1
|
Xiao N, Tian Z, Zhang Q, Xu H, Yin Y, Liu S, Shi W. Cryoprotective effect of epigallocatechin gallate replacing sucrose on Hypophythalmichthys molitrix surimi during frozen storage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6649-6656. [PMID: 38529727 DOI: 10.1002/jsfa.13489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 03/27/2024]
Abstract
BACKGROUND The present study aimed to investigate the cryoprotective effect of epigallocatechin gallate (EGCG) replacing sucrose on surimi during frozen storage. Substitution or partial substitution of 0.1% EGCG for sucrose (1.5%) was added to surimi, and the surimi samples without and with commercial cryoprotectants (4% sucrose and 4% sorbitol) were used as the control group. RESULTS The results obtained suggest that, with the increase in frozen storage time, the structural performance of surimi protein gradually weakened (e.g. the decrease in the surface hydrophobicity, the increase in the total sulfhydryl and solubility, and the protein myosin heavy chain bands became shallow) and surimi gel quality gradually deteriorated (e.g. the decrease in water-holding capacity, gel strength and all texture profile attributes). However, compared with the other three group surimi samples during the frozen period, the surimi proteins with partial replacement of sucrose by EGCG had a higher total sulfhydryl group content and solubility of proteins, as well as lower surface hydrophobicity of protein, suggesting that the addition of EGCG as a partial substitute for sucrose can enhance the antifreeze ability of surimi. Meanwhile, the surimi gel with the partial replacement of sucrose by EGCG had a higher water retention capacity, gel strength and texture attributes (e.g. hardness, springiness, cohesiveness, chewiness, and resilience), indicating that the addition of EGCG as a partial substitute for sucrose can inhibit the deterioration of surimi gel quality. CONCLUSION Overall, EGCG partially replacing sucrose can play an alternative cryoprotectant with a lower sweetness to prevent the quality of surimi from deteriorating. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Naiyong Xiao
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang, China
| | - Zhihang Tian
- College of Food Sciences & Technology, Shanghai Ocean University, Shanghai, China
| | - Qiang Zhang
- College of Food Sciences & Technology, Shanghai Ocean University, Shanghai, China
| | - Huiya Xu
- College of Food Sciences & Technology, Shanghai Ocean University, Shanghai, China
| | - Yantao Yin
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang, China
| | - Shucheng Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Wenzheng Shi
- College of Food Sciences & Technology, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
2
|
Xia X, Yang X, Zhu Y, Sun Y, Zhu X. Effect and mechanism of freezing on the quality and structure of soymilk gel induced by different salt ions. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5284-5295. [PMID: 38308594 DOI: 10.1002/jsfa.13354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/23/2023] [Accepted: 02/01/2024] [Indexed: 02/05/2024]
Abstract
BACKGROUND The increasing attention toward frozen soy-based foods has sparked interest. Variations exist in the quality and structure of soymilk gels induced by different salt ions, leading to diverse changes post-freezing. This study compared and analyzed the effects of calcium chloride (CC), magnesium chloride (MC) and calcium sulfate (CS) on the quality characteristics and protein structure changes of soymilk gels (CC-S, MC-S and CS-S) before and after freezing, and clarified the mechanisms of freezing on soymilk gel. RESULTS The formation rate of soymilk gel is influenced by the type of salt ions. In comparison to CS and MC, soymilk gel induced by CC exhibited the fastest formation rate, highest gel hardness, lowest moisture content, and smaller gel pores. However, freezing treatment deteriorated the quality of soymilk gel induced by different salt ions, leading to a decline in textural properties (hardness and chewiness). Among these, the textual state of CC-induced soymilk gel remained optimal, exhibiting the least apparent damage and minimal cooking loss. Freezing treatments prompt a transition of soymilk gel secondary structure from β-turns to β-sheets, disrupting the protein's tertiary structure. Furthermore, freezing treatments also fostered the crosslinking between soymilk gel protein, increasing the content of disulfide bonds. CONCLUSION The quality of frozen soymilk gel is influenced by the rate of gel formation induced by salt ions. After freezing, soymilk gel with faster gelation rates exhibited a greater tendency for the transformation of protein-water interactions into protein-protein interactions. They showed a higher degree of disulfide bond formation, resulting in a more tightly knit and firm frozen gel network structure with denser and more uniformly distributed pores. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaoyu Xia
- College of Food Engineering, Harbin University of Commerce, Harbin, China
- Soybean Research Institute of Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Xinxin Yang
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Ying Zhu
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Ying Sun
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Xiuqing Zhu
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| |
Collapse
|
3
|
Chen J, Tang H, Wang M, Wei H, Ou C. Explorative study for the rapid detection of adulterated surimi using gas chromatography-ion mobility spectrometry. Food Chem 2024; 439:138083. [PMID: 38043278 DOI: 10.1016/j.foodchem.2023.138083] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 11/12/2023] [Accepted: 11/24/2023] [Indexed: 12/05/2023]
Abstract
Driven by economic interests, surimi adulteration has become a high-frequency issue. This study aims to assess the feasibility of gas chromatography-ion mobility spectrometry (GC-IMS) in detecting surimi adulteration. In this work, three common adulterated surimi models were established by mixing with different fish species and ratios. The fingerprints enabled a clear discrimination among different tuna surimi, and other two surimi models with different mixing ratios also showed VOCs (volatile organic compounds) differences. Results of unsupervised principal component analysis (PCA) and supervised partial least-squares discrimination analysis (PLS-DA) revealed that different types of adulterated surimi models can be well separated from each other. A total of 12, 16, and 9 VOCs were selected as the potential markers in three simulated models by PLS-DA method, respectively. Therefore, GC-IMS coupled with certain chemometrics is expected to serve as an alternative analytical tool to directly and visually detect adulterated surimi.
Collapse
Affiliation(s)
- Jingyi Chen
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Haiqing Tang
- Faculty of Food Science, Zhejiang Pharmaceutical University, Ningbo, Zhejiang 315100, China
| | - Mengyun Wang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Huamao Wei
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Changrong Ou
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315832, China; Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo, Zhejiang 315832, China.
| |
Collapse
|
4
|
Yin T, Park JW. Comprehensive review: by-products from surimi production and better utilization. Food Sci Biotechnol 2023; 32:1957-1980. [PMID: 37860730 PMCID: PMC10581993 DOI: 10.1007/s10068-023-01360-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/15/2023] [Accepted: 05/29/2023] [Indexed: 10/21/2023] Open
Abstract
Over 1 million MT of surimi is produced globally, which theoretically would generate approximate 2 million MT of solid by-products and more than 1 million MT of wash water. Utilization of the by-products has increasingly become interested based on their nutritional, economical, and environmental issues. Surimi by-products represent an important source of valuable compounds such as functional protein, collagen, gelatin, fish oil, peptides, minerals, and enzymes. Better utilization of the by-products would make the surimi industry sustainable and profitable. This review paper characterizes sources and composition of the solid by-products and wash water generated from the surimi production as well as factors related to extraction and processing techniques. In addition, the potential food applications are explored including specialty foods and snacks, flavor ingredients, bioactive ingredients, and functional ingredients. Moreover, an outlook summarizing the challenges and prospects on the utilization of surimi by-products is provided.
