1
|
Zhang L, Yang M, Jalili S. Citrus trifoliata extract -loaded chitosan nanoparticles as a potential treatment for osteoarthritis: An in vitro evaluation. J Biomater Appl 2025; 39:908-919. [PMID: 39560314 DOI: 10.1177/08853282241299243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Osteoarthritis (OA) presents a significant global health burden, necessitating innovative therapeutic strategies to address its multifaceted challenges. This study explores the potential of Citrus trifoliata extract-loaded chitosan nanoparticles (CTECNPs) as a novel treatment modality for OA. The encapsulation of Citrus trifoliata extract (CTE) within chitosan nanoparticles offers advantages such as enhanced bioavailability, sustained release kinetics, and targeted delivery to affected joints. In vitro evaluations demonstrate the biocompatibility and anti-inflammatory properties of CTECNPs, with significant anti-inflammatory and antioxidative effects observed. Moreover, in vivo studies in an OA-induced mouse model reveal promising therapeutic outcomes, including improvements in histological features and locomotor function. These findings highlight the potential of CTECNPs as a promising therapeutic approach for OA, offering hope for improved patient outcomes and quality of life. Further research is warranted to elucidate additional signaling pathways and potential synergistic effects of CTECNPs in OA management.
Collapse
Affiliation(s)
- Li Zhang
- Department of Orthopedic, Ankang Central Hospital, Ankang, China
| | - Mingming Yang
- Department of Orthopedic, Ankang Central Hospital, Ankang, China
| | - Saman Jalili
- Department of Materials Science, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
2
|
Ma W, Lu Y, Jin X, Lin N, Zhang L, Song Y. Targeting selective autophagy and beyond: From underlying mechanisms to potential therapies. J Adv Res 2024; 65:297-327. [PMID: 38750694 PMCID: PMC11518956 DOI: 10.1016/j.jare.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/26/2024] [Accepted: 05/08/2024] [Indexed: 05/21/2024] Open
Abstract
BACKGROUND Autophagy is an evolutionarily conserved turnover process for intracellular substances in eukaryotes, relying on lysosomal (in animals) or vacuolar (in yeast and plants) mechanisms. In the past two decades, emerging evidence suggests that, under specific conditions, autophagy can target particular macromolecules or organelles for degradation, a process termed selective autophagy. Recently, accumulating studies have demonstrated that the abnormality of selective autophagy is closely associated with the occurrence and progression of many human diseases, including neurodegenerative diseases, cancers, metabolic diseases, and cardiovascular diseases. AIM OF REVIEW This review aims at systematically and comprehensively introducing selective autophagy and its role in various diseases, while unravelling the molecular mechanisms of selective autophagy. By providing a theoretical basis for the development of related small-molecule drugs as well as treating related human diseases, this review seeks to contribute to the understanding of selective autophagy and its therapeutic potential. KEY SCIENTIFIC CONCEPTS OF REVIEW In this review, we systematically introduce and dissect the major categories of selective autophagy that have been discovered. We also focus on recent advances in understanding the molecular mechanisms underlying both classical and non-classical selective autophagy. Moreover, the current situation of small-molecule drugs targeting different types of selective autophagy is further summarized, providing valuable insights into the discovery of more candidate small-molecule drugs targeting selective autophagy in the future. On the other hand, we also reveal clinically relevant implementations that are potentially related to selective autophagy, such as predictive approaches and treatments tailored to individual patients.
Collapse
Affiliation(s)
- Wei Ma
- Department of Breast Surgery, Department of Ultrasound, Department of Hematology and Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yingying Lu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xin Jin
- Department of Breast Surgery, Department of Ultrasound, Department of Hematology and Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Na Lin
- Department of Breast Surgery, Department of Ultrasound, Department of Hematology and Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang 110001, China.
