1
|
Ter Ü, Ertürk Gürkan S, Gürkan M, Kunili IE, Aksoy E. Pathological and oxidative stress responses of Mytilus galloprovincialis to Vibrio mediterranei infection: An in vivo challenge. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109889. [PMID: 39250984 DOI: 10.1016/j.fsi.2024.109889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Since the identification of Vibrio mediterranei as a causative agent in mass mortalities of pen shells across the Mediterranean, elucidating its pathogenicity, virulence, and interactions with other bivalves has gained importance. While the cellular and immune responses of bivalves to various Vibrio species have been extensively studied, the infectious characteristics of this Vibrio species, particularly in the context of pen shell outbreaks, remain unclear for other bivalves. Therefore, to evaluate its pathogenicity, we investigated the histological and oxidative effects on the Mediterranean mussel (Mytilus galloprovincialis), a key species in aquaculture. Two distinct infection setups were established: one involving the inoculation of seawater with the bacterial isolate and another involving direct injection of the bacteria into the mussels. After a 24-h exposure period, histological evaluations were conducted on the mantle, gill, and digestive gland tissues of the mussels. Additionally, measurements of superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST), and lipid peroxidation levels were performed in the gill and digestive gland tissues. Oxidative responses were significantly elevated in both infection setups compared to the control group, with the directly injected samples exhibiting the highest oxidative responses (p < 0.05). Histological findings indicated that tissue-specific responses to host-pathogen interactions were consistent under both infection conditions. Notable observations included intense hemocytic infiltration in tissues, epithelial hyperplasia, and vacuolization in the gills, as well as focal necrotic areas in the digestive gland. The findings of this study indicate that V. mediterranei, a relatively novel pathogen, can provoke significant acute immune responses and tissue-level reactions in M. galloprovincialis, a species that is both widely distributed and vital to the food chain. These insights into the potential susceptibility of mussels underscore the need for further comprehensive research and inform the development of effective management strategies.
Collapse
Affiliation(s)
- Ümmügülsüm Ter
- Çanakkale Onsekiz Mart University, Faculty of Science, Department of Biology, Çanakkale, Turkey
| | - Selin Ertürk Gürkan
- Çanakkale Onsekiz Mart University, Faculty of Science, Department of Biology, Çanakkale, Turkey.
| | - Mert Gürkan
- Çanakkale Onsekiz Mart University, Faculty of Science, Department of Biology, Çanakkale, Turkey
| | - Ibrahim Ender Kunili
- Çanakkale Onsekiz Mart University, Faculty of Marine Science and Technology, Department of Fishing and Processing Technology, Çanakkale, Turkey
| | - Emircan Aksoy
- Çanakkale Onsekiz Mart University, Faculty of Science, Department of Biology, Çanakkale, Turkey
| |
Collapse
|
2
|
Jun Park B, Bin Yoon Y, Cheol Park S, Ho Lee D, Chung D, Kwak HJ, Kim JW, Cho SJ. Differential inducibility of transmembrane peptidoglycan recognition proteins (PGRPs) by bacterial challenges in the earthworm, Eisenia andrei. J Invertebr Pathol 2024; 206:108166. [PMID: 39004164 DOI: 10.1016/j.jip.2024.108166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/19/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
Peptidoglycan recognition proteins (PGRPs) and Toll-like receptors (TLRs) are highly conserved pattern recognition receptors (PRRs). Earthworms possess genes encoding TLRs that specifically respond to Gram-positive bacteria. In addition, several PGRPs have been recently identified, which are predicted to exhibit amidase activity but lack receptor function. In lophotrochozoans, a membrane-bound PRR responsible for detecting Gram-negative bacteria remains unidentified. This study reveals several novel transmembrane peptidoglycan recognition proteins (Ean-PGRPLs) in earthworms, whose mRNA expression increases in response to Gram-negative but not Gram-positive bacteria. This indicates that Ean-PGRPLs may serve as a PRR associated with intracellular signaling for Gram-negative bacteria.
Collapse
Affiliation(s)
- Beom Jun Park
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Yoo Bin Yoon
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Soon Cheol Park
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Dong Ho Lee
- Da Vinci College of General Education, Chung-Ang University, Seoul 06974, Republic of Korea
| | - David Chung
- Natural Environment Research Division, National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - Hee-Jin Kwak
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Jung-Woong Kim
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea.
| | - Sung-Jin Cho
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Chungbuk 28644, Republic of Korea.