Collapse
Affiliation(s)
- Tao Yin
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070 Hubei People’s Republic of China
- National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, Hubei Province 430070 People’s Republic of China
| | - Jae W. Park
- Oregon State University Seafood Research and Education Center, 2001 Marine Drive #253, Astoria, OR 97103 USA
| |
Collapse
|
5
|
Li K, Wang LM, Gao HJ, Du MT, Bai YH. Use of basic amino acids to improve gel properties of PSE-like chicken meat proteins isolated via ultrasound-assisted alkaline extraction. J Food Sci 2023; 88:5136-5148. [PMID: 37961003 DOI: 10.1111/1750-3841.16800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 09/16/2023] [Accepted: 09/29/2023] [Indexed: 11/15/2023]
Abstract
To improve the gel quality of pale, soft, and exudative (PSE)-like chicken protein isolate (PPI) obtained via ultrasound-assisted alkaline extraction (UAE), l-lysine (l-Lys), l-arginine (l-Arg), or l-histidine (l-His) were used and the effects on the thermal gelling characteristics of PPI were studied. Compared with the nonbasic amino acid addition group, the addition of l-His/l-Arg/l-Lys significantly increased the solubility and absolute zeta potential of PPI, whereas reduced the particle size and turbidity (p < 0.05). They enhanced the gel strength and textural properties of PPI (p < 0.05) and reduced the cooking loss of PPI in the following order: l-Lys > l-Arg > l-His. The solubility, gel strength, and hardness of PPI with l-Lys were increased by 18.6%, 44.6%, and 57.6%, respectively, and cooking loss was decreased by 18.1%. Low-field nuclear magnetic resonance and magnetic resonance imaging revealed that basic amino acids addition decreased the water mobility in PPI gels with increasing immobile water content. Scanning electron microscopy revealed that the addition of basic amino acids promoted the formation of a more uniform and tight network microstructure in PPI gels. The α-helix content was decreased, whereas the β-sheet content was increased in PPI gels after basic amino acid addition. Therefore, addition of basic amino acids, especially l-Lys, enhances the gel properties of PPI. PRACTICAL APPLICATION: This study revealed that adding basic amino acids effectively improved the gel properties of PPI obtained via UAE method, with l-Lys exerting the best improvement effect. Our findings highlight the application value of PSE-like meat by the improvement of gel characteristics of PPI, providing a theoretical reference for the processing and utilization of PPI.
Collapse
Affiliation(s)
- Ke Li
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, P. R. China
- Food Laboratory of Zhongyuan, Luohe, P. R. China
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou, P. R. China
| | - Lin-Meng Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, P. R. China
- Food Laboratory of Zhongyuan, Luohe, P. R. China
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou, P. R. China
| | - Hui-Jian Gao
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, P. R. China
- Food Laboratory of Zhongyuan, Luohe, P. R. China
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou, P. R. China
| | - Man-Ting Du
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, P. R. China
- Food Laboratory of Zhongyuan, Luohe, P. R. China
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou, P. R. China
| | - Yan-Hong Bai
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, P. R. China
- Food Laboratory of Zhongyuan, Luohe, P. R. China
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou, P. R. China
| |
Collapse
|
6
|
Ullah I, Khoder RM, Yin T, You J, Huang Q, Liu R, Xiong S. Gelation properties of tofu induced by different coagulants: Effects of molecular interactions between nano-sized okara dietary fiber and soybean proteins. Food Chem 2023; 403:134056. [DOI: 10.1016/j.foodchem.2022.134056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 10/14/2022]
|
7
|
Walnut Protein Isolate-κ-Carrageenan Composite Gels Improved with Synergetic Ultrasound-Transglutaminase: Gelation Properties and Structure. Gels 2023; 9:gels9020091. [PMID: 36826261 PMCID: PMC9957005 DOI: 10.3390/gels9020091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/25/2023] Open
Abstract
Walnut protein is a kind of natural, high-quality plant protein resource. However, its high content of gluten, strong hydrophobicity and poor gelation ability have greatly limited its development and utilization in gel products. It was found in this experiment that ultrasonic power combined with transglutaminase (TGase) had a significant effect on the gel properties of the walnut protein isolate (WNPI)-κ-carrageenan (KC) complex. The results showed that the gel strength of the WNPI-KC complex first increased and then decreased with the increase in ultrasonic power (0-400 W). WNPI-KC composite gel had the best texture properties, rheological properties, water-holding capacity (99.41 ± 0.76%), swelling ratio (2.31 ± 0.29%) and thermal stability (83.22 °C) following 200 W ultrasonic pretreatment. At this time, the gel network was more uniform and much denser, and the water molecules were more tightly bound. Further, 200 W ultrasonic pretreatment could promote the transformation of α-helices to β-folds in protein molecules, improve the fluorescence intensity, increase the content of free sulfhydryl groups and enhance the intermolecular forces. The experimental results could provide technical support for the development of walnut protein gel food.
