1
|
Lazado CC, Iversen M, Johansen LH, Brenne H, Sundaram AYM, Ytteborg E. Nasal responses to elevated temperature and Francisella noatunensis infection in Atlantic cod (Gadus morhua). Genomics 2023; 115:110735. [PMID: 37898334 DOI: 10.1016/j.ygeno.2023.110735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
We report the histological and transcriptomic changes in the olfactory organ of Atlantic cod exposed to Francisella noatunensis. Experimental infection was performed at either 12 °C or 17 °C. Infected fish presented the classic gross pathologies of francisellosis. Nasal morpho-phenotypic parameters were not significantly affected by elevated temperature and infection, except for the number of mucus cells in the 12 °C group seven weeks after the challenge. A higher number of genes were altered through time in the group reared at 17 °C. At termination, the nasal transcriptome of infected fish in both groups was similar to the control. When both infected groups were compared, 754 DEGs were identified, many of which were involved in signalling, defence, transmembrane and enzymatic processes. In conclusion, the study reveals that elevated temperature could trigger responses in the olfactory organ of Atlantic cod and shape the nasal response to F. noatunensis infection.
Collapse
Affiliation(s)
- Carlo C Lazado
- Nofima, The Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås 1431, Norway.
| | - Marianne Iversen
- Nofima, The Norwegian Institute of Food, Fisheries and Aquaculture Research, Tromsø 9019, Norway
| | - Lill-Heidi Johansen
- Nofima, The Norwegian Institute of Food, Fisheries and Aquaculture Research, Tromsø 9019, Norway
| | - Hanne Brenne
- Nofima, The Norwegian Institute of Food, Fisheries and Aquaculture Research, Tromsø 9019, Norway
| | - Arvind Y M Sundaram
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Elisabeth Ytteborg
- Nofima, The Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås 1431, Norway
| |
Collapse
|
2
|
The Use of Extracellular Membrane Vesicles for Immunization against Francisellosis in Nile Tilapia ( Oreochromis niloticus) and Atlantic Cod ( Gadus morhua L.). Vaccines (Basel) 2021; 9:vaccines9010034. [PMID: 33435503 PMCID: PMC7827370 DOI: 10.3390/vaccines9010034] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/31/2020] [Accepted: 01/04/2021] [Indexed: 11/17/2022] Open
Abstract
Francisellosis in fish is caused by the facultative intracellular Gram-negative bacterial pathogens Francisella noatunensis ssp. noatunensis and Francisella orientalis. The disease is affecting both farmed and wild fish worldwide and no commercial vaccines are currently available. In this study, we tested isolated membrane vesicles (MVs) as possible vaccine candidates based on previous trials in zebrafish (Danio rerio) indicating promising vaccine efficacy. Here, the MV vaccine-candidates were tested in their natural hosts, Atlantic cod (Gadus morhua L.) and Nile tilapia (Oreochromis niloticus). Injection of MVs did not display any toxicity or other negative influence on the fish and gene expression analysis indicated an influence on the host immune response. However, unlike in other tested fish species, a protective immunity following vaccine application and immunization period could not be detected in the Atlantic cod or tilapia. Further in vivo studies are required to achieve a better understanding of the development of immunological memory in different fish species.
Collapse
|
3
|
Larva of greater wax moth Galleria mellonella is a suitable alternative host for the fish pathogen Francisella noatunensis subsp. orientalis. BMC Microbiol 2020; 20:8. [PMID: 31918661 PMCID: PMC6953311 DOI: 10.1186/s12866-020-1695-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 12/31/2019] [Indexed: 12/26/2022] Open
Abstract
Background Francisella noatunensis subsp. orientalis (Fno) is the etiological agent of francisellosis in cultured warm water fish, such as tilapia. Antibiotics are administered to treat the disease but a better understanding of Fno infection biology will inform improved treatment and prevention measures. However, studies with native hosts are costly and considerable benefits would derive from access to a practical alternative host. Here, larvae of Galleria mellonella were assessed for suitability to study Fno virulence. Results Larvae were killed by Fno in a dose-dependent manner but the insects could be rescued from lethal doses of bacteria by antibiotic therapy. Infection progression was assessed by histopathology (haematoxylin and eosin staining, Gram Twort and immunohistochemistry) and enumeration of bacteria recovered from the larval haemolymph on selective agar. Fno was phagocytosed and could survive intracellularly, which is consistent with observations in fish. Virulence of five Fno isolates showed strong agreement between G. mellonella and red Nile tilapia hosts. Conclusions This study shows that an alternative host, G. mellonella, can be applied to understand Fno infections, which will assist efforts to identify solutions to piscine francisellosis thus securing the livelihoods of tilapia farmers worldwide and ensuring the production of this important food source.
Collapse
|
4
|
Ellul RM, Bulla J, Brudal E, Colquhoun D, Wergeland H, Rønneseth A. Protection and antibody reactivity in lumpsucker (Cyclopterus lumpus L.) following vaccination against Pasteurella sp. FISH & SHELLFISH IMMUNOLOGY 2019; 95:650-658. [PMID: 31706007 DOI: 10.1016/j.fsi.2019.11.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/30/2019] [Accepted: 11/05/2019] [Indexed: 06/10/2023]
Abstract
Two monovalent vaccines against pasteurellosis were developed and tested for efficacy using a previously established bath challenge model. High levels of specific antibodies were detected following vaccination. While the vaccine efficacy trial indicated that some level of protection was obtained, high mortality was still observed. qPCR analysis of head kidney tissues from surviving fish post challenge showed no difference in bacterial numbers in vaccinated and non-vaccinated fish. Clinical symptoms observed in moribund and diseased fish included white spots on the skin and around the eyes, frayed fins and redness around the mouth and fin bases. Despite production of specific antibodies, the protection against experimental challenge was relatively weak. A reason for this could potentially be that the specific antibodies produced are not alone enough to provide complete protection against pasteurellosis in lumpsuckers. Confocal and scanning electron microscopy of head kidney leucocytes exposed to Pasteurella sp. in vitro gave indications of the interactions between the pathogen and leucocytes. The results indicate that parts of the immune system other than humoral antibodies could be important for protection against pasteurellosis. Our combined results highlight the need for further work on host-pathogen interaction between Pasteurella sp. and lumpsuckers.
