1
|
Mohsen M, Ismail S, Yuan X, Yu Z, Lin C, Yang H. Sea cucumber physiological response to abiotic stress: Emergent contaminants and climate change. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172208. [PMID: 38583632 DOI: 10.1016/j.scitotenv.2024.172208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/05/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
The ocean is facing a multitude of abiotic stresses due to factors such as climate change and pollution. Understanding how organisms in the ocean respond to these global changes is vital to better predicting consequences. Sea cucumbers are popular echinoderms with multiple ecological, nutritional, and pharmaceutical benefits. Here, we reviewed the effects of environmental change on an ecologically important echinoderm of the ocean, aiming to understand their response better, which could facilitate healthy culture programs under environmental changes and draw attention to knowledge gaps. After screening articles from the databases, 142 studies were included on the influence of emergent contaminants and climate variation on the early developmental stages and adults of sea cucumbers. We outlined the potential mechanism underlying the physiological response of sea cucumbers to emerging contaminants and climate change. It can be concluded that the physiological response of sea cucumbers to emergent contaminants differs from their response to climate change. Sea cucumbers could accumulate pollutants in their organs but are aestivated when exposed to extreme climate change. Research showed that the physiological response of sea cucumbers to pollutants indicates that these pollutants impair critical physiological processes, particularly during the more susceptible early phases of development compared to adults, and the accumulation of these pollutants in adults is often observed. For climate change, sea cucumbers showed gradual adaptation to the slight variation. However, sea cucumbers undergo aestivation under extreme conditions. Based on this review, critical suggestions for future research are presented, and we call for more efforts focusing on the co-occurrence of different stressors to extend the knowledge regarding the effects of environmental changes on these economically and ecologically important species.
Collapse
Affiliation(s)
- Mohamed Mohsen
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, Fujian 361021, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Department of Fish Production, Faculty of Agriculture, Al-Azhar University, Nasr City, Cairo 11884, Egypt.
| | - Sherif Ismail
- Environmental Engineering Department, Zagazig University, Zagazig City, 44519, Egypt; Civil and Environmental Engineering Department, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Xiutang Yuan
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Zonghe Yu
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Chenggang Lin
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Hongsheng Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
2
|
Li Y, Ren G, Wang Q, Mu L, Niu Q, Su H. Record-breaking marine heatwave in northern Yellow Sea during summer 2018: Characteristics, drivers and ecological impact. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166385. [PMID: 37625712 DOI: 10.1016/j.scitotenv.2023.166385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023]
Abstract
Globally, marine heatwaves (MHWs) are becoming more common, more intense, and longer-lasting. They could have a large ecological and societal impact when compounded by low oxygen concentrations or high acidity. Here, using a high-resolution satellite product and reanalysis datasets, we investigated the characteristics of the MHW at northern Yellow Sea (NYS) during mid-summer 2018 and the driving mechanisms of large-scale atmospheric circulations. Results showed that the MHW in mid-summer 2018 (lasting from 26 July to 18 August 2018) had been the most intense since 1982, reaching an anomaly peak of 5.15 °C. For the 2018 MHW, the onset rate was 0.49 °C/day, indicating that the reaction window was relatively short and hard to take mitigation measures, while the decline rate was 0.19 °C/day, meaning the coping window was long and easy to push an already stressed system. The synergy of the two large-scale dynamic systems, i.e., the northward-shifted western north Pacific subtropical high (WNPSH) and the northeastward-expanded South Asia high (SAH), was likely responsible for establishment and maintenance of the hot-weather conditions. These high-pressure systems could result in stronger descending motion, less cloud cover, more solar radiation, and smaller wind speeds which in combination aggravated the MHW. We further found that the unprecedented MHW was actually also impacted by terrestrial heatwave. From 14 July to 15 August 2018, Northeast China was affected by an exceptionally long and intense atmospheric heat wave (AHW). The AHW had impacted on the MHW through warm advection transportation and may significantly contribute to the record-breaking intensity of the MHW, in addition to the impact of abnormal atmospheric circulations. Finally, we showed that a mass mortality of sea cucumbers in the study region during mid-summer 2018 was highly likely caused by the MHW through severe heat stress.
