1
|
Longo V, Parrinello D, Longo A, Parisi MG, Parrinello N, Colombo P, Cammarata M. The conservation and diversity of ascidian cells and molecules involved in the inflammatory reaction: The Ciona robusta model. FISH & SHELLFISH IMMUNOLOGY 2021; 119:384-396. [PMID: 34687879 DOI: 10.1016/j.fsi.2021.10.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/27/2021] [Accepted: 10/16/2021] [Indexed: 06/13/2023]
Abstract
Ascidians are marine invertebrate chordates belonging to the earliest branch (Tunicata) in the chordate phylum, therefore, they are of interest for studying the evolution of immune systems. Due to the known genome, the non-colonial Ciona robusta, previously considered to be C. intestinalis type A, is a model species for the study of inflammatory response. The internal defense of ascidians mainly relies on hemocytes circulating in the hemolymph and pharynx. Hemocytes can be in vivo challenged by LPS injection and various granulocyte and vacuolated cell populations differentiated to produce and release inflammatory factors. Molecular biology and gene expression studies revealed complex defense mechanisms involving different inflammatory hemocytes. Furthermore, cloning procedures allowed sequence analyses and molecular studies disclose immune-related gene families including TOLL-like receptors, galectins, C-type lectins, collectins, interlectins, pentraxine-like, peroxinectins, complement factors-like, TNFα-like, IL-17-like, TGF-like, MIF-like. These genes are promptly upregulated by the inflammatory stimulus and show a time course of transcription similar to each other. Domains sequence similarity and phylogenetic relationships with the vertebrate counterparts are shedding some light on immune-related gene evolution. Selective bioassays as well as bioinformatic approaches have allowed the characterization of antimicrobial peptides and the identification of post transcriptional molecular mechanisms able of influencing dynamics of gene regulation are described. In synthesis, the purpose of this article is to further explore the topic of hemocyte and molecules related to internal defence of ascidians involved in the inflammatory reaction, as well as to discuss current and future study options through a detailed literature review.
Collapse
Affiliation(s)
- Valeria Longo
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy
| | | | - Alessandra Longo
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy
| | | | - Nicolò Parrinello
- Department of Earth and Marine Science, University of Palermo, Italy
| | - Paolo Colombo
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy.
| | - Matteo Cammarata
- Department of Earth and Marine Science, University of Palermo, Italy
| |
Collapse
|
2
|
Parrinello D, Parisi M, Parrinello N, Cammarata M. Ciona robusta hemocyte populational dynamics and PO-dependent cytotoxic activity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 103:103519. [PMID: 31610182 DOI: 10.1016/j.dci.2019.103519] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 10/10/2019] [Accepted: 10/10/2019] [Indexed: 06/10/2023]
Abstract
Hemocyte populations from the ascidian Ciona robusta, separated through a Percoll discontinuous density gradient, are further characterized by May-Grünwald-Giemsa staining and a cytochemical reaction for phenoloxidase. Variability in cell density, acidophilic property and phenoloxidase activity suggest multiple hemocyte type populations, cell lineages and morphotypes that may be involved in distinct cellular responses. Therefore, unilocular refractile granulocytes, typical of this ascidian species, enriched in a fraction separated from the hemolymph show in vitro phenoloxidase-dependent cytotoxic activity against mammalian erythrocytes and a tumor cell lineage, in addition the properties listed above indicate relationships with vacuolated signet ring cells. Finally, bromo-deoxyuridine with, diamino-phenylindole fluorescent reaction and May-Grünwald-Giemsa staining show that in the hemolymph there are hyaline amoebocytes and granulocytes with potential proliferating activity. Present findings and reviewed images of previously reported inflammatory hemocytes in the tunic and pharynx allow us to speculate on theoretical outlines of hemocyte differentiation pathways.
Collapse
Affiliation(s)
- Daniela Parrinello
- Department of Heart and Marine Science DISTEM, Marine Immunobiology Laboratory, University of Palermo, Viale delle Scienze Ed. 16, Palermo, Italy
| | - Mariagiovanna Parisi
- Department of Heart and Marine Science DISTEM, Marine Immunobiology Laboratory, University of Palermo, Viale delle Scienze Ed. 16, Palermo, Italy
| | - Nicolò Parrinello
- Department of Heart and Marine Science DISTEM, Marine Immunobiology Laboratory, University of Palermo, Viale delle Scienze Ed. 16, Palermo, Italy
| | - Matteo Cammarata
- Department of Heart and Marine Science DISTEM, Marine Immunobiology Laboratory, University of Palermo, Viale delle Scienze Ed. 16, Palermo, Italy.