Collapse
Affiliation(s)
- Rebecca Marie Ellul
- Department of Biological Sciences, University of Bergen, P.O. Box 7803, N-5006, Bergen, Norway.
| | - Jan Bulla
- Department of Mathematics, University of Bergen, P.O. Box 7803, N-5006, Bergen, Norway; Department of Psychiatry and Psychotherapy, University Regensburg, Regensburg, Germany
| | - Espen Brudal
- PHARMAQ AS, Harbitzalléen 2A, P.O. Box 267 Skøyen, N-0213, Oslo, Norway
| | | | - Heidrun Wergeland
- Department of Biological Sciences, University of Bergen, P.O. Box 7803, N-5006, Bergen, Norway
| | - Anita Rønneseth
- Department of Biological Sciences, University of Bergen, P.O. Box 7803, N-5006, Bergen, Norway
| |
Collapse
|
5
|
Vargas-Lagos C, Martínez D, Oyarzún R, Avendaño-Herrera R, Yáñez AJ, Pontigo JP, Vargas-Chacoff L. High doses of Francisella noatunensis induces an immune response in Eleginops maclovinus. FISH & SHELLFISH IMMUNOLOGY 2019; 90:1-11. [PMID: 31015063 DOI: 10.1016/j.fsi.2019.04.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 04/05/2019] [Accepted: 04/08/2019] [Indexed: 06/09/2023]
Abstract
Francisella noatunensis subsp. noatunensis, the etiological agent of Francisellosis, affects a large number of farmed species such as Salmo salar. This species coexists with several native species in the same ecosystem, including Eleginops maclovinus. Our objective was to evaluate the susceptibility, presence of clinical symptoms, and the ability of Eleginops maclovinus to respond to Francisella infection. For this, healthy individuals were inoculated with 1.5 × 101, 1.5 × 105, and 1.5 × 1010 bact/μL of Francisella by intraperitoneal injection, subsequently the fish were sampled on days 1, 3, 7, 14, 21, and 28 post injection (dpi). At the end of the experiment, no mortality, nor internal and external clinical signs were observed, although in the high dose anaemia was detected. Additionally, bacteria were detected in all three doses, however there was replication at day 28 only in the liver in the high dose. Analysis of gene expression by qPCR showed that the spleen generated an immune response against infection from day 1 dpi, however at day 7 dpi most of the genes suffered repressed expression; observing over expression of the genes C3, NLRC3, NLRC5, MHCI, IgM. In contrast, expression in the anterior kidney did not vary significantly during the challenge. IgM quantification showed the production of antibodies in the medium and high doses. This study provides new knowledge about Francisella infection and the long-lasting and specific immune response generated by Eleginops maclovinus. It also demonstrates its susceptibility to Francisellosis where there is a difference in the immune response according to the tissue.
Collapse
Affiliation(s)
- C Vargas-Lagos
- Programa de Magíster en Ciencias, Mención Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; (c)Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, Chile; Centro FONDAP-IDEAL, Universidad Austral de Chile, Valdivia, Chile.
| | - D Martínez
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Programa de Doctorado en Ciencias de La Acuicultura, Universidad Austral de Chile, Puerto Montt, Chile
| | - R Oyarzún
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Programa de Doctorado en Ciencias de La Acuicultura, Universidad Austral de Chile, Puerto Montt, Chile
| | - R Avendaño-Herrera
- (c)Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, Chile; Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Viña Del Mar, Chile
| | - A J Yáñez
- (c)Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, Chile; Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - J P Pontigo
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| | - L Vargas-Chacoff
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Centro FONDAP-IDEAL, Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|
6
|
Solbakken MH, Jentoft S, Reitan T, Mikkelsen H, Gregers TF, Bakke O, Jakobsen KS, Seppola M. Disentangling the immune response and host-pathogen interactions in Francisella noatunensis infected Atlantic cod. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 30:333-346. [PMID: 31054474 DOI: 10.1016/j.cbd.2019.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 03/08/2019] [Accepted: 04/12/2019] [Indexed: 12/15/2022]
Abstract
The genetic repertoire underlying teleost immunity has been shown to be highly variable. A rare example is Atlantic cod and its relatives Gadiformes that lacks a hallmark of vertebrate immunity: Major Histocompatibility Complex class II. No immunological studies so far have fully unraveled the functionality of this particular immune system. Through global transcriptomic profiling, we investigate the immune response and host-pathogen interaction of Atlantic cod infected with the facultative intracellular bacterium Francisella noatunensis. We find that Atlantic cod displays an overall classic innate immune response with inflammation, acute-phase proteins and cell recruitment through up-regulation of e.g. IL1B, fibrinogen, cathelicidin, hepcidin and several chemotactic cytokines such as the neutrophil attractants CXCL1 and CXCL8. In terms of adaptive immunity, we observe up-regulation of interferon gamma followed by up-regulation of several MHCI transcripts and genes related to antigen transport and loading. Finally, we find up-regulation of immunoglobulins and down-regulation of T-cell and NK-like cell markers. Our analyses also uncover some contradictory transcriptional findings such as up-regulation of anti-inflammatory IL10 as well as down-regulation of the NADPH oxidase complex and myeloperoxidase. This we interpret as the result of host-pathogen interactions where F. noatunensis modulates the immune response. In summary, our results suggest that Atlantic cod mounts a classic innate immune response as well as a neutrophil-driven response. In terms of adaptive immunity, both endogenous and exogenous antigens are being presented on MHCI and antibody production is likely enabled through direct B-cell stimulation with possible neutrophil help. Collectively, we have obtained novel insight in the orchestration of the Atlantic cod immune system and determined likely targets of F. noatunensis host-pathogen interactions.