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Yaowen Song
- Department of Breast Surgery, Department of Ultrasound, Department of Hematology and Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
3
|
Wu T, Sheng Y, Tian Y, Wang C. Vitexin Regulates Heat Shock Protein Expression by Modulating ROS Levels Thereby Protecting against Heat-Stress-Induced Apoptosis. Molecules 2023; 28:7639. [PMID: 38005362 PMCID: PMC10675196 DOI: 10.3390/molecules28227639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Heat stress due to high temperatures can cause heat stroke, pyrexia, heat cramps, heart disease, and respiratory diseases, which seriously affect human health. Vitexin has been shown to alleviate heat stress; however, its mechanism of action remains unclear. Therefore, in this study, we used Caco-2 cells to establish a heat stress model and vitamin C as a positive control to investigate the regulatory effects of vitexin on heat-stress-induced apoptosis and the related mechanisms using Cell Counting Kit-8, flow cytometry, real-time quantitative polymerase chain reaction, and Western blot. The results showed that the mRNA expressions of Hsp27, Hsp70, and Hsp90 induced by heat stress could be effectively inhibited at vitexin concentrations as low as 30 μM. After heat stress prevention and heat stress amelioration in model cells based on this concentration, intracellular reactive oxygen species (ROS) levels and the mRNA level and the protein expression of heat shock proteins (Hsp70 and Hsp90) and apoptotic proteins were reduced. In addition, compared with the heat stress amelioration group, the expression of BCL2 mRNA and its protein (anti-apoptotic protein Bcl-2) increased in the heat stress prevention group, while the expression of BAX, CYCS, CASP3, and PARP1 mRNAs and their proteins (apoptotic proteins Bax, Cytochrome C, cle-Caspase-3, and cle-PARP1) were decreased. In summary, the heat-stress-preventive effect of vitexin was slightly better than its heat-stress-ameliorating effect, and its mechanism may be through the inhibition of intracellular ROS levels and thus the modulation of the expressions of Hsp70 and Hsp90, which in turn protects against heat-stress-induced apoptosis. This study provides a theoretical basis for the prevention and amelioration of heat stress using vitexin.
Collapse
Affiliation(s)
- Tong Wu
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Road 5, Daqing 163319, China; (T.W.); (Y.S.); (Y.T.)
| | - Yanan Sheng
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Road 5, Daqing 163319, China; (T.W.); (Y.S.); (Y.T.)
| | - Yu Tian
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Road 5, Daqing 163319, China; (T.W.); (Y.S.); (Y.T.)
| | - Changyuan Wang
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Road 5, Daqing 163319, China; (T.W.); (Y.S.); (Y.T.)
- National Coarse Cereals Engineering Research Center, Daqing 163319, China
| |
Collapse
|
4
|
Giordano F, Comità S, Venneri G, Rago V, Naimo GD, De Amicis F, De Bartolo A, Tundis R, Mauro L, Panno ML. Poncirus trifoliata (L.) Raf. Seed Extract Induces Cell Cycle Arrest and Apoptosis in the Androgen Receptor Positive LNCaP Prostate Cancer Cells. Int J Mol Sci 2023; 24:16351. [PMID: 38003541 PMCID: PMC10671002 DOI: 10.3390/ijms242216351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Prostate cancer (PCa) is the second most common male cancer. Its incidence derives from the interaction between modifiable and non-modifiable factors. The progression of prostate cancer into a more aggressive phenotype is associated with chronic inflammation and increased ROS production. For their biological properties, some phytochemicals from fruits and vegetable emerge as a promise strategy for cancer progression delay. These bioactive compounds are found in the highest amounts in peels and seeds. Poncirus trifoliata (L.) Raf. (PT) has been widely used in traditional medicine and retains anti-inflammatory, anti-bacterial, and anticancer effects. The seeds of P. trifoliata were exhaustively extracted by maceration with methanol as the solvent. The cell proliferation rate was performed by MTT and flow cytometry, while the apoptosis signals were analyzed by Western blotting and TUNEL assay. P. trifoliata seed extract reduced LNCaP and PC3 cell viability and induced cell cycle arrest at the G0/G1phase and apoptosis. In addition, a reduction in the AKT/mTOR pathway has been observed together with the up-regulation of stress-activated MAPK (p38 and c-Jun N-terminal kinase). Based on the study, the anti-growth effects of PT seed extract on prostate tumor cells give indications on the potential of the phytochemical drug for the treatment of this type of cancer. However, future in-depth studies are necessary to identify which components are mainly responsible for the anti-neoplastic response.
Collapse
Affiliation(s)
- Francesca Giordano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (S.C.); (G.V.); (V.R.); (G.D.N.); (F.D.A.); (R.T.); (M.L.P.)
| | - Stefano Comità
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (S.C.); (G.V.); (V.R.); (G.D.N.); (F.D.A.); (R.T.); (M.L.P.)
| | - Giulia Venneri
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (S.C.); (G.V.); (V.R.); (G.D.N.); (F.D.A.); (R.T.); (M.L.P.)
| | - Vittoria Rago
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (S.C.); (G.V.); (V.R.); (G.D.N.); (F.D.A.); (R.T.); (M.L.P.)
| | - Giuseppina Daniela Naimo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (S.C.); (G.V.); (V.R.); (G.D.N.); (F.D.A.); (R.T.); (M.L.P.)
| | - Francesca De Amicis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (S.C.); (G.V.); (V.R.); (G.D.N.); (F.D.A.); (R.T.); (M.L.P.)
| | - Anna De Bartolo
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy;
| | - Rosa Tundis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (S.C.); (G.V.); (V.R.); (G.D.N.); (F.D.A.); (R.T.); (M.L.P.)
| | - Loredana Mauro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (S.C.); (G.V.); (V.R.); (G.D.N.); (F.D.A.); (R.T.); (M.L.P.)
