lox1/lox1/lox2/lox2/lox3/lox3-ti/ti-le/le-cgy1/cgy1-rs2/rs2) for these five components and to evaluate agronomic traits for a breeding line with penta null alleles. Seven germplasms were used to breed the penta null strain. Analysis of lipoxygenase, KTI, lectin, 7S α' subunit, and stachyose components in mature seeds was conducted by SDS-PAGE, western blot, and HPLC. One breeding line with penta null recessive alleles was developed. The breeding line has purple flowers, tawny pubescence, a determinate growth habit, and light yellow pods at maturity. The seed of the breeding line has a yellow hilum and yellow seed coat color. The stem height of the breeding line was 53.0 cm. The stachyose content of the breeding line was 2.9 g/kg. The 100-seed weight of the breeding line was 31.1 g and yield (t/ha) was 2.80. This is the first soybean strain with the penta null (lox1lox2lox3/lox1lox2lox3-ti/ti-le/le-cgy1/cgy1-rs2/rs2) genotype (free of lipoxygenase, KTI, lectin, and 7S α' subunit proteins, and with low stachyose content).
Collapse
|
5
|
Cai Q, Song Y, Wang S, Wang W, Sun X, Yu J, Wei Y. Functional yogurt fermented by two-probiotics regulates blood lipid and weight in a high-fat diet mouse model. J Food Biochem 2022; 46:e14248. [PMID: 35638246 DOI: 10.1111/jfbc.14248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/19/2022] [Accepted: 05/04/2022] [Indexed: 11/30/2022]
Abstract
We investigated the blood lipid regulation effects and mechanism of a functional Natto yogurt in a high-fat diet-induced hyperlipidemia mouse model. Natto yogurt was characteristically fermented by Bacillus natto and Lactobacillus plantarum with milk-soy dual protein as substrates. After 5 weeks of Natto yogurt consumption, the body weight, fat, and liver weight of mice were significantly improved, while serum levels of TG, TC, LDL, ALT, TBIL, and TBA were reduced. Natto yogurt significantly decreased the area of liver fat infiltration and the number of lipid droplets. In mechanism, we found that Natto yogurt can inhibit fatty acid synthesis and enhance fatty acid catabolism by regulating the expression of PPARα, PPARγ, CD36 and FAS in the liver. Moreover, Natto yogurt increased the ratio of Bacteroidetes to Firmicutes in the intestine. These results provide a possibility for Natto yogurt as a dual protein functional food to prevent and treat hyperlipidemia and obesity. PRACTICAL APPLICATIONS: Traditional-fermented yogurt promotes nutritional absorption and reduces blood pressure and fat, while Bacillus natto and its fermented food have been proved to play a significant role in improving cardiovascular and cerebrovascular diseases and obesity. Therefore, we developed a new dual protein functional yogurt (Natto yogurt) fermented by B. natto and Lactobacillus plantarum with milk and soy as substrates. We found that Natto yogurt could notably regulate blood lipid by inhibiting the synthesis of fatty acids, accelerating the catabolism of fatty acids, reducing liver damage, and increasing the abundance of beneficial intestinal microorganisms. This study suggested that Natto yogurt could improve hyperlipidemia and obesity as a safe, effective, and healthy functional food.
Collapse
Affiliation(s)
- Qinling Cai
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Yahui Song
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Shanglong Wang
- Chenland Nutritionals, Incorporated, Invine, California, USA
| | - Weihong Wang
- Haisenbao (Yantai) Biotechnology Development Co., Ltd, Yantai, China
| | - Xiaopeng Sun
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Jia Yu
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Yuxi Wei
- College of Life Sciences, Qingdao University, Qingdao, China
| |
Collapse
|
6
|
Kuligowski M, Sobkowiak D, Polanowska K, Jasińska-Kuligowska I. Effect of different processing methods on isoflavone content in soybeans and soy products. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Weng Z, Sun L, Wang F, Sui X, Fang Y, Tang X, Shen X. Assessment the flavor of soybean meal hydrolyzed with Alcalase enzyme under different hydrolysis conditions by E-nose, E-tongue and HS-SPME-GC-MS. FOOD CHEMISTRY-X 2021; 12:100141. [PMID: 34704014 PMCID: PMC8523844 DOI: 10.1016/j.fochx.2021.100141] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 12/02/2022]
Abstract
Enzymatic hydrolysis with Alcalase reduced soybean odor substance 1-octene-3-ol. Excessive enzymatic hydrolysis resulted in the deterioration of the hydrolysate flavor. The flavour of soybean meal hydrolysates with different hydrolysis conditions could be distinguished by E-tongue.