| |
Collapse
|
3
|
Vazzana M, Celi M, Chiaramonte M, Inguglia L, Russo D, Ferrantelli V, Battaglia D, Arizza V. Cytotoxic activity of Holothuria tubulosa (Echinodermata) coelomocytes. FISH & SHELLFISH IMMUNOLOGY 2018; 72:334-341. [PMID: 29138098 DOI: 10.1016/j.fsi.2017.11.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 11/06/2017] [Accepted: 11/10/2017] [Indexed: 06/07/2023]
Abstract
The immune system of marine invertebrates, in particular that of holothurians, still requires further study. Our research showed that coelomocyte cells contained in the coelomic fluid of the sea cucumber, Holothuria tubulosa, are able to lyse, in vitro, red blood cells in rabbits and sheep. A plaque-forming assay showed spherule cells to be the effector cells, able to release cytotoxic molecules after xenogenic cell contact. The coelomocyte lysate supernatant, analysed by polyacrylamide gel electrophoresis overlay technique, using rabbit and sheep erythrocytes, showed two different haemolytic protein patterns: one calcium dependent and the other calcium independent. The fractions of each pattern were resolved on a polyacrylamide gel and calcium-dependent and independent coelomocyte lysate patterns were compared.
Collapse
Affiliation(s)
- Mirella Vazzana
- Dept. STEBICEF, Università degli Studi di Palermo, Via Archirafi, 18, 90123, Palermo, Italy
| | - Monica Celi
- Dept. STEBICEF, Università degli Studi di Palermo, Via Archirafi, 18, 90123, Palermo, Italy
| | - Marco Chiaramonte
- Dept. STEBICEF, Università degli Studi di Palermo, Via Archirafi, 18, 90123, Palermo, Italy
| | - Luigi Inguglia
- Dept. STEBICEF, Università degli Studi di Palermo, Via Archirafi, 18, 90123, Palermo, Italy
| | - Debora Russo
- Dept. STEBICEF, Università degli Studi di Palermo, Via Archirafi, 18, 90123, Palermo, Italy
| | - Vincenzo Ferrantelli
- Istituto Zooprofilattico Sperimentale della Sicilia, via G. Marinuzzi, 3, 90129, Palermo, Italy
| | - Dominique Battaglia
- Dept. STEBICEF, Università degli Studi di Palermo, Via Archirafi, 18, 90123, Palermo, Italy
| | - Vincenzo Arizza
- Dept. STEBICEF, Università degli Studi di Palermo, Via Archirafi, 18, 90123, Palermo, Italy.
| |
Collapse
|
4
|
Franchi N, Ballarin L. Immunity in Protochordates: The Tunicate Perspective. Front Immunol 2017; 8:674. [PMID: 28649250 PMCID: PMC5465252 DOI: 10.3389/fimmu.2017.00674] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 05/24/2017] [Indexed: 11/13/2022] Open
Abstract
Tunicates are the closest relatives of vertebrates, and their peculiar phylogenetic position explains the increasing interest toward tunicate immunobiology. They are filter-feeding organisms, and this greatly influences their defense strategies. The majority of the studies on tunicate immunity were carried out in ascidians. The tunic acts as a first barrier against pathogens and parasites. In addition, the oral siphon and the pharynx represent two major, highly vascularized, immune organs, where circulating hemocytes can sense non-self material and trigger immune responses that, usually, lead to inflammation and phagocytosis. Inflammation involves the recruitment of circulating cytotoxic, phenoloxidase (PO)-containing cells in the infected area, where they degranulate as a consequence of non-self recognition and release cytokines, complement factors, and the enzyme PO. The latter, acting on polyphenol substrata, produces cytotoxic quinones, which polymerize to melanin, and reactive oxygen species, which induce oxidative stress. Both the alternative and the lectin pathways of complement activation converge to activate C3: C3a and C3b are involved in the recruitment of hemocytes and in the opsonization of foreign materials, respectively. The interaction of circulating professional phagocytes with potentially pathogenic foreign material can be direct or mediated by opsonins, either complement dependent or complement independent. Together with cytotoxic cells, phagocytes are active in the encapsulation of large materials. Cells involved in immune responses, collectively called immunocytes, represent a large fraction of hemocytes, and the presence of a cross talk between cytotoxic cells and phagocytes, mediated by secreted humoral factors, was reported. Lectins play a pivotal role as pattern-recognition receptors and opsonizing agents. In addition, variable region-containing chitin-binding proteins, identified in the solitary ascidian Ciona intestinalis, control the settlement and colonization of bacteria in the gut.