Collapse
Affiliation(s)
- Monica Hongrø Solbakken
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway
| | - Sissel Jentoft
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway.
| | - Trond Reitan
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway
| | | | - Tone F Gregers
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Oddmund Bakke
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, Oslo, Norway
| | - Kjetill S Jakobsen
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway
| | - Marit Seppola
- Department of Medical Biology, The Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
7
|
Munang'andu HM. Intracellular Bacterial Infections: A Challenge for Developing Cellular Mediated Immunity Vaccines for Farmed Fish. Microorganisms 2018; 6:microorganisms6020033. [PMID: 29690563 PMCID: PMC6027125 DOI: 10.3390/microorganisms6020033] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/15/2018] [Accepted: 04/20/2018] [Indexed: 12/15/2022] Open
Abstract
Aquaculture is one of the most rapidly expanding farming systems in the world. Its rapid expansion has brought with it several pathogens infecting different fish species. As a result, there has been a corresponding expansion in vaccine development to cope with the increasing number of infectious diseases in aquaculture. The success of vaccine development for bacterial diseases in aquaculture is largely attributed to empirical vaccine designs based on inactivation of whole cell (WCI) bacteria vaccines. However, an upcoming challenge in vaccine design is the increase of intracellular bacterial pathogens that are not responsive to WCI vaccines. Intracellular bacterial vaccines evoke cellular mediated immune (CMI) responses that “kill” and eliminate infected cells, unlike WCI vaccines that induce humoral immune responses whose protective mechanism is neutralization of extracellular replicating pathogens by antibodies. In this synopsis, I provide an overview of the intracellular bacterial pathogens infecting different fish species in aquaculture, outlining their mechanisms of invasion, replication, and survival intracellularly based on existing data. I also bring into perspective the current state of CMI understanding in fish together with its potential application in vaccine development. Further, I highlight the immunological pitfalls that have derailed our ability to produce protective vaccines against intracellular pathogens for finfish. Overall, the synopsis put forth herein advocates for a shift in vaccine design to include CMI-based vaccines against intracellular pathogens currently adversely affecting the aquaculture industry.
Collapse
Affiliation(s)
- Hetron Mweemba Munang'andu
- Section of Aquatic Medicine and Nutrition, Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Ullevålsveien 72, P.O. Box 8146, Dep NO-0033, 046 Oslo, Norway.
| |
Collapse
|
8
|
Francisella noatunensis subspecies noatunensis clpB deletion mutant impairs development of francisellosis in a zebrafish model. Vaccine 2017; 35:7264-7272. [PMID: 29153776 DOI: 10.1016/j.vaccine.2017.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/01/2017] [Accepted: 11/06/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Francisella noatunensis ssp. noatunensis (F.n.n.) is the causative agent of francisellosis in Atlantic cod and constitutes one of the main challenges for future aquaculture on this species. A facultative intracellular bacterium like F.n.n. exert an immunologic challenge against which live attenuated vaccines in general are most effective. Thus, we constructed a deletion in the F.n.n. clpB gene as ΔclpB mutants are among the most promising vaccine candidates in human pathogenic Francisella. PURPOSE Characterization of F.n.n. ΔclpB using primary Atlantic cod head kidney leukocytes, the zebrafish embryo and adult zebrafish model with focus on potential attenuation, relevant immune responses and immunogenic potential. MAIN RESULTS Interleukin 1 beta transcription in Atlantic cod leukocytes was significantly elevated from 24 to 96 h post infection with F.n.n. ΔclpB compared to F.n.n. wild-type (wt). Growth attenuation of the deletion mutant in zebrafish embryos was observed by fluorescence microscopy and confirmed by genome quantification by qPCR. In the immunization experiment, adult zebrafish were immunized with 7 × 106 CFU of F.n.n. ΔclpB before challenge four weeks later with 6 × 108 CFU of F.n.n. wt. One day after challenge, immunized zebrafish responded with significantly lower interleukin 8 levels compared to the non-immunized control. Immunized fish were protected against the acute mortality observed in non-immunized zebrafish after challenge and bacterial genomes quantified by qPCR were reduced to a minimum 28 days post challenge, indicating protective immunity stimulated by F.n.n. ΔclpB. CONCLUSION Deletion mutation of clpB in F.n.n. causes in vitro and in vivo attenuation and elicits a protective immune response in adult zebrafish against a lethal dose of F.n.n. wt. Taken together, the results presented increases the knowledge on protective immune responses against F.n.n.
Collapse
|
9
|
Brenz Y, Winther-Larsen HC, Hagedorn M. Expanding Francisella models: Pairing up the soil amoeba Dictyostelium with aquatic Francisella. Int J Med Microbiol 2017; 308:32-40. [PMID: 28843671 DOI: 10.1016/j.ijmm.2017.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/31/2017] [Accepted: 08/04/2017] [Indexed: 12/19/2022] Open
Abstract
The bacterial genus Francisella comprises highly pathogenic species that infect mammals, arthropods, fish and protists. Understanding virulence and host defense mechanisms of Francisella infection relies on multiple animal and cellular model systems. In this review, we want to summarize the most commonly used Francisella host model platforms and highlight novel, alternative model systems using aquatic Francisella species. Established mouse and macrophage models contributed extensively to our understanding of Francisella infection. However, murine and human cells display significant differences in their response to Francisella infection. The zebrafish and the amoeba Dictyostelium are well-established model systems for host-pathogen interactions and open up opportunities to investigate bacterial virulence and host defense. Comparisons between model systems using human and fish pathogenic Francisella species revealed shared virulence strategies and pathology between them. Hence, zebrafish and Dictyostelium might complement current model systems to find new vaccine candidates and contribute to our understanding of Francisella infection.
