1
|
Lai Z, Zhao W, Lu Y, Wu L, Yang C, Wang Q. Characterization of transcription factor activator pretein-1 (AP-1) and its association with cold tolerance in Pinctada fucata martensii. FISH & SHELLFISH IMMUNOLOGY 2022; 124:572-578. [PMID: 35483598 DOI: 10.1016/j.fsi.2022.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
AP-1 is an important transcription factor for cell proliferation/differentiation and animal immunity/development; however, its role in research in shellfish is poorly understood. Here, the cDNA of AP-1 gene from Pinctada fucata martensii was characterized. Its expression was detected in all six examined tissues, and a high level was observed in the gill and hepatopancreas. Analysis of the developmental transcriptomes showed that the PmAP-1 gene expression levels were high during D-stage larval and spat stages. The gene also exhibited a significantly high expression under cold tolerance stress. SNP analysis of the exon region and 5' flanking region of PmAP-1 revealed 19 SNPs of which 8 showed significant differences between cold tolerance selection line and base stock. Furthermore, three haplotypes generated by the SNPs of PmAP-1 were significantly associated with cold tolerance, respectively.These results suggest that the PmAP-1 gene plays an important role in the response of P. f. martensii to low temperature stress. These SNPs and haplotypes of PmAP-1 may be related to the cold tolerance of P. f. martensii, and could be candidate markers potentially for further selective breeding.
Collapse
Affiliation(s)
- Zhuoxin Lai
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Wei Zhao
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Yingying Lu
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Lingjun Wu
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Chuangye Yang
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang, 524088, China; Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524088, China
| | - Qingheng Wang
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang, 524088, China; Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524088, China.
| |
Collapse
|
2
|
Sun G, Dong Y, Sun C, Yao H, Lin Z. Vital Role of Glutamate Dehydrogenase Gene in Ammonia Detoxification and the Association Between its SNPs and Ammonia Tolerance in Sinonovacula constricta. Front Physiol 2021; 12:664804. [PMID: 34025453 PMCID: PMC8131826 DOI: 10.3389/fphys.2021.664804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 03/22/2021] [Indexed: 11/17/2022] Open
Abstract
Increasing evidence has revealed accumulated ammonia will cause adverse effects on the growth, reproduction, and survival of aquatic animals. As a marine benthic mollusk, the razor clam Sinonovacula constricta shows better growth and survival under high ammonia nitrogen environment. However, little is known about its adaptation mechanisms to high ammonia stress in an integrated mariculture system. In this study, we analyzed the association between the polymorphism of glutamate dehydrogenase gene (GDH), a key gene involved in ammonia nitrogen detoxification, and ammonia tolerance. The results showed that 26 and 22 single-nucleotide polymorphisms (SNPs) of GDH in S. constricta (denoted as Sc-GDH) were identified from two geographical populations, respectively. Among them, two SNPs (c.323T > C and c.620C > T) exhibited a significant and strong association with ammonia tolerance, suggesting that Sc-GDH gene could serve as a potential genetic marker for molecular marker–assisted selection to increase survival rate and production of S. constricta. To observe the histological morphology and explore the histocellular localization of Sc-GDH, by paraffin section and hematoxylin–eosin staining, the gills were divided into gill filament (contains columnar and flattened cells) and gill cilia, whereas hepatopancreas was made up of individual hepatocytes. The results of immunohistochemistry indicated that the columnar cells of gill filaments and the endothelial cells of hepatocytes were the major sites for Sc-GDH secretion. Under ammonia stress (180 mg/L), the expression levels of Sc-GDH were extremely significantly downregulated at 24, 48, 72, and 96 h (P < 0.01) after RNA interference. Thus, we can speculate that Sc-GDH gene may play an important role in the defense process against ammonia stress. Overall, these findings laid a foundation for further research on the adaptive mechanisms to ammonia–nitrogen tolerance for S. constricta.