| |
Collapse
|
3
|
Boraschi D, Penton-Rol G, Amodu O, Blomberg MT. Editorial: Women in cytokines and soluble mediators in immunity. Front Immunol 2024; 15:1395165. [PMID: 38550586 PMCID: PMC10973138 DOI: 10.3389/fimmu.2024.1395165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 03/08/2024] [Indexed: 04/02/2024] Open
Affiliation(s)
- Diana Boraschi
- Laboratory Inflammation and Vaccines, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), and China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen, China
- Institute of Biomolecular Chemistry, National Research Council (CNR), Pozzuoli, Italy
- Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Giselle Penton-Rol
- Center for Genetic Engineering and Biotechnology (CIGB), Playa, Cuba
- Department of Physiological Sciences, Professor of Immunology at the Latin American School of Medicine (ELAM), Havana, Cuba
| | - Olukemi Amodu
- Genetics and Molecular Sciences Unit, Institute of Child Health, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Marita Troye Blomberg
- Department Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
4
|
Grinchenko A, Buriak I, Kumeiko V. Invertebrate C1q Domain-Containing Proteins: Molecular Structure, Functional Properties and Biomedical Potential. Mar Drugs 2023; 21:570. [PMID: 37999394 PMCID: PMC10672478 DOI: 10.3390/md21110570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/23/2023] [Accepted: 10/28/2023] [Indexed: 11/25/2023] Open
Abstract
C1q domain-containing proteins (C1qDC proteins) unexpectedly turned out to be widespread molecules among a variety of invertebrates, despite their lack of an integral complement system. Despite the wide distribution in the genomes of various invertebrates, data on the structure and properties of the isolated and characterized C1qDC proteins, which belong to the C1q/TNF superfamily, are sporadic, although they hold great practical potential for the creation of new biotechnologies. This review not only summarizes the current data on the properties of already-isolated or bioengineered C1qDC proteins but also projects further strategies for their study and biomedical application. It has been shown that further broad study of the carbohydrate specificity of the proteins can provide great opportunities, since for many of them only interactions with pathogen-associated molecular patterns (PAMPs) was evaluated and their antimicrobial, antiviral, and fungicidal activities were studied. However, data on the properties of C1qDC proteins, which researchers originally discovered as lectins and therefore studied their fine carbohydrate specificity and antitumor activity, intriguingly show the great potential of this family of proteins for the creation of targeted drug delivery systems, vaccines, and clinical assays for the differential diagnosis of cancer. The ability of invertebrate C1qDC proteins to recognize patterns of aberrant glycosylation of human cell surfaces and interact with mammalian immunoglobulins indicates the great biomedical potential of these molecules.
Collapse
Affiliation(s)
- Andrei Grinchenko
- School of Medicine and Life Sciences, Far Eastern Federal University, 690922 Vladivostok, Russia; (A.G.); (I.B.)
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| | - Ivan Buriak
- School of Medicine and Life Sciences, Far Eastern Federal University, 690922 Vladivostok, Russia; (A.G.); (I.B.)
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| | - Vadim Kumeiko
- School of Medicine and Life Sciences, Far Eastern Federal University, 690922 Vladivostok, Russia; (A.G.); (I.B.)
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| |
Collapse
|
5
|
Vera M, Wilmes SB, Maroso F, Hermida M, Blanco A, Casanova A, Iglesias D, Cao A, Culloty SC, Mahony K, Orvain F, Bouza C, Robins PE, Malham SK, Lynch S, Villalba A, Martínez P. Heterogeneous microgeographic genetic structure of the common cockle (Cerastoderma edule) in the Northeast Atlantic Ocean: biogeographic barriers and environmental factors. Heredity (Edinb) 2023; 131:292-305. [PMID: 37596415 PMCID: PMC10539317 DOI: 10.1038/s41437-023-00646-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/20/2023] Open
Abstract
Knowledge of genetic structure at the finest level is essential for the conservation of genetic resources. Despite no visible barriers limiting gene flow, significant genetic structure has been shown in marine species. The common cockle (Cerastoderma edule) is a bivalve of great commercial and ecological value inhabiting the Northeast Atlantic Ocean. Previous population genomics studies demonstrated significant structure both across the Northeast Atlantic, but also within small geographic areas, highlighting the need to investigate fine-scale structuring. Here, we analysed two geographic areas that could represent opposite models of structure for the species: (1) the SW British Isles region, highly fragmented due to biogeographic barriers, and (2) Galicia (NW Spain), a putative homogeneous region. A total of 9250 SNPs genotyped by 2b-RAD on 599 individuals from 22 natural beds were used for the analysis. The entire SNP dataset mostly confirmed previous observations related to genetic diversity and differentiation; however, neutral and divergent SNP outlier datasets enabled disentangling physical barriers from abiotic environmental factors structuring both regions. While Galicia showed a homogeneous structure, the SW British Isles region was split into four reliable genetic regions related to oceanographic features and abiotic factors, such as sea surface salinity and temperature. The information gathered supports specific management policies of cockle resources in SW British and Galician regions also considering their particular socio-economic characteristics; further, these new data will be added to those recently reported in the Northeast Atlantic to define sustainable management actions across the whole distribution range of the species.