Collapse
Affiliation(s)
- Yannick Brenz
- Department of Parasitology, Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Straße 74, 20359 Hamburg, Germany.
| | - Hanne C Winther-Larsen
- Centre for Integrative Microbial Evolution (CIME) and Department of Pharmaceutical Biosciences, University of Oslo, Sem Sælands vei 3, 0371 Oslo, Norway.
| | - Monica Hagedorn
- Department of Life Sciences and Chemistry, Jacobs University, Campus Ring 1, 28759 Bremen, Germany.
| |
Collapse
|
10
|
Soto E, Yun S, Lewis J, Kearney MT, Hansen J. Interaction of Francisella noatunensis subsp. orientalis with Oreochromis mossambicus bulbus arteriosus cell line. Microb Pathog 2017; 105:326-333. [PMID: 28286149 DOI: 10.1016/j.micpath.2017.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 01/25/2017] [Accepted: 03/06/2017] [Indexed: 01/12/2023]
Abstract
Francisella noatunensis subsp. orientalis (Fno) (syn. F. asiatica) is an emergent warmwater fish pathogen and the causative agent of piscine francisellosis. Although Fno causes septicemia and can live extracellularly in infected tilapia (Oreochromis spp.), the early interaction of Fno with vasculature endothelium is unknown. In the present study, we examined the interaction of wild-type Fno (WT) and two Fno knockout [intracellular growth loci C (ΔiglC) and pathogenicity determinant protein A (ΔpdpA)] strains with the endothelial O. mossambicus bulbus arteriosus cell line (TmB) at 25 °C and 30 °C. Similar amounts of WT, ΔiglC, and ΔpdpA attached and were detected intracellularly after 5 h of incubation at both temperatures; however temperature affected attachment and uptake. While significantly greater amounts of Fno (WT, ΔiglC, and ΔpdpA) were detected intracellularly when TmB cells were incubated at 30 °C, bacteria attached to TmBs at greater levels at 25 °C. Only WT Fno was able to replicate intracellularly at 25 °C, which resulted in Fno mediated cytotoxicity and apoptosis at 24 and 72 h post-infection. WT Fno incubated at 30 °C as well as ΔiglC, and ΔpdpA incubated at 25 °C and 30 °C were all defective for survival, replication, and the ability to cause cytotoxicity in TmB. Taken together, these results demonstrate that temperature plays a vital role for Fno intracellular survival, persistence and cytotoxicity.
Collapse
Affiliation(s)
- Esteban Soto
- University of California-Davis, Department of Medicine and Epidemiology, School of Veterinary Medicine, Davis, CA 95616, USA.
| | - Susan Yun
- University of California-Davis, Department of Medicine and Epidemiology, School of Veterinary Medicine, Davis, CA 95616, USA
| | - Jainee Lewis
- University of California-Davis, Department of Medicine and Epidemiology, School of Veterinary Medicine, Davis, CA 95616, USA
| | - Michael T Kearney
- Louisiana State University, Department of Pathobiological Sciences, School of Veterinary Medicine, Baton Rouge, LA 70803, USA
| | - John Hansen
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, WA 98115, USA
| |
Collapse
|
11
|
Lampe EO, Tandberg JI, Rishovd AL, Winther-Larsen HC. Francisella noatunensis ssp. noatunensis iglC deletion mutant protects adult zebrafish challenged with acute mortality dose of wild-type strain. DISEASES OF AQUATIC ORGANISMS 2017; 123:123-140. [PMID: 28262634 DOI: 10.3354/dao03087] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The intracellular fish pathogen Francisella noatunensis remains an unsolved problem for aquaculture worldwide and an efficient vaccine is needed. In Francisella sp., IglC is an important virulence factor necessary for intracellular growth and escape from phagolysosomes. Deletion of the intracellular growth locus C (iglC) in Francisella sp. causes attenuation, but vaccine potential has only been attributed to ΔiglC from Francisella noatunensis ssp. orientalis, a warm-water fish pathogen. A ΔiglC mutant was constructed in the cold-water fish pathogen F. noatunensis ssp. noatunensis (Fnn), which causes francisellosis in Atlantic cod; the mutant was assessed in primary head kidney leucocytes from Atlantic cod. Fluorescence microscopy revealed reduced growth, while qPCR revealed an initial increase followed by a reduction in mutant genomes. Mutant-infected cod leucocytes presented higher interleukin 1 beta (il1β) and interleukin 8 (il8) transcription than wild-type (WT)-infected cells. Two doses of mutant and WT were tested in an adult zebrafish model whereupon 3 × 109 CFU caused acute disease and 3 × 107 CFU caused low mortality regardless of strain. However, splenomegaly developed only in the WT-infected zebrafish. Immunization with 7 × 106 CFU of Fnn ΔiglC protected zebrafish against challenge with a lethal dose of Fnn WT, and bacterial load was minimized within 28 d. Immunized fish had lower interleukin 6 (il6) and il8 transcription in kidney and prolonged interferon-gamma (ifng) transcription in spleens after challenge compared with non-immunized fish. Our data suggest an immunogenic potential of Fnn ΔiglC and indicate important cytokines associated with francisellosis pathogenesis and protection.
Collapse
Affiliation(s)
- Elisabeth O Lampe
- Center for Integrative Microbiology and Evolution, Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, 0316 Oslo, Norway
| | | | | | | |
Collapse
|
12
|
Bakkemo KR, Mikkelsen H, Johansen A, Robertsen B, Seppola M. Francisella noatunensis subsp. noatunensis invades, survives and replicates in Atlantic cod cells. DISEASES OF AQUATIC ORGANISMS 2016; 121:149-159. [PMID: 27667812 DOI: 10.3354/dao03043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Systemic infection caused by the facultative intracellular bacterium Francisella noatunensis subsp. noatunensis remains a disease threat to Atlantic cod Gadus morhua L. Future prophylactics could benefit from better knowledge on how the bacterium invades, survives and establishes infection in its host cells. Here, facilitated by the use of a gentamicin protection assay, this was studied in primary monocyte/macrophage cultures and an epithelial-like cell line derived from Atlantic cod larvae (ACL cells). The results showed that F. noatunensis subsp. noatunensis is able to invade primary monocyte/macrophages, and that the actin-polymerisation inhibitor cytochalasin D blocked internalisation, demonstrating that the invasion is mediated through phagocytosis. Interferon gamma (IFNγ) treatment of cod macrophages prior to infection enhanced bacterial invasion, potentially by stimulating macrophage activation in an early step in host defence against F. noatunensis subsp. noatunensis infections. We measured a rapid drop of the initial high levels of internalised bacteria in macrophages, indicating the presence and action of a cellular immune defence mechanism before intracellular bacterial replication took place. Low levels of bacterial internalisation and replication were detected in the epithelial-like ACL cells. The capacity of F. noatunensis subsp. noatunensis to enter, survive and even replicate within an epithelial cell line may play an important role in its ability to infect live fish and transverse epithelial barriers to reach the bacterium's main target cells-the macrophage.