In the present study, E-nose, E-tongue, and headspace-solid phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC–MS) technology combined with Principal Component Analysis (PCA) were employed to evaluate the flavor characteristics of the volatile and the non-volatile substances generated during the enzymatic hydrolysis of the soybean meal by Alcalase. The results showed that the enzymatic hydrolysis effectively reduced the content of soybean odorous substance 1-octene-3-ol and led to better flavor. However, the excessive enzymatic hydrolysis resulted in the deterioration of the enzymatic hydrolysates flavor. In addition, both radar graph and PCA of E-tongue were able to provide the distribution of flavor substances during the enzymatic hydrolysis of the soybean meal. These results provided a theoretical basis for the improvement of the flavors of the soybean meal and its derived products.
Collapse
Affiliation(s)
- Zebin Weng
- School of Traditional Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lu Sun
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210046, China
| | - Fang Wang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210046, China
| | - Xiaonan Sui
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yong Fang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210046, China
| | - Xiaozhi Tang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210046, China
| | - Xinchun Shen
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210046, China
| |
Collapse
|
8
|
Jiang L, Zhou B, Wang X, Bi Y, Guo W, Wang J, Yao R, Li M. The Quality Monitoring of Cistanches Herba ( Cistanche deserticola Ma): A Value Chain Perspective. Front Pharmacol 2021; 12:782962. [PMID: 34803722 PMCID: PMC8602053 DOI: 10.3389/fphar.2021.782962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 10/22/2021] [Indexed: 11/13/2022] Open
Abstract
Cistanche deserticola Ma was used as a medicine food homology, which was mainly produced in the Alxa region of northwest China. In recent years, it has been widely used in various food items. The increasing demand for Cistanches Herba has led to problems such as overexploitation and quality deterioration. The quality and safety of herbal medicines are critical and have been shown to be affected by the value chain (VC). Using the VC framework, the study is embedded in a larger study aiming to investigate the effects of different VCs types on the quality and stakeholders of Cistanches Herba. In this study, 90 Cistanches Herba samples were collected during fieldwork. An additional 40 samples were obtained from the herbal markets and medicine purchasing stations. Semi-structured interviews and key informant interviews were performed to collect data on stakeholders in major production areas. These samples were analyzed using high performance liquid chromatography (HPLC) coupled with the k-means clustering method; a targeted quality assessment strategy based on chemical analysis was adopted to understand the quality of Cistanches Herba. Based on market research, the collected samples were divided into different grades through k-means clustering analysis. Moreover, quality differences of Cistanches Herba in Alxa region were explored through DNA barcoding and chemical analysis. Accordingly, 10 different types of VCs were determined in the production of Cistanches Herba. The results show that there is a close relationship between the quality of Cistanches Herba and stakeholder benefits. Vertical integration at different levels was found for independent farmer-based VCs, horizontal collaboration was found in the cooperative-based VCs. The vertical coordination has led to a more consistent traceability system and strict regulation of supply chains. At the same time, the Cistanches Herba were divided into three grades. Through DNA barcoding and chemical analysis, we found that the quality differences between Cistanches Herba in the Alxa area were not significant. It was found that geographical suitability and vertical integration could impact the quality and sustainable production of Cistanches Herba. At the same time, the well-developed VCs can provide products with reliable quality, and ensure adequate financial revenue for relevant stakeholders.
Collapse
Affiliation(s)
- Linlin Jiang
- Department of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Baochang Zhou
- Department of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Xiaoqin Wang
- Department of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Yaqiong Bi
- Inner Mongolia Hospital of Institute of Traditional Chinese Medicine, Hohhot, China
| | - Wenfang Guo
- Inner Mongolia Hospital of Institute of Traditional Chinese Medicine, Hohhot, China
| | - Jianhua Wang
- Department of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Ruyu Yao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Minhui Li
- Department of Pharmacy, Inner Mongolia Medical University, Hohhot, China.,Inner Mongolia Hospital of Institute of Traditional Chinese Medicine, Hohhot, China.,Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources Protection and Utilization, Baotou, China.,Baotou Medical College, Baotou, China.,Inner Mongolia Hospital of Traditional Chinese Medicine, Hohhot, China
| |
Collapse
|
9
|
Wei CK, Ni ZJ, Thakur K, Liao AM, Hu F, Huang JH, Wei ZJ. Acute, genetic and sub-chronic toxicities of flaxseed derived Maillard reaction products. Food Chem Toxicol 2019; 131:110580. [DOI: 10.1016/j.fct.2019.110580] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/08/2019] [Accepted: 06/12/2019] [Indexed: 12/30/2022]
|