Collapse
Affiliation(s)
- Manuel Vera
- Department of Zoology, Genetics and Physics Anthropology, ACUIGEN Group, Faculty of Veterinary, Campus Terra, University of Santiago de Compostela, 27002, Lugo, Spain.
| | - Sophie B Wilmes
- School of Ocean Sciences, Marine Centre Wales, Bangor University, Menai Bridge, UK
| | - Francesco Maroso
- Department of Zoology, Genetics and Physics Anthropology, ACUIGEN Group, Faculty of Veterinary, Campus Terra, University of Santiago de Compostela, 27002, Lugo, Spain
| | - Miguel Hermida
- Department of Zoology, Genetics and Physics Anthropology, ACUIGEN Group, Faculty of Veterinary, Campus Terra, University of Santiago de Compostela, 27002, Lugo, Spain
| | - Andrés Blanco
- Department of Zoology, Genetics and Physics Anthropology, ACUIGEN Group, Faculty of Veterinary, Campus Terra, University of Santiago de Compostela, 27002, Lugo, Spain
| | - Adrián Casanova
- Department of Zoology, Genetics and Physics Anthropology, ACUIGEN Group, Faculty of Veterinary, Campus Terra, University of Santiago de Compostela, 27002, Lugo, Spain
| | - David Iglesias
- Centro de Investigacións Mariñas, Consellería do Mar, Xunta de Galicia, 36620, Vilanova de Arousa, Spain
| | - Asunción Cao
- Centro de Investigacións Mariñas, Consellería do Mar, Xunta de Galicia, 36620, Vilanova de Arousa, Spain
| | - Sarah C Culloty
- School of Biological, Earth and Environmental Sciences/Aquaculture and Fisheries Development Centre, University College Cork, North Mall, Cork, Ireland
- Environmental Research Institute, University College Cork, Cork, Ireland
- MaREI Centre, Environmental Research Institute, University College Cork, Cork, Ireland
| | - Kate Mahony
- School of Biological, Earth and Environmental Sciences/Aquaculture and Fisheries Development Centre, University College Cork, North Mall, Cork, Ireland
- Environmental Research Institute, University College Cork, Cork, Ireland
| | - Francis Orvain
- UNICAEN - UMR BOREA "Biologie des ORganismes et Ecosystèmes Aquatiques" MNHN, UPMC, UCBN, CNRS-7208, IRD-207, University of Caen, Caen, France
| | - Carmen Bouza
- Department of Zoology, Genetics and Physics Anthropology, ACUIGEN Group, Faculty of Veterinary, Campus Terra, University of Santiago de Compostela, 27002, Lugo, Spain
| | - Peter E Robins
- School of Ocean Sciences, Marine Centre Wales, Bangor University, Menai Bridge, UK
| | - Shelagh K Malham
- School of Ocean Sciences, Marine Centre Wales, Bangor University, Menai Bridge, UK
| | - Sharon Lynch
- School of Biological, Earth and Environmental Sciences/Aquaculture and Fisheries Development Centre, University College Cork, North Mall, Cork, Ireland
- Environmental Research Institute, University College Cork, Cork, Ireland
| | - Antonio Villalba
- Centro de Investigacións Mariñas, Consellería do Mar, Xunta de Galicia, 36620, Vilanova de Arousa, Spain
- Departamento de Ciencias de la Vida, Universidad de Alcalá, 28871, Alcalá de Henares, Spain
- Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), 48620, Plentzia, Basque Country, Spain
| | - Paulino Martínez
- Department of Zoology, Genetics and Physics Anthropology, ACUIGEN Group, Faculty of Veterinary, Campus Terra, University of Santiago de Compostela, 27002, Lugo, Spain.
| |
Collapse
|
6
|
Panebianco A, Rey-Campos M, Romero A, Diz AP, Novoa B, Figueras A. Mytilus galloprovincialis releases immunologically functional haemocytes to the intervalvar space in response to tissue injury and infection. FISH & SHELLFISH IMMUNOLOGY 2023; 138:108806. [PMID: 37169107 DOI: 10.1016/j.fsi.2023.108806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/02/2023] [Accepted: 05/08/2023] [Indexed: 05/13/2023]
Abstract
Haemocytes of Mytilus galloprovincialis represent the main component of the internal self-defence system. Although haemocytes from haemolymph are usually studied to analyse these animals' immune response, the presence of haemocytes in the intervalvar liquid, which is essentially sea water, led us to characterize them. Several functional (ROS production, phagocytosis, gene expression, travel velocity and distance) and morphological (area, size and granularity) assays were performed by applying different stimuli to the mussels (waterborne infection, shell injury and their combination). Our results revealed that intervalvar liquid haemocytes share common characteristics with haemolymph haemocytes (for instance, the cell morphology and the cell population structure divided in three main groups) but also show significant differences in size (usually smaller in the intervalvar liquid), mobility (commonly faster in the intervalvar liquid), ROS production (higher in non-stimulated intervalvar liquid cells) and gene expression (IL17, Myd88 and CathL are over expressed in liquid intervalvar cells compared to haemolymph cells). Moreover, differences were observed when mussels were subjected to the mentioned treatments. These free intervalvar haemocytes could constitute the first line of defence as external sentinels extending the immunological alert system outside of the mussel body.