Collapse
|
13
|
Abstract
Francisella tularensis is a facultative intracellular bacterium causing tularemia, a zoonotic disease. Francisella replicates in the macrophage cytosol and eventually triggers cytosolic immune responses. In murine macrophages, Francisella novicida and Francisella tularensis live vaccine strain lyse in the host cytosol and activate the cytosolic DNA receptor Aim2. Here, we review the mechanisms leading or contributing to Aim2 inflammasome activation, including the role of TLRs and of IFN signaling and the implication of the guanylate-binding proteins 2 and 5 in triggering cytosolic bacteriolysis. Furthermore, we present how this cytosolic Gram-negative bacterium escapes recognition by caspase-11 but can trigger a non-canonical caspase-8 inflammasome. In addition, we highlight the differences in inflammasome activation in murine and human cells with pyrin, NLRP3, and AIM2 involved in sensing Francisella in human phagocytes. From a bacterial prospective, we describe the hiding strategy of Francisella to escape recognition by innate sensors and to resist to bacteriolysis in the host cytosol. Finally, we discuss the inability of the inflammasome sensors to detect F. tularensis subspecies tularensis strains, making them highly pathogenic stealth microbes.
Collapse
|
14
|
Dissection of Francisella-Host Cell Interactions in Dictyostelium discoideum. Appl Environ Microbiol 2015; 82:1586-1598. [PMID: 26712555 DOI: 10.1128/aem.02950-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 12/22/2015] [Indexed: 12/31/2022] Open
Abstract
Francisella bacteria cause severe disease in both vertebrates and invertebrates and include one of the most infectious human pathogens. Mammalian cell lines have mainly been used to study the mechanisms by which Francisella manipulates its host to replicate within a large variety of hosts and cell types, including macrophages. Here, we describe the establishment of a genetically and biochemically tractable infection model: the amoeba Dictyostelium discoideum combined with the fish pathogen Francisella noatunensis subsp. noatunensis. Phagocytosed F. noatunensis subsp. noatunensis interacts with the endosomal pathway and escapes further phagosomal maturation by translocating into the host cell cytosol. F. noatunensis subsp. noatunensis lacking IglC, a known virulence determinant required for Francisella intracellular replication, follows the normal phagosomal maturation and does not grow in Dictyostelium. The attenuation of the F. noatunensis subsp. noatunensis ΔiglC mutant was confirmed in a zebrafish embryo model, where growth of F. noatunensis subsp. noatunensis ΔiglC was restricted. In Dictyostelium, F. noatunensis subsp. noatunensis interacts with the autophagic machinery. The intracellular bacteria colocalize with autophagic markers, and when autophagy is impaired (Dictyostelium Δatg1), F. noatunensis subsp. noatunensis accumulates within Dictyostelium cells. Altogether, the Dictyostelium-F. noatunensis subsp. noatunensis infection model recapitulates the course of infection described in other host systems. The genetic and biochemical tractability of the system allows new approaches to elucidate the dynamic interactions between pathogenic Francisella and its host organism.
Collapse
|
15
|
Brudal E, Lampe EO, Reubsaet L, Roos N, Hegna IK, Thrane IM, Koppang EO, Winther-Larsen HC. Vaccination with outer membrane vesicles from Francisella noatunensis reduces development of francisellosis in a zebrafish model. FISH & SHELLFISH IMMUNOLOGY 2015; 42:50-57. [PMID: 25449706 DOI: 10.1016/j.fsi.2014.10.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/17/2014] [Accepted: 10/17/2014] [Indexed: 06/04/2023]
Abstract
Infection of fish with the facultative intracellular bacterium Francisella noatunensis remains an unresolved problem for aquaculture industry worldwide as it is difficult to vaccinate against without using live attenuated vaccines. Outer membrane vesicles (OMVs) are biological structures shed by Gram-negative bacteria in response to various environmental stimuli. OMVs have successfully been used to vaccinate against both intracellular and extracellular pathogens, due to an ability to stimulate innate, cell-mediated and humoral immune responses. We show by using atomic force and electron microscopy that the fish pathogenic bacterium F. noatunensis subspecies noatunensis (F.n.n.) shed OMVs both in vitro into culture medium and in vivo in a zebrafish infection model. The main protein constituents of the OMV are IglC, PdpD and PdpA, all known Francisella virulence factors, in addition to the outer membrane protein FopA and the chaperonin GroEL, as analyzed by mass spectrometry. The vesicles, when used as a vaccine, reduced proliferation of the bacterium and protected zebrafish when subsequently challenged with a high dose of F.n.n. without causing adverse effects for the host. Also granulomatous responses were reduced in F.n.n.-challenged zebrafish after OMV vaccination. Taken together, the data support the possible use of OMVs as vaccines against francisellosis in fish.
Collapse
Affiliation(s)
- Espen Brudal
- Section for Microbiology, Immunology and Parasitology, Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, PO Box 8146 Dep, 0033 Oslo, Norway; Laboratory for Microbial Dynamics (LaMDa), School of Pharmacy, University of Oslo, PO Box 1068 Blindern, 0316 Oslo, Norway
| | - Elisabeth O Lampe
- Laboratory for Microbial Dynamics (LaMDa), School of Pharmacy, University of Oslo, PO Box 1068 Blindern, 0316 Oslo, Norway; Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, PO Box 1068 Blindern, 0316 Oslo, Norway
| | - Léon Reubsaet
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, PO Box 1068 Blindern, 0316 Oslo, Norway
| | - Norbert Roos
- Department of Biosciences, University of Oslo, PO Box 1068 Blindern, 0316 Oslo, Norway
| | - Ida K Hegna
- Laboratory for Microbial Dynamics (LaMDa), School of Pharmacy, University of Oslo, PO Box 1068 Blindern, 0316 Oslo, Norway; Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, PO Box 1068 Blindern, 0316 Oslo, Norway
| | - Ida Marie Thrane
- Laboratory for Microbial Dynamics (LaMDa), School of Pharmacy, University of Oslo, PO Box 1068 Blindern, 0316 Oslo, Norway; Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, PO Box 1068 Blindern, 0316 Oslo, Norway
| | - Erling O Koppang
- Section for Anatomy and Pathology, Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences, PO Box 8146 Dep, 0033 Oslo, Norway
| | - Hanne C Winther-Larsen
- Laboratory for Microbial Dynamics (LaMDa), School of Pharmacy, University of Oslo, PO Box 1068 Blindern, 0316 Oslo, Norway; Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, PO Box 1068 Blindern, 0316 Oslo, Norway.