Collapse
Affiliation(s)
- Nicola Franchi
- Department of Biology, University of Padova, Padova, Italy
| | | |
Collapse
|
5
|
Mácsik LL, Somogyi I, Opper B, Bovári-Biri J, Pollák E, Molnár L, Németh P, Engelmann P. Induction of apoptosis-like cell death by coelomocyte extracts from Eisenia andrei earthworms. Mol Immunol 2015; 67:213-22. [DOI: 10.1016/j.molimm.2015.05.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 05/15/2015] [Accepted: 05/16/2015] [Indexed: 12/24/2022]
|
6
|
Vizzini A, Parrinello D, Sanfratello MA, Trapani MR, Mangano V, Parrinello N, Cammarata M. Upregulated transcription of phenoloxidase genes in the pharynx and endostyle of Ciona intestinalis in response to LPS. J Invertebr Pathol 2015; 126:6-11. [DOI: 10.1016/j.jip.2015.01.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 01/02/2015] [Accepted: 01/26/2015] [Indexed: 01/17/2023]
|
7
|
Paracentrin 1, a synthetic antimicrobial peptide from the sea-urchin Paracentrotus lividus, interferes with staphylococcal and Pseudomonas aeruginosa biofilm formation. AMB Express 2014; 4:78. [PMID: 25401078 PMCID: PMC4230904 DOI: 10.1186/s13568-014-0078-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 10/05/2014] [Indexed: 12/31/2022] Open
Abstract
The rise of antibiotic-resistance as well as the reduction of investments by pharmaceutical companies in the development of new antibiotics have stimulated the investigation for alternative strategies to conventional antibiotics. Many antimicrobial peptides show a high specificity for prokaryotes and a low toxicity for eukaryotic cells and, due to their mode of action the development of resistance is considered unlikely. We recently characterized an antimicrobial peptide that was called Paracentrin 1 from the 5-kDa peptide fraction from the coelomocyte cytosol of the Paracentrotus lividus. In this study, the chemically synthesized Paracentrin 1, was tested for its antimicrobial and antibiofilm properties against reference strains of Gram positive and Gram negative. The Paracentrin 1 was active against planktonic form of staphylococcal strains (reference and isolates) and Pseudomonas aeruginosa ATCC 15442 at concentrations ranging from 12.5 to 6.2 mg/ml. The Paracentrin 1 was able to inhibit biofilm formation of staphylococcal and Pseudomonas aeruginosa strains at concentrations ranging from 3.1 to 0.75 mg/ml. We consider the tested peptide as a good starting molecule for novel synthetic derivatives with improved pharmaceutical potential.
Collapse
|
8
|
Dishaw LJ, Flores-Torres JA, Mueller MG, Karrer CR, Skapura DP, Melillo D, Zucchetti I, De Santis R, Pinto MR, Litman GW. A Basal chordate model for studies of gut microbial immune interactions. Front Immunol 2012; 3:96. [PMID: 22563328 PMCID: PMC3342567 DOI: 10.3389/fimmu.2012.00096] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 04/12/2012] [Indexed: 12/23/2022] Open
Abstract
Complex symbiotic interactions at the surface of host epithelia govern most encounters between host and microbe. The epithelium of the gut is a physiologically ancient structure that is comprised of a single layer of cells and is thought to possess fully developed immunological capabilities. Ciona intestinalis (sea squirt), which is a descendant of the last common ancestor of all vertebrates, is a potentially valuable model for studying barrier defenses and gut microbial immune interactions. A variety of innate immunological phenomena have been well characterized in Ciona, of which many are active in the gut tissues. Interactions with gut microbiota likely involve surface epithelium, secreted immune molecules including variable region-containing chitin-binding proteins, and hemocytes from a densely populated laminar tissue space. The microbial composition of representative gut luminal contents has been characterized by molecular screening and a potentially relevant, reproducible, dysbiosis can be induced via starvation. The dialog between host and microbe in the gut can be investigated in Ciona against the background of a competent innate immune system and in the absence of the integral elements and processes that are characteristic of vertebrate adaptive immunity.
Collapse
Affiliation(s)
- Larry J Dishaw
- Department of Pediatrics, USF/ACH Children's Research Institute, University of South Florida College of Medicine St. Petersburg, FL, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Cooper EL, Yao D. Diving for drugs: tunicate anticancer compounds. Drug Discov Today 2012; 17:636-48. [PMID: 22406646 DOI: 10.1016/j.drudis.2012.02.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 12/21/2011] [Accepted: 02/09/2012] [Indexed: 01/11/2023]
Abstract
The marine biosphere boasts tremendous biodiversity replete with structurally unique, active and selective secondary metabolites. Bioprospecting for antitumor compounds has been rewarding, and tunicates have been especially successful in yielding prospective cancer therapies. These compounds are now subjected to clinical trials in Europe and the USA. With the ongoing search for potent and specific anticancer drugs, in this article we discuss the unique perspectives, compounds and opportunities afforded by this rich source of potential pharmaceuticals. We discuss marine-derived antitumor drugs, their structures, and their various types and levels of antitumor activities in bench and bedside efforts.
Collapse
Affiliation(s)
- Edwin L Cooper
- David Geffen School of Medicine at UCLA, University of California, Los Angeles, 90095-1763, USA.
| | | |
Collapse
|