Collapse
Affiliation(s)
- Yan Li
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Guoyu Ren
- Department of Atmospheric Science, School of Environmental Studies, China University of Geosciences, Wuhan, China; National Climate Center, China Meteorological Administration, Beijing, China
| | - Qingyuan Wang
- Tianjin Meteorological Observatory, China Meteorological Administration, Tianjin, China
| | - Lin Mu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.
| | - Qianru Niu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Hanxiang Su
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| |
Collapse
|
3
|
Imran MAS, Carrera M, Pérez-Polo S, Pérez J, Barros L, Dios S, Gestal C. Insights into Common Octopus (Octopus vulgaris) Ink Proteome and Bioactive Peptides Using Proteomic Approaches. Mar Drugs 2023; 21:md21040206. [PMID: 37103345 PMCID: PMC10142993 DOI: 10.3390/md21040206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/21/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
The common octopus (Octopus vulgaris) is nowadays the most demanded cephalopod species for human consumption. This species was also postulated for aquaculture diversification to supply its increasing demand in the market worldwide, which only relies on continuously declining field captures. In addition, they serve as model species for biomedical and behavioral studies. Body parts of marine species are usually removed before reaching the final consumer as by-products in order to improve preservation, reduce shipping weight, and increase product quality. These by-products have recently attracted increasing attention due to the discovery of several relevant bioactive compounds. Particularly, the common octopus ink has been described as having antimicrobial and antioxidant properties, among others. In this study, the advanced proteomics discipline was applied to generate a common octopus reference proteome to screen potential bioactive peptides from fishing discards and by-products such as ink. A shotgun proteomics approach by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) using an Orbitrap Elite instrument was used to create a reference dataset from octopus ink. A total of 1432 different peptides belonging to 361 non-redundant annotated proteins were identified. The final proteome compilation was investigated by integrated in silico studies, including gene ontology (GO) term enrichment, pathways, and network studies. Different immune functioning proteins involved in the innate immune system, such as ferritin, catalase, proteasome, Cu/Zn superoxide dismutase, calreticulin, disulfide isomerase, heat shock protein, etc., were found in ink protein networks. Additionally, the potential of bioactive peptides from octopus ink was addressed. These bioactive peptides can exert beneficial health properties such as antimicrobial, antioxidant, antihypertensive, and antitumoral properties and are therefore considered lead compounds for developing pharmacological, functional foods or nutraceuticals.
Collapse
|
4
|
Kumar V, Roy S, Behera BK, Das BK. Heat Shock Proteins (Hsps) in Cellular Homeostasis: A Promising Tool for Health Management in Crustacean Aquaculture. Life (Basel) 2022; 12:1777. [PMID: 36362932 PMCID: PMC9699388 DOI: 10.3390/life12111777] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 09/28/2023] Open
Abstract
Heat shock proteins (Hsps) are a family of ubiquitously expressed stress proteins and extrinsic chaperones that are required for viability and cell growth in all living organisms. These proteins are highly conserved and produced in all cellular organisms when exposed to stress. Hsps play a significant role in protein synthesis and homeostasis, as well as in the maintenance of overall health in crustaceans against various internal and external environmental stresses. Recent reports have suggested that enhancing in vivo Hsp levels via non-lethal heat shock, exogenous Hsps, or plant-based compounds, could be a promising strategy used to develop protective immunity in crustaceans against both abiotic and biotic stresses. Hence, Hsps as the agent of being an immune booster and increasing disease resistance will present a significant advancement in reducing stressful conditions in the aquaculture system.