| |
Collapse
|
16
|
Establishment of three Francisella infections in zebrafish embryos at different temperatures. Infect Immun 2014; 82:2180-94. [PMID: 24614659 DOI: 10.1128/iai.00077-14] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Francisella spp. are facultative intracellular pathogens identified in increasingly diverse hosts, including mammals. F. noatunensis subsp. orientalis and F. noatunensis subsp. noatunensis infect fish inhabiting warm and cold waters, respectively, while F. tularensis subsp. novicida is highly infectious for mice and has been widely used as a model for the human pathogen F. tularensis. Here, we established zebrafish embryo infection models of fluorescently labeled F. noatunensis subsp. noatunensis, F. noatunensis subsp. orientalis, and F. tularensis subsp. novicida at 22, 28, and 32°C, respectively. All infections led to significant bacterial growth, as shown by reverse transcription-quantitative PCR (RT-qPCR), and to a robust proinflammatory immune response, dominated by increased transcription of tumor necrosis factor alpha (TNF-α) and interleukin-1β (IL-1β). F. noatunensis subsp. orientalis was the most virulent, F. noatunensis subsp. noatunensis caused chronic infection, and F. tularensis subsp. novicida showed moderate virulence and led to formation of relatively small granuloma-like structures. The use of transgenic zebrafish strains with enhanced green fluorescent protein (EGFP)-labeled immune cells revealed their detailed interactions with Francisella species. All three strains entered preferentially into macrophages, which eventually assembled into granuloma-like structures. Entry into neutrophils was also observed, though the efficiency of this event depended on the route of infection. The results demonstrate the usefulness of the zebrafish embryo model for studying infections caused by different Francisella species at a wide range of temperatures and highlight their interactions with immune cells.
Collapse
|
17
|
Kaldestad M, Haugland GT, Rønneseth A, Wergeland HI, Samuelsen OB. Antibiotic uptake by cultured Atlantic cod leucocytes and effect on intracellular Francisella noatunensis subsp. noatunensis replication. DISEASES OF AQUATIC ORGANISMS 2014; 108:11-21. [PMID: 24492050 DOI: 10.3354/dao02696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The granuloma disease caused by Francisella noatunensis subsp. noatunensis in farmed Atlantic cod has not been successfully treated by use of antibacterials, even when antibacterial resistance testing indicates a sufficient effect. The reason for this treatment failure may be the intracellular existence of the bacteria within immune cells, mainly macrophages. To investigate the effect of antibacterials on intracellular Francisella replication, we established a protocol for the detection of drugs within Atlantic cod immune cells using high-performance liquid chromatography (HPLC). When the uptake and intracellular concentrations of oxolinic acid and flumequine were analysed in isolated adherent head kidney leucocytes (HKLs) by HPLC, we found that uptake was rapid and the intracellular concentrations reflected the extracellular exposure concentrations. To investigate the effect of the antibacterial compounds on intracellular bacterial replication, adherent HKLs experimentally infected with the bacteria were analysed using flow cytometry and intracellular labelling of bacteria by specific antibodies. We found that flumequine did not inhibit intracellular bacterial replication. Unexpectedly, the results indicated that the intracellularly effiacy of the drug was reduced. The HPLC method used proved to be highly applicable for accurate determination of intracellular drug concentrations. When combined with sensitive and specific flow cytometry analyses for identification and measurement of intracellular bacterial replication, we suggest that this approach can be very valuable for the design of antibacterial treatments of intracellular pathogens.
Collapse
Affiliation(s)
- Marte Kaldestad
- Department of Biology, University of Bergen, Bergen High-Technology Centre, PO Box 7803, 5020 Bergen, Norway
| | | | | | | | | |
Collapse
|
18
|
Vestvik N, Rønneseth A, Kalgraff CAK, Winther-Larsen HC, Wergeland HI, Haugland GT. Francisella noatunensis subsp. noatunensis replicates within Atlantic cod (Gadus morhua L.) leucocytes and inhibits respiratory burst activity. FISH & SHELLFISH IMMUNOLOGY 2013; 35:725-733. [PMID: 23765119 DOI: 10.1016/j.fsi.2013.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 05/31/2013] [Accepted: 06/02/2013] [Indexed: 06/02/2023]
Abstract
Francisella noatunensis subsp. noatunensis, causing granulomatosis in cod, has been shown to reside within cod immune cells, mainly within monocytes and macrophages. In the present study, we analysed the ability of the bacterium to replicate within adherent cells isolated from head kidney by in vitro infection of leucocytes. Two different technical approaches for flow cytometry analyses were performed for detection of intracellular bacteria. The presence of the wild type was assessed after identification by intracellular binding of specific antibodies to the pathogen. The other way was to use green fluorescent protein (GFP) transformed bacterium for infection studies allowing direct measurements of fluorescence from infected cells. By both methods we found an increase in fluorescence in infected cells, verifying bacterial replication, both after 4 and 28 h post infection in leucocytes isolated from head kidney (HKL). The GFP transformed bacterium was similar to the wild type in growth and infectivity pattern, showing that it can be a valuable tool for further studies of infection routes and pathology. Further, F. noatunensis subsp. noatunensis was found to inhibit respiratory burst activity, a potent pathogen killing mechanism, in cod leucocytes, but not in such cells from salmon. Our findings may indicate that inhibition of respiratory burst during Francisella infection is a key to its intracellular existence. This strategy seems to be conserved through evolution as it is also observed during infections in higher vertebrates caused by bacteria within the Francisella genus. The results presented here, showing the intracellular existence of Francisella, its replication within leucocytes and the inhibitory effect on respiratory burst, strongly support that these factors contribute to disease and pathology in infected cod. The intracellular replication shown in the present study might contribute to explain the problems of obtaining protective vaccines against Francisella and effective antibiotic treatment of infected fish.