Collapse
|
8
|
Long K, Zhang T, Park JW, Park J, Yin T. Effect of modified washing process on water usage, composition and gelling properties of grass carp surimi. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:7136-7143. [PMID: 35715889 DOI: 10.1002/jsfa.12079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/26/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Washing is an essential process in surimi production, from which a large amount of wastewater is generated. Due to the increasing pressure of environmental protection, it is an urgent technical requirement for surimi manufacturers to reduce water usage while maintaining the quality of surimi. In this study, composition, structure and gelling properties of grass carp surimi prepared with a modified washing process (MWP) were investigated. Intermediate dehydration with various compression ratios were utilized between two washing cycles. RESULTS Water usage and wastewater discharge were reduced significantly by 33% and 38%, respectively, when MWP was applied. As the compression ratio increased, composition of fat, cathepsins, transglutaminase and heme proteins in surimi decreased gradually. Yield, protein content and the major protein pattern of surimi were not changed, but surface hydrophobicity gradually decreased. As the compression rate increased to 1:2.0, textural values and water holding capacity of the corresponding surimi gel decreased gradually, while whiteness increased and then remained unchanged. At a higher compression ratio (>1:1.5), aggregated network and excessive free water were observed in the surimi gel. Composition and gelling properties of the MWP surimi with a compression ratio of 1:1.2-1:1.5 were equal to those of the surimi prepared under conventional three-cycle washing. CONCLUSION Results indicated that MWP demonstrated its great potential in surimi production by dramatically reducing the usage of cold water and discharge of wastewater without scarifying surimi quality. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kangyuan Long
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Tonghao Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Jae W Park
- Oregon State University Seafood Research and Education Center, Astoria, Oregon, USA
| | | | - Tao Yin
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, PR China
- National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, PR China
| |
Collapse
|
9
|
Liu L, Xiong Y, Yin T, Xiong S, You J, Liu R, Huang Q, Shi L. Effects of repeated deboning on structure, composition, and gelling properties of silver carp surimi. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5312-5320. [PMID: 35318664 DOI: 10.1002/jsfa.11885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/20/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Surimi is produced from the various sequences of filleting, deboning, washing, dehydrating, blending with cryprotectant, and freezing. Deboning, after which fish flesh is minced and separated from bone, skin, etc., is a vital step in the surimi production. In this study, effects of repeated deboning on yield, structure, composition, and gelling properties of silver carp surimi were investigated. RESULTS Surimi yield increased rapidly from 10% to 23% as the cycle of repeated deboning was increased from one to three, and then slowly increased up to 26%. As the cycle increased, cellular structure and ultrastructure of muscle fibers progressively fractured. Contents of fat, cathepsins, heme proteins, and transglutaminase of surimi obviously increased and then decreased. Three-dimensional network of surimi gel without setting (NS gel) became more porous with the increase of cycles. It became more compact, and then turned to aggregated forms with lower homogeneity, for the surimi gel with setting (WS gel). Correspondently, the NS gel textural values gradually decreased with the cycles, while the WS gel textural values increased up to three cycles and then decreased. Regardless of setting, whiteness of surimi gels decreased and then increased with the cycles. CONCLUSION Our results suggested that structure and compositions of surimi changed with the cycle of repeated deboning, which affected gelling properties of surimi. It is recommended to debone three or four cycles in silver carp surimi production. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lulu Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China
| | - Yuxin Xiong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China
| | - Tao Yin
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China
- National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, P. R. China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan, P. R. China
| | - Shanbai Xiong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan, P. R. China
| | - Juan You
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China
