1
|
Fang M, Sun X, Yao F, Lu L, Ma X, Shao K, Kaimoyo E. A Combination of Transcriptome and Enzyme Activity Analysis Unveils Key Genes and Patterns of Corncob Lignocellulose Degradation by Auricularia heimuer under Cultivation Conditions. J Fungi (Basel) 2024; 10:545. [PMID: 39194871 DOI: 10.3390/jof10080545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
The cultivation of Auricularia heimuer, a species of edible mushroom, heavily relies on the availability of wood resources serving as substrate for the growth of the species. To ensure the sustainable development of the A. heimuer industry and optimize the utilization of corncob as a substrate, this study sought to investigate the potential use of corncob as a substrate for the cultivation of A. heimuer. The purpose of this study was to explore the utilization of corncob lignocellulose by A. heimuer at the mycelium, primordium, and fruiting stages, by specifically examining the expression profiles of both carbohydrate-active enzymes (CAZymes) and the transcriptome of differentially expressed genes (DEGs) relevant to corncob biomass degradation. The results revealed 10,979, 10,630, and 11,061 DEGs at the mycelium, primordium, and fruiting stages, respectively, while 639 DGEs were identified as carbohydrate-active enzymes. Of particular interest were 46 differentially expressed CAZymes genes that were associated directly with lignocellulose degradation. Furthermore, the study found that A. heimuer exhibited adaptive changes that enabled it to effectively utilize the cellulose present in the corncob. These changes were observed primarily at the primordium and fruiting stages. Key genes involved in lignocellulose degradation were also identified, including g6952, g8349, g12487, and g2976 at the mycelium stage, g5775, g2857, g3018, and g11016 at the primordium stage, and g10290, g2857, g12385, g7656, and g8953 at the fruiting stage. This study found that lytic polysaccharide monooxygenase (LPMO) played a crucial role in the degradation of corncob cellulose, further highlighting the complexity of the molecular mechanisms involved in the degradation of lignocellulose biomass by A. heimuer. The study sheds light on the molecular mechanisms underlying the ability of A. heimuer to degrade corncob biomass, with implications for the efficient utilization of lignocellulose resources. The findings from this study may facilitate the development of innovative biotechnologies for the transformation of corncob biomass into useful products.
Collapse
Affiliation(s)
- Ming Fang
- Lab of the Genetic Breeding of Edible Mushroom, College of Horticulture, Jilin Agricultural University, Changchun 130118, China
| | - Xu Sun
- Engineering Research Centre of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China
| | - Fangjie Yao
- Lab of the Genetic Breeding of Edible Mushroom, College of Horticulture, Jilin Agricultural University, Changchun 130118, China
- Engineering Research Centre of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China
| | - Lixin Lu
- Lab of the Genetic Breeding of Edible Mushroom, College of Horticulture, Jilin Agricultural University, Changchun 130118, China
| | - Xiaoxu Ma
- Lab of the Genetic Breeding of Edible Mushroom, College of Horticulture, Jilin Agricultural University, Changchun 130118, China
| | - Kaisheng Shao
- Engineering Research Centre of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China
| | - Evans Kaimoyo
- Great East Road Campus, University of Zambia, Lusaka 32379, Zambia
| |
Collapse
|
2
|
Qiu Z, Ren S, Zhao J, Cui L, Li H, Jiang B, Zhang M, Shu L, Li T. Comparative analysis of the nutritional and biological properties between the pileus and stipe of Morchella sextelata. Front Nutr 2024; 10:1326461. [PMID: 38249598 PMCID: PMC10796790 DOI: 10.3389/fnut.2023.1326461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024] Open
Abstract
Morchella sextelata is a highly prized edible mushroom and is widely consumed for its distinctive taste and texture. The stipe of M. sextelata is significantly lower in priced compared to the pileus. The aim of this study was to conduct a comprehensive comparative analysis of the nutritional and biological properties between the pileus and stipe of M. sextelata. The results revealed that the stipe exhibited comparable levels of various nutrients and bioactive compounds to those found in the pileus. The stipe showed significantly higher levels of crude dietary fiber, various mineral elements, vitamins, amino acids, 5'-nucleotides, fatty acids, and specific sugars. Additionally, it also demonstrated significant abundance in bioactive compounds such as total flavonoids and ergothioneine. Overall, our study provides valuable insights into unlocking further knowledge about M. sextelata's nutritional composition while highlighting its potential health benefits associated with different parts of this highly esteemed edible mushroom.