Collapse
Affiliation(s)
- A Panebianco
- Institute of Marine Research (IIM), CSIC, Eduardo Cabello 6, 36208, Vigo, Spain; Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo, Spain
| | - M Rey-Campos
- Institute of Marine Research (IIM), CSIC, Eduardo Cabello 6, 36208, Vigo, Spain
| | - A Romero
- Institute of Marine Research (IIM), CSIC, Eduardo Cabello 6, 36208, Vigo, Spain
| | - A P Diz
- Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo, Spain; Centro de Investigación Mariña, Universidade de Vigo (CIM-UVigo), Vigo, Spain
| | - B Novoa
- Institute of Marine Research (IIM), CSIC, Eduardo Cabello 6, 36208, Vigo, Spain
| | - A Figueras
- Institute of Marine Research (IIM), CSIC, Eduardo Cabello 6, 36208, Vigo, Spain.
| |
Collapse
|
7
|
Gualandi N, Fracarossi D, Riommi D, Sollitto M, Greco S, Mardirossian M, Pacor S, Hori T, Pallavicini A, Gerdol M. Unveiling the Impact of Gene Presence/Absence Variation in Driving Inter-Individual Sequence Diversity within the CRP-I Gene Family in Mytilus spp. Genes (Basel) 2023; 14:genes14040787. [PMID: 37107545 PMCID: PMC10138031 DOI: 10.3390/genes14040787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/14/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Mussels (Mytilus spp.) tolerate infections much better than other species living in the same marine coastal environment thanks to a highly efficient innate immune system, which exploits a remarkable diversification of effector molecules involved in mucosal and humoral responses. Among these, antimicrobial peptides (AMPs) are subjected to massive gene presence/absence variation (PAV), endowing each individual with a potentially unique repertoire of defense molecules. The unavailability of a chromosome-scale assembly has so far prevented a comprehensive evaluation of the genomic arrangement of AMP-encoding loci, preventing an accurate ascertainment of the orthology/paralogy relationships among sequence variants. Here, we characterized the CRP-I gene cluster in the blue mussel Mytilus edulis, which includes about 50 paralogous genes and pseudogenes, mostly packed in a small genomic region within chromosome 5. We further reported the occurrence of widespread PAV within this family in the Mytilus species complex and provided evidence that CRP-I peptides likely adopt a knottin fold. We functionally characterized the synthetic peptide sCRP-I H1, assessing the presence of biological activities consistent with other knottins, revealing that mussel CRP-I peptides are unlikely to act as antimicrobial agents or protease inhibitors, even though they may be used as defense molecules against infections from eukaryotic parasites.
Collapse
Affiliation(s)
- Nicolò Gualandi
- Area of Neuroscience, International School for Advanced Studies, 34136 Trieste, Italy;
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (D.F.); (D.R.); (M.S.); (S.G.); (M.M.); (S.P.); (A.P.)
| | - Davide Fracarossi
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (D.F.); (D.R.); (M.S.); (S.G.); (M.M.); (S.P.); (A.P.)
| | - Damiano Riommi
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (D.F.); (D.R.); (M.S.); (S.G.); (M.M.); (S.P.); (A.P.)
| | - Marco Sollitto
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (D.F.); (D.R.); (M.S.); (S.G.); (M.M.); (S.P.); (A.P.)
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, 6000 Koper, Slovenia
| | - Samuele Greco
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (D.F.); (D.R.); (M.S.); (S.G.); (M.M.); (S.P.); (A.P.)
| | - Mario Mardirossian
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (D.F.); (D.R.); (M.S.); (S.G.); (M.M.); (S.P.); (A.P.)
| | - Sabrina Pacor
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (D.F.); (D.R.); (M.S.); (S.G.); (M.M.); (S.P.); (A.P.)
| | - Tiago Hori
- Atlantic Aqua Farms Ltd., Vernon Bridge, PE C0A 2E0, Canada;
| | - Alberto Pallavicini
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (D.F.); (D.R.); (M.S.); (S.G.); (M.M.); (S.P.); (A.P.)
- Anton Dohrn Zoological Station, 80121 Naples, Italy
| | - Marco Gerdol
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (D.F.); (D.R.); (M.S.); (S.G.); (M.M.); (S.P.); (A.P.)