| | - Ru Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China
| | - Qilin Huang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China
| | - Liu Shi
- Institute of Agricultural Products Processing and Nuclear-agricultural Technology, Livestock, Poultry and Aquatic Products, Hubei Academy of Agricultural Sciences, Wuhan, P. R. China
| |
Collapse
|
10
|
Effect of Washing Times on the Quality Characteristics and Protein Oxidation of Silver Carp Surimi. Foods 2022; 11:foods11162397. [PMID: 36010395 PMCID: PMC9407351 DOI: 10.3390/foods11162397] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 11/27/2022] Open
Abstract
The aim of this work is to evaluate the effects of different washing times (zero (W0), one (W1), two (W2), and three (W3) times) on the physicochemical characteristics, gel property, and protein oxidation of silver carp surimi during 4 °C refrigeration. The results showed that the yield, types of fatty acids, redness (a*), total volatile basic nitrogen, and thiobarbituric acid reactive substances of the surimi tended to decrease, and the whiteness, pH, gel strength, and water retention tended to increase with the increase of washing times. Meanwhile, washing removed some fatty acids and the fatty acid species showed a decreasing trend. The FTIR spectra showed that washing did not change the functional group composition but changed the content of each group of the functional groups, while decreasing the proportion of β-sheet structures. Compared with the unwashed surimi, washing caused some of the immobilized water in the minced fish to be transferred to free water, and the water fluidity was enhanced. The washing enhanced the water holding capacity in the surimi gels, and the microstructure of the surimi gels was denser and delayed the protein oxidation during refrigeration. However, the difference between W2 and W3 surimi was not significant (p > 0.05). In practice, W2 can be used to produce surimi to improve its yield and reduce water consumption.
Collapse
|
11
|
Xiao N, Xu H, Jiang X, Sun T, Luo Y, Shi W. Evaluation of aroma characteristics in grass carp mince as affected by different washing processes using an E-nose, HS-SPME-GC-MS, HS-GC-IMS, and sensory analysis. Food Res Int 2022; 158:111584. [DOI: 10.1016/j.foodres.2022.111584] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/04/2022] [Accepted: 06/24/2022] [Indexed: 11/25/2022]
|
12
|
de Albuquerque Sousa TC, Ferreira VCDS, da Silva Araújo ÍB, da Silva FAP. Natural Additives as Quality Promoters in Surimi: a Brief Review. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2022. [DOI: 10.1080/10498850.2022.2092434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Thamyres César de Albuquerque Sousa
- Postgraduate Program in Agrifood Technology, Center for Human, Social and Agrarian Sciences, Federal University of Paraíba, Bananeiras, Brazil
| | - Valquiria Cardoso da Silva Ferreira
- Postgraduate Program in Agrifood Technology, Center for Human, Social and Agrarian Sciences, Federal University of Paraíba, Bananeiras, Brazil
| | - Íris Braz da Silva Araújo
- Postgraduate Program in Agrifood Technology, Center for Human, Social and Agrarian Sciences, Federal University of Paraíba, Bananeiras, Brazil
| | - Fábio Anderson Pereira da Silva
- Postgraduate Program in Agrifood Technology, Center for Human, Social and Agrarian Sciences, Federal University of Paraíba, Bananeiras, Brazil
| |
Collapse
|
13
|
Yingchutrakul M, Wasinnitiwong N, Benjakul S, Singh A, Zheng Y, Mubango E, Luo Y, Tan Y, Hong H. Asian Carp, an Alternative Material for Surimi Production: Progress and Future. Foods 2022; 11:1318. [PMID: 35564045 PMCID: PMC9101759 DOI: 10.3390/foods11091318] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 12/19/2022] Open
Abstract
Asian carp is a general designation for grass carp, silver carp, bighead carp, and black carp. These fish species belong to the family Cyprinidae. In 2018, more than 18.5 million tons of Asian carp were produced globally. Asian carp can be used for producing surimi, a stabilized myofibrillar protein concentrate that can be made into a wide variety of products such as imitation crab sticks, fish balls, fish cakes, fish tofu, and fish sausage. Surimi is usually made from marine fish, but Asian carp have been widely used for surimi production in China. The quality of surimi is affected by various factors, including the processing methods and food additives, such as polysaccharides, protein, salt, and cryoprotectant. With an impending shortage of marine fish due to overfishing and depletion of fish stocks, Asian carp have a potential to serve as an alternative raw material for surimi products thanks to their high abundancy, less emissions of greenhouse gases from farming, desirable flesh color, and sufficient gel forming ability. The utilization of Asian carp in surimi production could also contribute to relieving the overflow of Asian carp in the United States.