Collapse
Affiliation(s)
| | | | - Bijay Kumar Behera
- Aquatic Environmental Biotechnology and Nanotechnology (AEBN) Division, ICAR-Central Inland Fisheries Research Institute (CIFRI), Barrackpore 700120, India
| | - Basanta Kumar Das
- Aquatic Environmental Biotechnology and Nanotechnology (AEBN) Division, ICAR-Central Inland Fisheries Research Institute (CIFRI), Barrackpore 700120, India
| |
Collapse
|
5
|
Jiang M, Zhao C, Yan R, Li J, Song W, Peng R, Han Q, Jiang X. Continuous Inking Affects the Biological and Biochemical Responses of Cuttlefish Sepia pharaonis. Front Physiol 2019; 10:1429. [PMID: 31849695 PMCID: PMC6896823 DOI: 10.3389/fphys.2019.01429] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 11/04/2019] [Indexed: 11/13/2022] Open
Abstract
Several marine mollusks, including cephalopods (cuttlefish, squid, and octopus) and gastropods (e.g., sea hares), can release a colored ink secretion when chased by predators or stimulated. Ink release is part of a defensive response, but the threshold for the biochemical responses caused by stimulation is unknown. The present study aimed to reveal antipredator responses of cuttlefish, such as escaping via inking and/or jetting, and to investigate its biological and biochemical responses to continuous ink release. Results showed that the behavioral responses to continuous ink release mainly manifested as blazing body pattern changes. Cuttlefish escaped from predators covered by jetting/inking and warned the potential threats by displaying a unique body pattern. Moreover, persistent inking in the presence of an overt stimulus caused uncontrollable ink release from the ink duct/anal canal (loss of control). This study first verified the characteristics of the cuttlefish ink solution, prepared a standard curve of ink solution concentrations, and fitted the relationship function between the release frequency and the released ink weight. Biological statistics indicated that cuttlefish has the ability to continuously release ink (releasing ∼90% of the ink from the ink sac) and that the individuals adapted well during the recovery period. However, re-releasing ink would result in "overexploitation" and high mortality. Hexokinase (HK), pyruvate kinase (PK), and superoxide dismutase (SOD) activities, as well as malondialdehyde (MDA) concentration increased or remained stable in different tissues after releasing ink. The expression of heat shock protein 90 and arginine kinase (AK) were upregulated by stimuli in all tissues. Biochemical changes indicated that continuous inking not only consumed considerable energy but also damaged the tissues. In summary, cuttlefish released almost 90% of their ink for active defense against predators, and it took ∼30 days for the ink sac to be refilled, but "overexploitation" resulted in serious physiological damage. These findings will be helpful to further study the defense and ink release mechanisms and to consider animal health and welfare when using cephalopods as experimental animals and for aquaculture practices.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xiamin Jiang
- School of Marine Sciences, Ningbo University, Ningbo, China
| |
Collapse
|
6
|
Jiang J, Zhao Z, Pan Y, Dong Y, Gao S, Li S, Wang C, Yang H, Lin S, Zhou Z. Gender specific differences of immune competence in the sea cucumber Apostichopus japonicus before and after spawning. FISH & SHELLFISH IMMUNOLOGY 2019; 90:73-79. [PMID: 31022452 DOI: 10.1016/j.fsi.2019.04.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/14/2019] [Accepted: 04/18/2019] [Indexed: 06/09/2023]
Abstract
The gender differences of immunity have been elucidated in many vertebrates and invertebrates. However, the information of this difference was still not clear in the sea cucumber Apostichopus japonicus, which is one of the most valuable aquaculture species and susceptible to diseases caused by pathogen infection. In the present study, the transcriptome of coelomocytes from female and male A. japonicus before and after spawning was obtained by RNA-sequencing technology. A total of 4,538 and 8,248 differentially expressed genes were identified between female and male A. japonicus before and after spawning, respectively, indicating that the gender differences of gene expression profiles in A. japonicus were more remarkable after spawning. Further KEGG enrichment analyses were conducted for both male and female up-regulated genes before and after spawning. The results revealed that the capacity to kill pathogens in female A. japonicus might be more powerful than that in males no matter before and after spawning; the antioxidant ability in male A. japonicus was probably stronger than that in females after spawning; the complement system in male A. japonicus might be more effective than that in females after spawning; and the apoptosis was likely to be more serious in male A. japonicus before spawning. Moreover, we speculated that the fatty acid composition might be one of the inducements for gender specific immune differences of A. japonicus. Overall, the results of our study illustrated the global gender specific immune differences of A. japonicus and contributed to understanding of the molecular mechanisms underlying sea cucumber immune regulation.