Collapse
Affiliation(s)
- Zhiheng Qiu
- Modern Protected Horticulture Engineering and Technology Center, College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, China
| | - Shuhua Ren
- Modern Protected Horticulture Engineering and Technology Center, College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, China
| | - Jiazhi Zhao
- Modern Protected Horticulture Engineering and Technology Center, College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, China
| | - Lingxiu Cui
- Modern Protected Horticulture Engineering and Technology Center, College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, China
| | - Hongpeng Li
- Modern Protected Horticulture Engineering and Technology Center, College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, China
| | - Bei Jiang
- Modern Protected Horticulture Engineering and Technology Center, College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, China
| | - Miao Zhang
- Modern Protected Horticulture Engineering and Technology Center, College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, China
| | - Lili Shu
- Modern Protected Horticulture Engineering and Technology Center, College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, China
| | - Tianlai Li
- Modern Protected Horticulture Engineering and Technology Center, College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, China
| |
Collapse
|
3
|
Qiu Z, Wang S, Zhao J, Cui L, Wang X, Cai N, Li H, Ren S, Li T, Shu L. Synthesis and structural characteristics analysis of melanin pigments induced by blue light in Morchella sextelata. Front Microbiol 2023; 14:1276457. [PMID: 37840742 PMCID: PMC10573313 DOI: 10.3389/fmicb.2023.1276457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 09/18/2023] [Indexed: 10/17/2023] Open
Abstract
Morchella sextelata, a highly sought-after edible mushroom worldwide, is evaluated based on its cap color as an essential commercial property indicator. In the present study, the effects of blue light on cap pigmentation in M. sextelata, as well as the synthesis and structural characteristics of melanin pigments within the cap were examined. The results showed that an increase in the proportion of blue light within the lighting environment promoted melanin synthesis and melanization of the cap. Transmission and scanning electron microscopy revealed the localization of melanin within the mycelium and its ultrastructural characteristics. The UV-visible analysis demonstrated that melanin exhibited a maximum absorption peak at 220 nm and possessed high alkaline solubility as well as acid precipitability. The structural characteristics of melanin were analyzed using FTIR, NMR, HPLC, and elemental analysis, which confirmed the presence of eumelanin, pheomelanin, and allomelanin in both brown and black caps. Furthermore, blue light can stimulate the synthesis of both eumelanin and pheomelanin. The obtained results can serve as the foundation for comprehending the mechanism by which light regulates color formation in mushrooms.
Collapse
Affiliation(s)
- Zhiheng Qiu
- Modern Protected Horticulture Engineering & Technology Center, College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, China
| | - Shuang Wang
- Modern Protected Horticulture Engineering & Technology Center, College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, China
| | - Jiazhi Zhao
- Modern Protected Horticulture Engineering & Technology Center, College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, China
| | - Lingxiu Cui
- Modern Protected Horticulture Engineering & Technology Center, College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, China
| | - Xinyi Wang
- Modern Protected Horticulture Engineering & Technology Center, College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, China
| | - Nuo Cai
- Modern Protected Horticulture Engineering & Technology Center, College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, China
| | - Hongpeng Li
- Modern Protected Horticulture Engineering & Technology Center, College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, China
| | - Shuhua Ren
- Modern Protected Horticulture Engineering & Technology Center, College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, China
| | - Tianlai Li
- Modern Protected Horticulture Engineering & Technology Center, College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, China
| | - Lili Shu
- Modern Protected Horticulture Engineering & Technology Center, College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, China
| |
Collapse
|
4
|
Gebreyohannes G, Sbhatu DB. Wild Mushrooms: A Hidden Treasure of Novel Bioactive Compounds. Int J Anal Chem 2023; 2023:6694961. [PMID: 37781342 PMCID: PMC10541307 DOI: 10.1155/2023/6694961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 10/03/2023] Open
Abstract
Secondary metabolites are hidden gems in mushrooms. Understanding these secondary metabolites' biological and pharmacological effects can be aided by identifying them. The purpose of this work was to profile the mycochemical components of the extracts of Auricularia auricula judae, Microporus xanthopus, Termitomyces umkowaani, Trametes elegans, and Trametes versicolor to comprehend their biological and pharmacological capabilities. Mushroom samples were collected from Kenya's Arabuko-Sokoke and Kakamega National Reserved Forests and identified using morphological and molecular techniques. Chloroform, 70% ethanol, and hot water solvents were used to extract the mycochemical components. Gas chromatography mass spectrometry (GC-MS) was used to analyze the chloroform, 70% ethanol, and hot water extracts of all the species examined. A total of 51 compounds were isolated from all extracts and classified as carboxylic acids, esters, phenols, fatty acids, alcohol, epoxides, aldehydes, fatty aldehydes, isoprenoid lipids, and steroids. Tetracosamethyl-cyclododecasiloxane (18.90%), oleic acid (72.90%), phenol, 2, 6-bis (1, 1-dimethylethyl)-4-methyl-, and methylcarbamate (26.56%) were all found in high concentrations in A. auricular judae, M. xanthopus, T. umkowaani, T. elegans, and T. versicolor, respectively. Fatty acids make up the majority of the compounds isolated from the T. elegans chloroform extract and the T. umkowaani 70% ethanol extract, respectively. Particularly, these fatty acids play crucial roles in the anti-inflammatory, hypocholesterolemic, anticancer, and antibiofilm formation activities. These bioactive elements indicate that the extracts of five wild mushrooms may be reliable sources of secondary metabolites for therapeutic development. Therefore, additional research is required to comprehend the usefulness of these chemicals in many functional areas and to improve the present understanding of macrofungi.