Collapse
Affiliation(s)
- Manatsada Yingchutrakul
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (M.Y.); (N.W.); (E.M.); (Y.L.); (Y.T.)
| | - Naphat Wasinnitiwong
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (M.Y.); (N.W.); (E.M.); (Y.L.); (Y.T.)
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Songkhla 90112, Thailand; (S.B.); (A.S.)
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Songkhla 90112, Thailand; (S.B.); (A.S.)
| | - Avtar Singh
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Songkhla 90112, Thailand; (S.B.); (A.S.)
| | - Yanyan Zheng
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China;
| | - Elliot Mubango
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (M.Y.); (N.W.); (E.M.); (Y.L.); (Y.T.)
| | - Yongkang Luo
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (M.Y.); (N.W.); (E.M.); (Y.L.); (Y.T.)
| | - Yuqing Tan
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (M.Y.); (N.W.); (E.M.); (Y.L.); (Y.T.)
| | - Hui Hong
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (M.Y.); (N.W.); (E.M.); (Y.L.); (Y.T.)
- Center of Food Colloids and Delivery for Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
14
|
Lei Y, Gao S, Xiang X, Li X, Yu X, Li S. Physicochemical, structural and adhesion properties of walnut protein isolate-xanthan gum composite adhesives using walnut protein modified by ethanol. Int J Biol Macromol 2021; 192:644-653. [PMID: 34655580 DOI: 10.1016/j.ijbiomac.2021.10.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/18/2021] [Accepted: 10/02/2021] [Indexed: 10/20/2022]
Abstract
Low-sugar and high-protein adhesives have broad market application prospects, while natural plant proteins have confronted technical bottlenecks due to their poor adhesion. In this study, the effects of ethanol with different concentrations (0-80%) on the adhesion properties of walnut protein isolate-xanthan gum (WNPI-XG) composite adhesives were investigated. Results showed the bonding strength of WNPI-XG treated with 40% ethanol reached 12.55 MPa, the denaturation temperature and the surface hydrophobicity increased to 87.91 and 185.07 respectively, displaying the best rheological and texture properties. It also indicated appropriate concentration of ethanol (40%) didn't change the molecular weight of WNPI-XG, but greatly strengthened the fluorescence intensity, leading changes in contents of reactive sulfhydryl groups, electrostatic forces, hydrophobic interactions, hydrogen bonds and disulfide bonds. Furthermore, the treatment also facilitated a conformation conversion of the secondary structures from β-sheet to α-helix, promoting the full unfolding of protein molecules. The microstructure analysis showed after 40% ethanol treatment, the WNPI structure was uniform, the surface of WNPI-XG adhesive was flat and smooth, combined more closely with water molecules. By analyzing the influence of ethanol treatment on adhesion of WNPI-XG, the research laid a theoretical foundation for protein modification, providing good technical references for its development and utilization.
Collapse
Affiliation(s)
- Yuqing Lei
- Engineering Research Center of Bio-process, Ministry of Education/Key Laboratory for Agricultural Products Processing of Anhui Province/School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Key Laboratory of Fermentation Engineering, Ministry of Education/School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Sihai Gao
- Department of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaole Xiang
- School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Xiuting Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 102488, China
| | - Xiongwei Yu
- Wuhan Xudong Food Co., Ltd., Wuhan 430000, China
| | - Shugang Li
- Engineering Research Center of Bio-process, Ministry of Education/Key Laboratory for Agricultural Products Processing of Anhui Province/School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Key Laboratory of Fermentation Engineering, Ministry of Education/School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China.
| |
Collapse
|