Collapse
Affiliation(s)
- Gaigai Sun
- College of Fisheries, Henan Normal University, Xinxiang, China
| | - Yinghui Dong
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ninghai, China.,Key Laboratory of Aquatic Germplasm Resources of Zhejiang, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Changsen Sun
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ninghai, China
| | - Hanhan Yao
- Key Laboratory of Aquatic Germplasm Resources of Zhejiang, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Zhihua Lin
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ninghai, China.,Key Laboratory of Aquatic Germplasm Resources of Zhejiang, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| |
Collapse
|
3
|
Wei X, Yang D, Li H, Zhao T, Jiang H, Liu X, Yang J. Peptidoglycan recognition protein of Solen grandis (SgPGRP-S1) mediates immune recognition and bacteria clearance. FISH & SHELLFISH IMMUNOLOGY 2018; 73:30-36. [PMID: 29208495 DOI: 10.1016/j.fsi.2017.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 11/25/2017] [Accepted: 12/01/2017] [Indexed: 06/07/2023]
Abstract
Peptidoglycan recognition proteins (PGRPs) are indispensable molecules in innate immunity due to their prominent function in sensing and eliminating invading microorganisms. In the present study, a short type PGRP from razor clam Solen grandis (SgPGRP-S1) was recombinantly expressed and purified to investigate its potential function in innate immunity. As a pattern recognition receptor, recombinant SgPGRP-S1 (rSgPGRP-S1) specifically bind Lys-type and Dap-type peptidoglycan in vitro, but not lipopolysaccharide or β-glucan. The peptidoglycan binding ability of rSgPGRP-S1 resulted in significant agglutination activity against Gram-negative Escherichia coli and Listonella anguillarum, as well as Gram-positive Micrococcus luteus. Furthermore, rSgPGRP-S1 was bactericidal, significantly suppressing the growth of both E. coli and Gram-positive Staphylococcus aureus. The protein also exhibited strong amidase activity and degraded bacterial peptidoglycan in the presence of Zn2+, suggesting amidase activity might contribute to SgPGRP-S1 antibacterial activity. These results indicate SgPGRP-S1 is multifunctional in innate immunity, mediating both immune recognition and bacteria elimination.
Collapse
Affiliation(s)
- Xiumei Wei
- Laboratory of Aquatic Comparative Immunology, School of Life Sciences, East China Normal University, Shanghai 200241, China; Marine Resource and Environment Research Institute, Yantai 264006, China
| | - Dinglong Yang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Huiying Li
- Laboratory of Aquatic Comparative Immunology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Tianyu Zhao
- Laboratory of Aquatic Comparative Immunology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Hailin Jiang
- Marine Resource and Environment Research Institute, Yantai 264006, China
| | - Xiangquan Liu
- Marine Resource and Environment Research Institute, Yantai 264006, China
| | - Jialong Yang
- Laboratory of Aquatic Comparative Immunology, School of Life Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
4
|
Liu J, Zhou N, Fu R, Cao D, Si Y, Li A, Zhao H, Zhang Q, Yu H. The polymorphism of chicken-type lysozyme gene in Japanese flounder (Paralichthys olivaceus) and its association with resistance/susceptibility to Listonella anguillarum. FISH & SHELLFISH IMMUNOLOGY 2017; 66:43-49. [PMID: 28476668 DOI: 10.1016/j.fsi.2017.05.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 04/27/2017] [Accepted: 05/01/2017] [Indexed: 06/07/2023]
Abstract
Lysozyme is a crucially spread hydrolase in organisms that can defend against bacterial infection in innate immunity. In this study, we successfully sequenced the coding region of chicken-type lysozyme gene (PoLysC) in Paralichthys olivaceus and identified nine single nucleotide polymorphisms (SNPs). We then amplified the 2500 bp promoter region of lysozyme and identified the eight sites of polymorphisms. All SNPs were genotyped between susceptible and resistance groups after Listonella anguillarum challenge. One of these SNP sites in the codon of PoLysC was genotyped and determined to be a significant marker by analyzing its distribution in the susceptible and resistant groups. As a nonsynonymous mutation, the frequency of 140G/C genotype in the resistant group was higher (67.74%) than that in the susceptible group (32.26%). The linkage between SNP140 and polymorphisms in the promoter region was also studied. Results revealed that the frequency of haplotype CC-536/CC-1200/GG140 in the resistance group was significantly higher than that in the susceptible group. The quantitative expression of lysozyme gene in the resistant group was also higher than that in the susceptible group. This finding indicated that the linkage between polymorphism -536 and -1200 sites in promoter and SNP140 in codon sequence was associated with the resistance of P. olivaceus to L. anguillarum. All these results suggest that the mutations in promoter and coding region were related to changes in PoLysC for resisting L. anguillarum. The haplotype CC-536/CC-1200/GG140 was a potential marker and can thus be applied to selective breeding for the disease resistance of P. olivaceus.