Collapse
Affiliation(s)
- Nils Vestvik
- Department of Biology, University of Bergen, Bergen High-Technology Centre, PO Box 7803, NO-5020 Bergen, Norway
| | | | | | | | | | | |
Collapse
|
19
|
Rajan B, Kiron V, Fernandes JMO, Brinchmann MF. Localization and functional properties of two galectin-1 proteins in Atlantic cod (Gadus morhua) mucosal tissues. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 40:83-93. [PMID: 23416931 DOI: 10.1016/j.dci.2013.02.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Revised: 01/31/2013] [Accepted: 02/01/2013] [Indexed: 06/01/2023]
Abstract
Galectin-1 is a β-galactoside binding lectin with multiple immune functions in higher vertebrates. We report the characterization of two galectin-1 proteins from Atlantic cod, with emphasis on mucosal tissues. Tissue distribution of these two ≈14kDa galectin-1 proteins (Codgal1-1 and Codgal1-2) was ascertained by western blotting of one dimensional (1D) and two dimensional (2DE) gels. The two galectin-1 proteins were differentially localized in the mucosal tissues of cod. Codgal1-1 was predominantly localized in the basal cells of skin and this protein was present in all the early developmental stages examined, indicating a likely involvement in developmental processes. The two lectins were also localized in the adherent macrophage-like cells (MLC) from cod head kidney and results gathered indicate their possible secretion during Francisella noatunensis infection, suggesting that they are active components of immune defence. Lactose affinity chromatography coupled with gel filtration co-purified the two cod galectin-1 proteins, which hemagglutinated horse red blood cells in a lactose inhibitable manner. They also could bind and agglutinate both Gram-positive and Gram-negative bacteria. This study suggests multiple functional roles for galectin-1, especially in development and innate immune response of Atlantic cod.
Collapse
Affiliation(s)
- Binoy Rajan
- Faculty of Biosciences and Aquaculture, University of Nordland, 8049 Bodø, Norway
| | | | | | | |
Collapse
|
20
|
Brudal E, Winther-Larsen HC, Colquhoun DJ, Duodu S. Evaluation of reference genes for reverse transcription quantitative PCR analyses of fish-pathogenic Francisella strains exposed to different growth conditions. BMC Res Notes 2013; 6:76. [PMID: 23452832 PMCID: PMC3599356 DOI: 10.1186/1756-0500-6-76] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 02/27/2013] [Indexed: 12/20/2022] Open
Abstract
Background Reverse transcription quantitative PCR has become a powerful technique to monitor mRNA transcription in response to different environmental conditions in many bacterial species. However, correct evaluation of data requires accurate and reliable use of reference genes whose transcription does not change during the course of the experiment. In the present study exposure to different growth conditions was used to validate the transcription stability of eight reference gene candidates in three strains from two subspecies of Francisella noatunensis, a pathogen causing disease in both warm and cold water fish species. Results Relative transcription levels for genes encoding DNA gyrase (gyrA), RNA polymerase beta subunit (rpoB), DNA polymerase I (polA), cell division protein (ftsZ), outer membrane protein (fopA), riboflavin biosynthesis protein (ribC), 16S ribosomal RNA (16S rRNA) and DNA helicases (uvrD) were quantified under exponential, stationary and iron-restricted growth conditions. The suitability of selected reference genes for reliable interpretation of gene expression data was tested using the virulence-associated intracellular growth locus subunit C (iglC) gene. Conclusion Although the transcription stability of the reference genes was slightly different in the three strains studied, fopA, ftsZ and polA proved to be the most stable and suitable for normalization of gene transcription in Francisella noatunensis ssp.
Collapse
Affiliation(s)
- Espen Brudal
- Section for Microbiology, Immunology and Parasitology, Department of Food Safety and Infection Biology, Norwegian School of Veterinary Science, PO Box 8146 Dep, Oslo 0033, Norway
| | | | | | | |
Collapse
|
21
|
Bakkemo KR, Mikkelsen H, Bordevik M, Torgersen J, Winther-Larsen HC, Vanberg C, Olsen R, Johansen LH, Seppola M. Intracellular localisation and innate immune responses following Francisella noatunensis infection of Atlantic cod (Gadus morhua) macrophages. FISH & SHELLFISH IMMUNOLOGY 2011; 31:993-1004. [PMID: 21896333 DOI: 10.1016/j.fsi.2011.08.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 08/19/2011] [Accepted: 08/20/2011] [Indexed: 05/31/2023]
Abstract
The facultative intracellular bacterium Francisella noatunensis causes francisellosis in Atlantic cod (Gadus morhua), but little is known about its survival strategies or how these bacteria evade the host immune response. In this study we show intracellular localisation of F. noatunensis in cod macrophages using indirect immunofluorescence techniques and green fluorescent labelled bacteria. Transmission electron microscopy revealed that F. noatunensis was enclosed by a phagosomal membrane during the initial phase of infection. Bacteria were at a later stage of the infection found in large electron-lucent zones, apparently surrounded by a partially intact or disintegrated membrane. Immune electron microscopy demonstrated the release of bacterial derived vesicles from intracellular F. noatunensis, an event suspected of promoting phagosomal membrane degradation and allowing escape of the bacteria to cytoplasm. Studies of macrophages infected with F. noatunensis demonstrated a weak activation of the inflammatory response genes as measured by increased expression of the Interleukin (IL)-1β and IL-8. In comparison, a stronger induction of gene expression was found for the anti-inflammatory IL-10 indicating that the bacterium exhibits a role in down-regulating the inflammatory response. Expression of the p40 subunit of IL-12/IL-17 genes was highly induced during infection suggesting that F. noatunensis promotes T cell polarisation. The host macrophage responses studied here showed low ability to distinguish between live and inactivated bacteria, although other types of responses could be of importance for such discriminations. The immunoreactivity of F. noatunensis lipopolysaccharide (LPS) was very modest, in contrast to the strong capacity of Escherichia coli LPS to induce inflammatory responsive genes. These results suggest that F. noatunensis virulence mechanisms cover many strategies for intracellular survival in cod macrophages.