Collapse
Affiliation(s)
- Jingwei Jiang
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, PR China
| | - Zelong Zhao
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, PR China
| | - Yongjia Pan
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, PR China
| | - Ying Dong
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, PR China
| | - Shan Gao
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, PR China
| | - Shilei Li
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, PR China
| | - Chao Wang
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, PR China
| | - Huihua Yang
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, PR China
| | - Shanshan Lin
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, PR China
| | - Zunchun Zhou
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, PR China.
| |
Collapse
|
7
|
Dong-Po X, Di-An F, Chang-Sheng Z, Shu-Lun J, Hao-Yuan H. Effect of tributyltin chloride (TBT-Cl) exposure on expression of HSP90β1 in the river pufferfish (Takifugu obscurus): Evidences for its immunologic function involving in exploring process. Gene 2018; 666:9-17. [PMID: 29723535 DOI: 10.1016/j.gene.2018.04.083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 04/22/2018] [Accepted: 04/27/2018] [Indexed: 01/27/2023]
Abstract
HSP90β1 (known as glyco-protein 96, GP96) is a vital endoplasmic reticulum (ER) depended chaperonin among the HSPs (heat shock proteins) family. Furthermore, it always processes and presents antigen of the tumor and keeps balance for the intracellular environment. In the present study, we explored the effect of tributyltin chloride (TBT-Cl) exposure on HSP90β1 expression in river pufferfish, Takifugu obscurus. The full length of To-HSP90β1 was gained with 2775 bp in length, with an ORF (open reading frame) encoding an 803 aa polypeptide. A phylogenetic tree was constructed and showed the close relationship to other fish species. The HSP90β1 mRNA transcript was expressed in all tissues investigated with higher level in the gill and liver. After the acute and chronic exposure of TBT-Cl, the To-HSP90β1 mRNA transcript significantly was up-regulated in gills. Moreover, the histology study indicated the different injury degree of TBT-Cl in liver and gill. Immunohistochemistry (IHC) staining results implied the cytoplasm reorganization after TBT-Cl stress and the function of immunoregulation for To-HSP90β1 to TBT-Cl exposure. All the results indicated that HSP90β1 may be involved in the resistance to the invasion of TBT-Cl for keeping autoimmune homeostasis.
Collapse
Affiliation(s)
- Xu Dong-Po
- Key Laboratory of Biotic Environment and Ecological Safety in Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214081, China
| | - Fang Di-An
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214081, China
| | - Zhao Chang-Sheng
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214081, China
| | - Jiang Shu-Lun
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214081, China
| | - Hu Hao-Yuan
- Key Laboratory of Biotic Environment and Ecological Safety in Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China.