| | - Maria Luisa Panno
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (S.C.); (G.V.); (V.R.); (G.D.N.); (F.D.A.); (R.T.); (M.L.P.)
| |
Collapse
|
5
|
Liang Y, Zhong Q, Ma R, Ni Z, Thakur K, Zhang J, Wei Z. Apigenin, a natural flavonoid, promotes autophagy and ferroptosis in human endometrial carcinoma Ishikawa cells in vitro and in vivo. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.03.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
6
|
Lamichhane G, Pandey J, Devkota HP. Bioactive Chemical Constituents and Pharmacological Activities of Ponciri Fructus. Molecules 2022; 28:255. [PMID: 36615447 PMCID: PMC9821892 DOI: 10.3390/molecules28010255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/15/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
Ponciri Fructus is a crude drug obtained from the dried immature fruits of Poncirus trifoliata (L). Raf. (Syn. Citrus trifoliata L.). This study aims to compile and analyze the ethnomedicinal uses, bioactive constituents, and pharmacological activities of Ponciri Fructus. Various online bibliographic databases namely, SciFinder, PubMed, Google Scholar, and Web of Science were used for collecting information on traditional uses, biological activities, and bioactive constituents. Concerning ethnomedicinal uses, Ponciri Fructus is extensively used in traditional Korean, Chinese, and Kampo medicines to mitigate allergic reactions, inflammation, edema, digestive complications, respiratory problems, spleen-related problems, liver complications, neuronal pain, hyperlipidemia, rheumatoid arthritis, cardiovascular problems, hernia, sinusitis, and insomnia. Several studies have shown that Ponciri Fructus is a major source of diverse classes of bioactive compounds namely flavonoids, terpenoids, coumarins, phytosterols, and alkaloids. Several in vivo and in vitro pharmacological activity evaluations such as antidiabetic, anti-obesity, anti-inflammatory, antiallergic, antimelanogenic, gastroprotective, anticancer, and neuroprotective effects have been conducted from Ponciri Fructus. However, scientific investigations focusing on bioassay-guided isolation and identification of specific bioactive constituents are limited. Therefore, an in-depth scientific investigation of Ponciri Fructus focusing on bioassay-guided isolation, mechanism based pharmacological studies, pharmacokinetic studies, and evaluation of possible toxicities is necessary in the future.
Collapse
Affiliation(s)
- Gopal Lamichhane
- Department of Oriental Pharmacy and Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan 570-749, Republic of Korea
| | - Jitendra Pandey
- Department of Pharmacy, Crimson College of Technology, Pokhara University, Devinagar-11, Butwal 32900, Nepal
| | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
- Headquarters for Admissions and Education, Kumamoto University, Kurokami, 2-39-1, Chuo-ku, Kumamoto 860-8555, Japan
- Pharmacy Program, Gandaki University, Pokhara 33700, Nepal
| |
Collapse
|
7
|
Kerekes D, Horváth A, Kúsz N, Borcsa BL, Szemerédi N, Spengler G, Csupor D. Coumarins, furocoumarins and limonoids of Citrus trifoliata and their effects on human colon adenocarcinoma cell lines. Heliyon 2022; 8:e10453. [PMID: 36097483 PMCID: PMC9463373 DOI: 10.1016/j.heliyon.2022.e10453] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/15/2022] [Accepted: 08/22/2022] [Indexed: 11/25/2022] Open
|
8
|
Sun Q, He M, Zhang M, Zeng S, Chen L, Zhao H, Yang H, Liu M, Ren S, Xu H. Traditional Chinese Medicine and Colorectal Cancer: Implications for Drug Discovery. Front Pharmacol 2021; 12:685002. [PMID: 34276374 PMCID: PMC8281679 DOI: 10.3389/fphar.2021.685002] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/09/2021] [Indexed: 12/24/2022] Open
Abstract
As an important part of complementary and alternative medicine, traditional Chinese medicine (TCM) has been applied to treat a host of diseases for centuries. Over the years, with the incidence rate of human colorectal cancer (CRC) increasing continuously and the advantage of TCM gradually becoming more prominent, the importance of TCM in both domestic and international fields is also growing with each passing day. However, the unknowability of active ingredients, effective substances, and the underlying mechanisms of TCM against this malignant tumor greatly restricts the translation degree of clinical products and the pace of precision medicine. In this review, based on the characteristics of TCM and the oral administration of most ingredients, we herein provide beneficial information for the clinical utilization of TCM in the prevention and treatment of CRC and retrospect the current preclinical studies on the related active ingredients, as well as put forward the research mode for the discovery of active ingredients and effective substances in TCM, to provide novel insights into the research and development of innovative agents from this conventional medicine for CRC treatment and assist the realization of precision medicine.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Haibo Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|