- Correspondence:
| |
Collapse
|
8
|
Silva Dos Santos F, Neves RAF, Bernay B, Krepsky N, Teixeira VL, Artigaud S. The first use of LC-MS/MS proteomic approach in the brown mussel Perna perna after bacterial challenge: Searching for key proteins on immune response. FISH & SHELLFISH IMMUNOLOGY 2023; 134:108622. [PMID: 36803779 DOI: 10.1016/j.fsi.2023.108622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
The brown mussel Perna perna is a valuable fishing resource, primarily in tropical and subtropical coastal regions. Because of their filter-feeding habits, mussels are directly exposed to bacteria in the water column. Escherichia coli (EC) and Salmonella enterica (SE) inhabit human guts and reach the marine environment through anthropogenic sources, such as sewage. Vibrio parahaemolyticus (VP) is indigenous to coastal ecosystems but can be harmful to shellfish. In this study, we aimed to assess the protein profile of the hepatopancreas of P. perna mussel challenged by introduced - E. coli and S. enterica - and indigenous marine bacteria - V. parahaemolyticus. Bacterial-challenge groups were compared with non-injected (NC) and injected control (IC) - that consisted in mussels not challenged and mussels injected with sterile PBS-NaCl, respectively. Through LC-MS/MS proteomic analysis, 3805 proteins were found in the hepatopancreas of P. perna. From the total, 597 were significantly different among conditions. Mussels injected with VP presented 343 proteins downregulated compared with all the other conditions, suggesting that VP suppresses their immune response. Particularly, 31 altered proteins - upregulated or downregulated - for one or more challenge groups (EC, SE, and VP) compared with controls (NC and IC) are discussed in detail in the paper. For the three tested bacteria, significantly different proteins were found to perform critical roles in immune response at all levels, namely: recognition and signal transduction; transcription; RNA processing; translation and protein processing; secretion; and humoral effectors. This is the first shotgun proteomic study in P. perna mussel, therefore providing an overview of the protein profile of the mussel hepatopancreas, focused on the immune response against bacteria. Hence, it is possible to understand the immune-bacteria relationship at molecular levels better. This knowledge can support the development of strategies and tools to be applied to coastal marine resource management and contribute to the sustainability of coastal systems.
Collapse
Affiliation(s)
- Fernanda Silva Dos Santos
- Graduate Program in Sciences and Biotechnology, Institute of Biology, Fluminense Federal University (UFF), R. Mario Santos Braga, S/n. Centro, Niterói, RJ, CEP 24.020-141, Brazil; Research Group of Experimental and Aquatic Ecology, Institute of Biosciences (IBIO), Federal University of the State of Rio de Janeiro (UNIRIO), Av. Pasteur, 458-307, Urca, Rio de Janeiro, RJ, CEP: 22.290-240, Brazil.
| | - Raquel A F Neves
- Graduate Program in Neotropical Biodiversity (PPGBIO), Institute of Biosciences (IBIO), Federal University of the State of Rio de Janeiro (UNIRIO), Av. Pasteur, 458, Urca, Rio de Janeiro, RJ, CEP: 22.290-255, Brazil; Research Group of Experimental and Aquatic Ecology, Institute of Biosciences (IBIO), Federal University of the State of Rio de Janeiro (UNIRIO), Av. Pasteur, 458-307, Urca, Rio de Janeiro, RJ, CEP: 22.290-240, Brazil.
| | - Benoît Bernay
- Plateforme Proteogen, SFR ICORE 4206, Université de Caen Basse-Normandie, Esplanade de la paix, 14032, Caen cedex, France.
| | - Natascha Krepsky
- Graduate Program in Neotropical Biodiversity (PPGBIO), Institute of Biosciences (IBIO), Federal University of the State of Rio de Janeiro (UNIRIO), Av. Pasteur, 458, Urca, Rio de Janeiro, RJ, CEP: 22.290-255, Brazil.
| | - Valéria Laneuville Teixeira
- Graduate Program in Sciences and Biotechnology, Institute of Biology, Fluminense Federal University (UFF), R. Mario Santos Braga, S/n. Centro, Niterói, RJ, CEP 24.020-141, Brazil; Graduate Program in Neotropical Biodiversity (PPGBIO), Institute of Biosciences (IBIO), Federal University of the State of Rio de Janeiro (UNIRIO), Av. Pasteur, 458, Urca, Rio de Janeiro, RJ, CEP: 22.290-255, Brazil.
| | - Sébastien Artigaud
- Université de Brest, CNRS, IRD, Ifremer, UMR 6539 LEMAR, F-29280, Plouzané, France.
| |
Collapse
|
9
|
Zhao BR, Wang XX, Liu PP, Wang XW. Complement-related proteins in crustacean immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 139:104577. [PMID: 36265592 DOI: 10.1016/j.dci.2022.104577] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/02/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
As an important part of innate immune system, complement system is widely involved in defense response and immune regulation, and plays an important biological role. The complement system has been deeply studied. More than 30 complement-related molecules and three major complement-activation pathways have been identified in vertebrates. Crustacean animals do not have complement system. There are only some complement-related proteins in crustaceans which are important for host defense. In this review, we summarize the current knowledge about complement-related proteins in crustaceans, and their functions in crustacean immunity. We also make a comparation of the crustacean pro-phenoloxidase activating system and the mammalian complement system. This review provides a better understanding of the evolution and function of complement-related proteins in crustaceans.