Collapse
Affiliation(s)
- Gebreselema Gebreyohannes
- Department of Biological and Chemical Engineering, Mekelle Institute of Technology, Mekelle University, Mekele, Ethiopia
| | - Desta Berhe Sbhatu
- Department of Biological and Chemical Engineering, Mekelle Institute of Technology, Mekelle University, Mekele, Ethiopia
| |
Collapse
|
5
|
Hu DB, Xue R, Zhuang XC, Zhang XS, Shi SL. Ultrasound-assisted extraction optimization of polyphenols from Boletus bicolor and evaluation of its antioxidant activity. Front Nutr 2023; 10:1135712. [PMID: 37063317 PMCID: PMC10090463 DOI: 10.3389/fnut.2023.1135712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 03/10/2023] [Indexed: 03/31/2023] Open
Abstract
IntroductionBoletus bicolor (B. bicolor) mushrooms are widely consumed as a valuable medicinal and dietary ingredient in China, but the active ingredients of this mushroom and their extraction methods were not extensively studied.MethodsIn this paper, we propose an optimized ultrasound-assisted extraction (UAE) method to detect natural antioxidant substances in B. bicolor. The antioxidants were quantitatively and quantitatively determined using UPLC-MS, the polyphenols were evaluated based on response surface methodology (RSM), and density functional theory (DFT) calculations were performed.ResultsThe results showed that the optimal extraction was obtained under the following conditions: ethanol concentration 42%; solvent to solid ratio 34:1 mL/g; ultrasonic time 41 min; and temperature 40°C. The optimized experimental polyphenol value obtained under these conditions was (13.69 ± 0.13) mg/g, consistent with the predicted value of 13.72 mg/g. Eight phenolic compounds in the extract were identiffed by UPLC-MS: syringic acid, chlorogenic acid, gallic acid, rosmarinic acid, protocatechuic acid, catechin, caffeic acid, and quercetin. Chlorogenic acid exhibits the highest HOMO energy (−0.02744 eV) and the lowest energy difference (−0.23450 eV) among the studied compounds, suggesting that the compound might be the strongest antioxidant molecule. Eight phenolic compounds from the B. bicolor signiffcantly inhibited intracellular reactive oxygen species (ROS) generation, reduced oxidative stress damage in H2O2-induced HepG-2 cells.DiscussionTherefore, it was confirmed that the UAE technique is an efficient, rapid, and simple approach for extracting polyphenols with antioxidant activity from B. bicolor.
Collapse
|
6
|
Non-thermal treatments for the control of endogenous formaldehyde from Auricularia auricula and their effects on its nutritional characteristics. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
Formation Optimization, Characterization and Antioxidant Activity of Auricularia auricula-judae Polysaccharide Nanoparticles Obtained via Antisolvent Precipitation. Molecules 2022; 27:molecules27207037. [PMID: 36296630 PMCID: PMC9608221 DOI: 10.3390/molecules27207037] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022] Open
Abstract
Auricularia auricula-judae polysaccharide (AAP)-based nanoparticles (NPs) prepared via an anti-solvent precipitation approach were studied. Response surface methodology (RSM) design was carried out on the basis of single factor experiments, using average size and polydispersity index (PDI) as indicators. The optimal preparation conditions were determined to include an AAP concentration of 1 mg/mL, a pH of 8, and an anti-solvent/solvent volume ratio of 6. The average particle sizes of the AAP-NPs, PDI and electrical characteristic (ζ-potential) were found to be 150.27 ± 3.21 nm, 0.135 ± 0.012 and -31.10 ± 0.52 mV, respectively. Furthermore, Fourier transform infrared spectroscopy (FTIR) was used to determine the chemical structure of the AAP-NPs. It was observed that the intensity of AAP-NPs in the wide spectral band of 3000-3750 cm-1 was significantly stronger than that of the AAP, as was the characteristic peak of carboxyl anion, and the characteristic band moved to shorter wavelengths. Subsequent thermogravimetric analysis showed that the antisolvent precipitation method improved the thermal stability of the AAP, while scanning electron microscopy (SEM) and X-ray diffraction (XRD) showed that the morphology of AAP-NPs was uniform and well-distributed, and that their single crystal structures had remained unaffected during the process. Moreover, the DPPH and ABTS scavenging activities of AAP-NPs were increased, and the IC50 values were 0.544 ± 0.241 mg/mL and 0.755 ± 0.226 mg/mL, respectively.
Collapse
|