Collapse
|
22
|
Gjessing MC, Inami M, Weli SC, Ellingsen T, Falk K, Koppang EO, Kvellestad A. Presence and interaction of inflammatory cells in the spleen of Atlantic cod, Gadus morhua L., infected with Francisella noatunensis. JOURNAL OF FISH DISEASES 2011; 34:687-699. [PMID: 21838712 DOI: 10.1111/j.1365-2761.2011.01284.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Serious infectious diseases, accompanied by macrophage-dominated chronic inflammation, are common in farmed Atlantic cod. To increase knowledge relating to morphological aspects of such inflammatory responses, cod were challenged with Francisella noatunensis, an important bacterial pathogen of this fish species. Tissue and cell dynamics in the spleen were examined sequentially over 60 days. Small clusters of mainly macrophage-like cells (MLCs) staining for non-specific esterase and acid phosphatase developed with time. These foci were transiently infiltrated by pleomorphic proliferating cells of unknown nature and by granulocyte-like cells (GCLCs) staining for peroxidase and lysozyme. The latter cell type, which appeared to be resident in the red pulp of control fish, migrated into the inflammatory foci of infected fish. Cells expressing genes encoding IFN-γ and IL-8 increased in number during the study period. Bacteria were detected only in the MLCs and their number increased despite the extensive inflammation. Our results demonstrate an intimate spatial relationship in inflammatory foci between at least three cell types. The presence of GCLCs, together with MLCs, suggests pyogranulomatous inflammation as a more appropriate descriptive term than granulomatous inflammation.
Collapse
|
23
|
Kalgraff CAK, Wergeland HI, Pettersen EF. Flow cytometry assays of respiratory burst in Atlantic salmon (Salmo salar L.) and in Atlantic cod (Gadus morhua L.) leucocytes. FISH & SHELLFISH IMMUNOLOGY 2011; 31:381-388. [PMID: 21672631 DOI: 10.1016/j.fsi.2011.05.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 05/23/2011] [Accepted: 05/29/2011] [Indexed: 05/30/2023]
Abstract
The oxidation of dihydrorhodamine 123 (DHR) to the fluorescent rhodamine 123 (RHO) was detected using flow cytometry. This assay for detection of respiratory burst activity was established in peripheral blood leucocytes (PBL) and head kidney leucocytes (HKL) of Atlantic salmon and Atlantic cod. The leucocytes were stimulated by phorbol 12-myristate 13-acetate (PMA). For cod cells 10 times lower concentration of PMA had to be used compared to salmon cells, as higher concentrations were toxic and resulted in considerable cell death. The cells found to be RHO-positive were monocytes/macrophages and neutrophils based on the scatter dot plots, but for salmon also some small cells were found to have high fluorescence intensity both in the flow cytometry analyses and by fluorescence microscopy of cytospin preparations. The nature of these cells is not known. For cod leucocytes, such cells were not obvious. The instrument settings are a bit more demanding for cod, as cod cells die more easily compared to salmon cells. In both assays the limit between negative and positive cells has to be carefully considered. The presented flow cytometry protocols for measurements of respiratory burst in salmon and cod leucocytes can be applied in various studies where respiratory burst functions are involved, such as to verify if it is activated or suppressed in connection with infections and immunostimulation.
Collapse
Affiliation(s)
- Cathrine A K Kalgraff
- Department of Biology, University of Bergen, Bergen High-Technology Center, Bergen, Norway
| | | | | |
Collapse
|
24
|
Ellingsen T, Inami M, Gjessing MC, Van Nieuwenhove K, Larsen R, Seppola M, Lund V, Schrøder MB. Francisella noatunensis in Atlantic cod (Gadus morhua L.); waterborne transmission and immune responses. FISH & SHELLFISH IMMUNOLOGY 2011; 31:326-333. [PMID: 21645622 DOI: 10.1016/j.fsi.2011.05.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 05/20/2011] [Accepted: 05/22/2011] [Indexed: 05/30/2023]
Abstract
This is the first report that confirms waterborne transmission of francisellosis in Atlantic cod. To investigate the transmission of disease, particle reduced water was transferred from a tank with intraperitoneally infected cod to a tank with healthy cod. Waterborne transmission of Francisella noatunensis was confirmed in the effluent group using immunohistochemistry and real-time quantitative PCR (RT-qPCR). The bacteria were located inside the accumulated macrophage-like cells. Specific and high antibody responses against live and inactivated bacteria were observed. Oil adjuvant had no effect on the antibody responses against inactivated F. noatunensis compared to saline formulation. The antigen epitope was a 20-25 kDa component of F. noatunensis suggested to be lipopolysaccharide detected by Western blot, Sypro Ruby and Silver staining. Systemic immune reactions were investigated by measuring the expression of IFN-γ, IL-1β and IL-10 genes with RT-qPCR. After i.p. injection of live bacteria, a significant up-regulation of IFN-γ and IL-1β expression was observed from 15 to 60 days post infection in spleen and head kidney. In intestine, IFN-γ was significantly up-regulated after 30 days whereas rectum showed no significant differences in expression. Elevated expression of IL-10 was observed in all the organs tested but was only significantly up-regulated at 60 days post infection in intestine from i.p. infected fish. For the cohabitant group, IL-1β and IFN-γ was up-regulated in spleen whereas intestine and rectum showed a down-regulation after 60 days. IL-10 was up-regulated in intestine of cohabitant fish from day 30 to day 60. These results indicate that F. noatunensis infection provokes both specific antibody responses and long term inflammatory responses in cod. The present study provides new knowledge about infection routes and shows that both humoral and cellular defence mechanisms are triggered by F. noatunensis in cod.
Collapse
Affiliation(s)
- Terje Ellingsen
- Faculty of Bioscience, Fishery and Economics, University of Tromsø, 9037 Tromsø, Norway
| | | | | | | | | | | | | | | |
Collapse
|