Collapse
Affiliation(s)
- Bao-Rui Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, And State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Xin-Xin Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, And State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Ping-Ping Liu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, And State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Xian-Wei Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, And State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266237, China.
| |
Collapse
|
10
|
Orús-Alcalde A, Børve A, Hejnol A. The localization of Toll and Imd pathway and complement system components and their response to Vibrio infection in the nemertean Lineus ruber. BMC Biol 2023; 21:7. [PMID: 36635688 PMCID: PMC9835746 DOI: 10.1186/s12915-022-01482-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 11/24/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Innate immunity is the first line of defense against pathogens. In animals, the Toll pathway, the Imd pathway, the complement system, and lectins are well-known mechanisms involved in innate immunity. Although these pathways and systems are well understood in vertebrates and arthropods, they are understudied in other invertebrates. RESULTS To shed light on immunity in the nemertean Lineus ruber, we performed a transcriptomic survey and identified the main components of the Toll pathway (e.g., myD88, dorsal/dif/NFκB-p65), the Imd pathway (e.g., imd, relish/NFκB-p105/100), the complement system (e.g., C3, cfb), and some lectins (FreD-Cs and C-lectins). In situ hybridization showed that TLRβ1, TLRβ2, and imd are expressed in the nervous system; the complement gene C3-1 is expressed in the gut; and the lectins are expressed in the nervous system, the blood, and the gut. To reveal their potential role in defense mechanisms, we performed immune challenge experiments, in which Lineus ruber specimens were exposed to the gram-negative bacteria Vibrio diazotrophicus. Our results show the upregulation of specific components of the Toll pathway (TLRα3, TLRβ1, and TLRβ2), the complement system (C3-1), and lectins (c-lectin2 and fred-c5). CONCLUSIONS Therefore, similarly to what occurs in other invertebrates, our study shows that components of the Toll pathway, the complement system, and lectins are involved in the immune response in the nemertean Lineus ruber. The presence of these pathways and systems in Lineus ruber, but also in other spiralians; in ecdysozoans; and in deuterostomes suggests that these pathways and systems were involved in the immune response in the stem species of Bilateria.
Collapse
Affiliation(s)
- Andrea Orús-Alcalde
- grid.7914.b0000 0004 1936 7443Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5008 Bergen, Norway ,grid.7914.b0000 0004 1936 7443Department of Biological Sciences, University of Bergen, Thormøhlensgate 53A, 5006 Bergen, Norway
| | - Aina Børve
- grid.7914.b0000 0004 1936 7443Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5008 Bergen, Norway ,grid.7914.b0000 0004 1936 7443Department of Biological Sciences, University of Bergen, Thormøhlensgate 53A, 5006 Bergen, Norway
| | - Andreas Hejnol
- grid.7914.b0000 0004 1936 7443Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5008 Bergen, Norway ,grid.7914.b0000 0004 1936 7443Department of Biological Sciences, University of Bergen, Thormøhlensgate 53A, 5006 Bergen, Norway ,grid.9613.d0000 0001 1939 2794Faculty of Biological Sciences, Institute of Zoology and Evolutionary Research, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
11
|
Azizan A, Alfaro AC, Jaramillo D, Venter L, Young T, Frost E, Lee K, Van Nguyen T, Kitundu E, Archer SDJ, Ericson JA, Foxwell J, Quinn O, Ragg NLC. Pathogenicity and virulence of bacterial strains associated with summer mortality in marine mussels (Perna canaliculus). FEMS Microbiol Ecol 2022; 98:6855225. [PMID: 36449667 DOI: 10.1093/femsec/fiac140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/09/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
The occurrence of pathogenic bacteria has emerged as a plausible key component of summer mortalities in mussels. In the current research, four bacterial isolates retrieved from moribund Greenshell࣪ mussels, Perna canaliculus, from a previous summer mortality event, were tentatively identified as Vibrio and Photobacterium species using morpho-biochemical characterization and MALDI-TOF MS and confirmed as V. celticus, P. swingsii, P. rosenbergii, and P. proteolyticum using whole genome sequencing. These isolates were utilized in a laboratory challenge where mussels were injected with cell concentrations ranging from 105 to 109 CFU/mussel. Of the investigated isolates, P. swingsii induced the highest mortality. Additionally, results from quantitative polymerase chain reaction analysis, focusing on known virulence genes were detected in all isolates grown under laboratory conditions. Photobacterium rosenbergii and P. swingsii showed the highest expression levels of these virulence determinants. These results indicate that Photobacterium spp. could be a significant pathogen of P. canaliculus, with possible importance during summer mortality events. By implementing screening methods to detect and monitor Photobacterium concentrations in farmed mussel populations, a better understanding of the host-pathogen relationship can be obtained, aiding the development of a resilient industry in a changing environment.