Collapse
Affiliation(s)
- Jinxiang Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China
| | - Nayu Zhou
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China
| | - Ruixue Fu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China
| | - Dandan Cao
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China
| | - Yu Si
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China
| | - Aoyun Li
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China
| | - Haitao Zhao
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 266237, Qingdao, Shandong, China
| | - Haiyang Yu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 266237, Qingdao, Shandong, China.
| |
Collapse
|
5
|
Siva VS, Wang L, Qiu L, Zhou Z, Liu C, Yang J, Yang C, Song L. Polymorphism in a serine protease inhibitor gene and its association with the resistance of bay scallop (Argopecten irradians) to Listonella anguillarum challenge. FISH & SHELLFISH IMMUNOLOGY 2016; 59:1-8. [PMID: 27697559 DOI: 10.1016/j.fsi.2016.09.056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 09/25/2016] [Accepted: 09/30/2016] [Indexed: 06/06/2023]
Abstract
Serine protease inhibitors (SPIs) play a crucial role in regulation of both host and bacterial serine protease. They are classified into several protein families, where Kazal-type inhibitors are one of families with multi-domain. In the present study, the polymorphism of AiSPI from Bay scallop Argopecten irradians was found to be associated with disease resistance of bay scallop against Listonella anguillarum. Nine single nucleotide polymorphisms (SNPs) were identified in the exon region of AiSPI, where five SNPs were non-synonymous mutation. Three of these mutations were located in "kazal-like 3"domain, two SNP loci positioned at +536, +1312 were selected for further association studies. For the locus +536, the genotype frequency of A/G in the resistant stock (12.8%) was significantly lower (p < 0.05) than that in the susceptible stock (35.1%), while, the genotype A/A in the resistant stock (87.2%) was significantly higher in comparison with susceptible stock (64.9%) (p < 0.05). The G allele frequencies were 6.4% and 17.6% in resistant stock and susceptible stock, respectively, and χ2-test revealed a significant difference in the frequency distribution between the two stocks (p < 0.05). But there was no significant association between the mutation C-T at locus +1312 with either resistant or susceptible group (p > 0.05). The genotype frequencies of T/T, T/C, C/C at locus +1312 were 94.6%, 2.7% and 2.7% respectively in the susceptible stock, while 100%, 0% and 0% respectively in the resistant stock. The amino acid change for the mutation at locus +536 A-G was from asparagine to serine, and the predicted homology model of this amino acid variation could affect its function as well as the structural integrity of the domain. In vitro elastase inhibition assay of the protein variants at locus +536 was conducted to explicate the effect of SNP. The increasing concentration of protein (0 mmol/L- 2.93 mmol/L) was incubated with 80 nmol/L elastase where the residual enzyme activity values for rAiSPI (N) with A variant and rAiSPI (S) with G variant were started to reduce from 0.40 to 0.215 and 0.435 to 0.356, respectively. The elastase inhibition ability of rAiSPI (N) variant was significantly higher than that of rAiSPI (S) (p < 0.01). The results suggested that the mutation at locus +536A/A significantly associated with disease resistance of bay scallop would shed light for selective breeding program.