| |
Collapse
|
8
|
Vergara-Amado J, Silva AX, Manzi C, Nespolo RF, Cárdenas L. Differential expression of stress candidate genes for thermal tolerance in the sea urchin Loxechinus albus. J Therm Biol 2017; 68:104-109. [DOI: 10.1016/j.jtherbio.2017.03.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 03/15/2017] [Accepted: 03/19/2017] [Indexed: 12/14/2022]
|
9
|
González K, Gaitán-Espitia J, Font A, Cárdenas CA, González-Aravena M. Expression pattern of heat shock proteins during acute thermal stress in the Antarctic sea urchin, Sterechinus neumayeri. REVISTA CHILENA DE HISTORIA NATURAL 2016. [DOI: 10.1186/s40693-016-0052-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
10
|
Fang DA, Duan JR, Zhou YF, Zhang MY, Xu DP, Liu K, Xu P. Molecular Characteristic, Protein Distribution and Potential Regulation of HSP90AA1 in the Anadromous Fish Coilia nasus. Genes (Basel) 2016; 7:genes7020008. [PMID: 26828521 PMCID: PMC4773752 DOI: 10.3390/genes7020008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 01/14/2016] [Accepted: 01/14/2016] [Indexed: 12/20/2022] Open
Abstract
Heat shock proteins play essential roles in basic cellular events. Spawning migration is a complex process, with significant structural and biochemical changes taking place in the adult gonad. To date, the molecular mechanisms underlying migration reproductive biology remain undetermined. In this regard, a full length HSP90AA1 comprising 2608 nucleotides from the anadromous fish Coilia nasus was characterized, encoding 742 amino acid (aa) residues with potential phosphorylation sites. HSP90AA1 mRNA transcripts were detected in all organs, especially in the gonad. Furthermore, the greatest transcript levels were found during the developmental phase, while the lowest levels were found during the resting phase. In addition, the strongest immunolabeling positive signal was found in the primary spermatocyte and oocyte, with lower positive staining in secondary germ cells, and a weak or absent level in the mature sperm and oocyte. Interestingly, HSP90AA1 was mainly located in the cytoplasm of germ cells. These results are important for understanding the molecular mechanism of anadromous migration reproductive biology. In combination with data from other fish species, the result of this present study may facilitate further investigations on the spawning migration mechanism.
Collapse
Affiliation(s)
- Di-An Fang
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Shanshui Road 9, Wuxi 214128, China.
- Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Yangtze River, Ministry of Agriculture, Xuejiali 69, Wuxi 214128, China.
| | - Jin-Rong Duan
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Shanshui Road 9, Wuxi 214128, China.
| | - Yan-Feng Zhou
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Shanshui Road 9, Wuxi 214128, China.
| | - Min-Ying Zhang
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Shanshui Road 9, Wuxi 214128, China.
| | - Dong-Po Xu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Shanshui Road 9, Wuxi 214128, China.
- Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Yangtze River, Ministry of Agriculture, Xuejiali 69, Wuxi 214128, China.
| | - Kai Liu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Shanshui Road 9, Wuxi 214128, China.
| | - Pao Xu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Shanshui Road 9, Wuxi 214128, China.
| |
Collapse
|
11
|
Xu D, Sun L, Liu S, Zhang L, Yang H. Histological, ultrastructural and heat shock protein 70 (HSP70) responses to heat stress in the sea cucumber Apostichopus japonicus. FISH & SHELLFISH IMMUNOLOGY 2015; 45:321-326. [PMID: 25917397 DOI: 10.1016/j.fsi.2015.04.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 04/02/2015] [Accepted: 04/15/2015] [Indexed: 06/04/2023]
Abstract
The aquaculture industry for Apostichopus japonicus has suffered severe economic and resource losses due to high temperature in recent summers. There is increasing concern about the effect of high temperature on this species. Histological, ultrastructural and HSP70 responses to heat stress were investigated in the intestine of A. japonicus. Tissue degradation was observed in muscular, submucosal and mucosal layers, with significant decrease in plicae circulares of the mucosal layer. Ultrastructural damage intensified with increasing stress time, and indicators of cell apoptosis were evident after 192 h heat stress. Immunostaining showed HSP70 mainly in mucosa and serosa, with faint staining in non-stressed individuals (the control group) and denser staining under stress (the 6, 48 and 192 h groups). Western blot detection confirmed ocurrence of HSP70 in all groups and significant up-regulation under stress. The rapid and persistent response of HSP70 implies its critical role in the heat shock response of A. japonicus.
Collapse
Affiliation(s)
- Dongxue Xu
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, PR China; University of Chinese Academy of Sciences, Beijing, PR China
| | - Lina Sun
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, PR China.
| | - Shilin Liu
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, PR China
| | - Libin Zhang
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, PR China
| | - Hongsheng Yang
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, PR China.
| |
Collapse
|