Collapse
Affiliation(s)
- Awanis Azizan
- Aquaculture Biotechnology Research Group, Department of Environmental Sciences, School of Science, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand
| | - Andrea C Alfaro
- Aquaculture Biotechnology Research Group, Department of Environmental Sciences, School of Science, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand
| | - Diana Jaramillo
- Animal Health Laboratory, Ministry for Primary Industries, New Zealand PO Box 2526, Wellington 6140, New Zealand
| | - Leonie Venter
- Aquaculture Biotechnology Research Group, Department of Environmental Sciences, School of Science, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand
| | - Tim Young
- Aquaculture Biotechnology Research Group, Department of Environmental Sciences, School of Science, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand.,Centre for Biomedical & Chemical Sciences, School of Science, Auckland University of Technology, Auckland, New Zealand
| | - Emily Frost
- Aquaculture Biotechnology Research Group, Department of Environmental Sciences, School of Science, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand
| | - Kevin Lee
- Aquaculture Biotechnology Research Group, Department of Environmental Sciences, School of Science, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand
| | - Thao Van Nguyen
- Aquaculture Biotechnology Research Group, Department of Environmental Sciences, School of Science, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand.,NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Eileen Kitundu
- Department of Food Sciences and Microbiology, School of Science, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand
| | - Stephen D J Archer
- Aquaculture Biotechnology Research Group, Department of Environmental Sciences, School of Science, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand
| | - Jessica A Ericson
- Aquaculture Department, Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand
| | - Jonathan Foxwell
- Animal Health Laboratory, Ministry for Primary Industries, New Zealand PO Box 2526, Wellington 6140, New Zealand
| | - Oliver Quinn
- Animal Health Laboratory, Ministry for Primary Industries, New Zealand PO Box 2526, Wellington 6140, New Zealand
| | - Norman L C Ragg
- Aquaculture Department, Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand
| |
Collapse
|
12
|
Liu L, He M, Yang Z, Wang H, Zhang X, He J, Buttino I, Qi P, Yan X, Liao Z. Myticofensin, a novel antimicrobial peptide family identified from Mytilus coruscus. FISH & SHELLFISH IMMUNOLOGY 2022; 131:817-826. [PMID: 36349653 DOI: 10.1016/j.fsi.2022.10.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/17/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
In this study, seven transcripts representing a novel antimicrobial peptide (AMP) family with structural features similar to those of arthropod defensins were identified from Mytilus coruscus. These novel defensins from the Mytilus AMP family were named myticofensins. To explore the possible immune-related functions of these myticofensins, we examined their expression profiles in different tissues and larval stages, as well as in three immune-related tissues under the threat of different microbes. Our data revealed that the seven myticofensins had relatively high expression levels in immune-related tissues. Most myticofensins were undetectable, or had low expression levels, in different larval mussel stages. Additionally, in vivo microbial challenges significantly increased the expression levels of myticofensins in M. coruscus hemocytes, gills, and digestive glands, showing different immune response patterns under challenges from different microbes. Our data indicates that different myticofensins may have different immune functions in different tissues. Furthermore, peptide sequences corresponding to the beta-hairpin, alpha-helix, and N-terminal loop of myticofensin were synthesized and the antimicrobial activities of these peptide fragments were tested. Our data confirms the diversity of defensins in Mytilus and reports the complex regulation of these defensins in the mussel immune response to different microbes in immune-related tissues. The immune system of Mytilus has been studied for years as they are a species with strong environmental adaptations. Our data can be regarded as a step forward in the study of the adaptation of Mytilus spp. to an evolving microbial world.