Collapse
Affiliation(s)
- Vinu S Siva
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Centre for Climate Change Studies, Sathyabama University, Jeppiaar Nagar, Rajiv Gandhi Salai, Solinganallur, Chennai, Tamil Nadu 600 119, India
| | - Lingling Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China
| | - Limei Qiu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhi Zhou
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Chao Liu
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China
| | - Jialong Yang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Chuanyan Yang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China
| | - Linsheng Song
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
6
|
Nie Q, Yue X, Liu B. Identification of the MmeHairy gene and expression analysis affected by two SNPs in the 3'-untranslated region in the clam Meretrix meretrix. FISH & SHELLFISH IMMUNOLOGY 2016; 51:46-52. [PMID: 26873874 DOI: 10.1016/j.fsi.2016.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 02/04/2016] [Accepted: 02/04/2016] [Indexed: 06/05/2023]
Abstract
As a bHLH transcriptional repressor, Hairy-related proteins can bind to DNA sites in target gene promoters and negatively regulate gene transcription. In the present study, the full-length cDNA of Hairy was obtained from the clam Meretrix meretrix (MmeHairy), and two SNPs in the 3'-untranslated region (UTR) of this gene, SNP1066 and 1067, were identified and characterized. Multiple sequence alignment and phylogenetic analysis revealed that MmeHairy belongs to the Hairy protein subfamily. Analysis of tissue expression patterns showed that the mRNA of MmeHairy had the highest expression level in the hepatopancreas. The expression levels of MmeHairy were up-regulated in the hepatopancreas after Vibrio challenge. Genotyping and quantitative analysis showed that the mRNA levels of MmeHairy were significantly different among individual clams with different genotypes at SNP1066 and 1067 (P < 0.05), which indicated that these two SNP loci may affect the expression of MmeHairy and could be used as candidate markers for future selection in M. meretrix breeding programs.
Collapse
Affiliation(s)
- Qing Nie
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Department of Marine Science and Technology, College of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Xin Yue
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao China
| | - Baozhong Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao China.
| |
Collapse
|
7
|
Song L, Wang L, Zhang H, Wang M. The immune system and its modulation mechanism in scallop. FISH & SHELLFISH IMMUNOLOGY 2015; 46:65-78. [PMID: 25797696 DOI: 10.1016/j.fsi.2015.03.013] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 03/07/2015] [Indexed: 06/04/2023]
Abstract
Scallops are a cosmopolitan family of bivalves, and some of them are highly prized as dominant aquaculture species. In the past decades, there have been increasing studies on the basic biology and immunology of scallops, and this review summarizes the research progresses of immune system and its modulation mechanism in scallop. As invertebrate, scallops lack adaptive immunity and they have evolved an array of sophisticated strategies to recognize and eliminate various invaders by employing a set of molecules and cells. It is evident that basic immune reactions such as immune recognition, signal transduction, and effector synthesis involved in immune response are accomplished in a variety of ways. They rely upon an extensive repertoire of phagocytosis, apoptosis and encapsulation of the circulating hemocytes for eliminating invasive pathogens, as well as the production of immune effectors that are active against a large range of pathogens or sensitive for the environmental stress. Furthermore, the molecular constitutions, metabolic pathways and immunomodulation mechanisms of the primitive catecholaminergic, cholinergic, enkephalinergic system and NO system in scallop are also discussed, which can be taken as an entrance to better understand the origin and evolution of the neuroendocrine-immune regulatory network in lower invertebrates.
Collapse
Affiliation(s)
| | - Lingling Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Huan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Mengqiang Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
8
|
Nie Q, Yue X, Liu B. Development of Vibrio spp. infection resistance related SNP markers using multiplex SNaPshot genotyping method in the clam Meretrix meretrix. FISH & SHELLFISH IMMUNOLOGY 2015; 43:469-476. [PMID: 25655323 DOI: 10.1016/j.fsi.2015.01.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 01/22/2015] [Accepted: 01/26/2015] [Indexed: 06/04/2023]
Abstract
The clam Meretrix meretrix is a commercially important mollusc species in the coastal areas of South and Southeast Asia. In the present study, large-scale SNPs were genotyped by the Multiplex SNaPshot genotyping method among the stocks of M. meretrix with different Vibrio spp. infection resistance profile. Firstly, the AUTOSNP software was applied to mine SNPs from M. meretrix transcriptome, and 323 SNP loci (including 120 indels) located on 64 contigs were selected based on Uniprot-GO associations. Then, 38 polymorphic SNP loci located on 15 contigs were genotyped successfully in the clam stocks with different resistance to Vibrio parahaemolyticus infection (11-R and 11-S groups). Pearson's Chi-square test was applied to compare the allele and genotype frequency distributions of the SNPs between the different stocks, and seven SNP markers located on three contigs were found to be associated with V. parahaemolyticus infection resistance trait. Haplotype-association analysis showed that six haplotypes had significantly different frequency distributions in 11-S and 11-R (P < 0.05). With selective genotyping between 09-R and 09-C populations, which had different resistance to Vibrio harveyi infection, four out of the seven selected SNPs had significantly different distributions (P < 0.05) and therefore they were considered to be associated with Vibrio spp. infection resistance. Sequence alignments and annotations indicated that the contigs containing the associated SNPs had high similarity to the immune related genes. All these results would be useful for the future marker-assisted selection of M. meretrix strains with high Vibrio spp. infection resistance.
Collapse
Affiliation(s)
- Qing Nie
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xin Yue
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Baozhong Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
9
|
Shen Y, Zhang J, Xu X, Fu J, Li J. A new haplotype variability in complement C6 is marginally associated with resistance to Aeromonas hydrophila in grass carp. FISH & SHELLFISH IMMUNOLOGY 2013; 34:1360-1365. [PMID: 23422818 DOI: 10.1016/j.fsi.2013.02.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 02/01/2013] [Accepted: 02/06/2013] [Indexed: 06/01/2023]
Abstract
Aeromonas hydrophila, a widespread bacterium in the aquatic environment, causes haemorrhagic septicemia in fish. In the last decade, the disease has caused mass mortality and tremendous economic loss in cultured grass carp in the mainland China. The complement component C6 is a constituent of a biochemical cascade that serves as a major effector of the human innate and adaptor immunity, and eliminates infected cells. The objective of this study was to identify single nucleotide polymorphisms (SNPs) in the C6 gene and to assess their association with A. hydrophila resistance in grass carp. A resource population consisting of 186 susceptible and 191 resistant grass carp was constructed. The gcC6 genomic sequence is composed of 9292 bp, containing 18 exons and 17 introns. The promoter sequence of gcC6 gene contained several consensus sequences for hepatic-specific transcription factors. We sequenced a total of 9744 bp of the C6 gene from a diverse population of grass carp and identified 8 SNPs that were genotyped in the resource population. Statistical analysis revealed a lack of association between any individual SNPs and resistance to A. hydrophila in grass carp. The SNPs 1214G>A, 1380G>C, 2095A>C and 2167T>C were linked together (r(2) > 0.8). The haplotype GCCC generated with these four SNPs was associated marginally with resistance to A. hydrophila in grass carp. These findings suggest a lack of strong association of the C6 polymorphisms with the A. hydrophila resistance in grass carp.
Collapse
Affiliation(s)
- Yubang Shen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai 201306, China
| | | | | | | | | |
Collapse
|