Collapse
Affiliation(s)
- Lu Liu
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City, 316022, Zhejiang, China
| | - Menglan He
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City, 316022, Zhejiang, China
| | - Zongxin Yang
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City, 316022, Zhejiang, China
| | - Haodong Wang
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City, 316022, Zhejiang, China
| | - Xiaolin Zhang
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City, 316022, Zhejiang, China
| | - Jianyu He
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City, 316022, Zhejiang, China; Donghai Laboratory, Zhoushan City, 316022, Zhejiang, China
| | - Isabella Buttino
- Italian Institute for Environmental Protection and Research ISPRA, Via Vitaliano Brancati 48, 00144, Rome, Italy
| | - Pengzhi Qi
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City, 316022, Zhejiang, China
| | - Xiaojun Yan
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City, 316022, Zhejiang, China.
| | - Zhi Liao
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City, 316022, Zhejiang, China.
| |
Collapse
|
13
|
Liao Z, Yang Z, Wang Y, He J, He Z, Zhang X, Buttino I, Qi P, Fan M, Guo B, Yan X, He M. Molecular characterization of peptidoglycan recognition proteins from Mytilus coruscus. FISH & SHELLFISH IMMUNOLOGY 2022; 131:612-623. [PMID: 36272520 DOI: 10.1016/j.fsi.2022.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Mytilus shows great immune resistance to various bacteria from the living waters, indicating a complex immune recognition mechanism against various microbes. Peptidoglycan recognition proteins (PGRPs) play an important role in the defense against invading microbes via the recognition of the immunogenic substance peptidoglycan (PGN). Therefore, eight PGRPs were identified from the gill transcriptome of Mytilus coruscus. The sequence features, expression pattern in various organs and larval development stages, and microbes induced expression profiles of these Mytilus PGRPs were determined. Our data revealed the constitutive expression of PGRPs in various organs with relative higher expression level in immune-related organs. The expression of PGRPs is developmentally regulated, and most PGRPs are undetectable in larvae stages. The expression level of most PGRPs was significantly increased with in vivo microbial challenges, showing strong response to Gram-positive strain in gill and digestive gland, strong response to Gram-negative strain in hemocytes, and relative weaker response to fungus in the three tested organs. In addition, the function analysis of the representative recombinant expressed PGRP (rMcPGRP-2) confirmed the antimicrobial and agglutination activities, showing the immune-related importance of PGRP in Mytilus. Our work suggests that Mytilus PGRPs can act as pattern recognition receptors to recognize the invading microorganisms and the antimicrobial effectors during the innate immune response of Mytilus.
Collapse
Affiliation(s)
- Zhi Liao
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City, 316022, Zhejiang, China
| | - Zongxin Yang
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City, 316022, Zhejiang, China
| | - Ying Wang
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City, 316022, Zhejiang, China
| | - Jianyu He
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City, 316022, Zhejiang, China
| | - Zhijiang He
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City, 316022, Zhejiang, China
| | - Xiaolin Zhang
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City, 316022, Zhejiang, China
| | - Isabella Buttino
- Italian Institute for Environmental Protection and Research (ISPRA), Via Vitaliano Brancati 48, 00144, Rome, Italy
| | - Pengzhi Qi
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City, 316022, Zhejiang, China
| | - Meihua Fan
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City, 316022, Zhejiang, China
| | - Baoying Guo
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City, 316022, Zhejiang, China
| | - Xiaojun Yan
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City, 316022, Zhejiang, China
| | - Menglan He
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City, 316022, Zhejiang, China.
| |
Collapse
|
14
|
Li J, Liu S, Zhang Y, Huang Q, Zhang H, OuYang J, Mao F, Fan H, Yi W, Dong M, Xu A, Huang S. Two novel mollusk short-form ApeC-containing proteins act as pattern recognition proteins for peptidoglycan. Front Immunol 2022; 13:971883. [PMID: 36275759 PMCID: PMC9585378 DOI: 10.3389/fimmu.2022.971883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/08/2022] [Indexed: 11/18/2022] Open
Abstract
The Apextrin C-terminal (ApeC) domain is a new protein domain largely specific to aquatic invertebrates. In amphioxus, a short-form ApeC-containing protein (ACP) family is capable of binding peptidoglycan (PGN) and agglutinating bacteria via its ApeC domain. However, the functions of ApeC in other phyla remain unknown. Here we examined 130 ACPs from gastropods and bivalves, the first and second biggest mollusk classes. They were classified into nine groups based on their phylogenetics and architectures, including three groups of short-form ACPs, one group of apextrins and two groups of ACPs of complex architectures. No groups have orthologs in other phyla and only four groups have members in both gastropods and bivalves, suggesting that mollusk ACPs are highly diversified. We selected one bivalve ACP (CgACP1; from the oyster Crossostrea gigas) and one gastropod ACP (BgACP1; from the snail Biomphalaria glabrata) for functional experiments. Both are highly-expressed, secreted short-form ACPs and hence comparable to the amphioxus ACPs previously reported. We found that recombinant CgACP1 and BgACP1 bound with yeasts and several bacteria with different affinities. They also agglutinated these microbes, but showed no inhibiting or killing effects. Further analyses show that both ACPs had high affinities to the Lys-type PGN from S. aureus but weak or no affinities to the DAP-type PGN from Bacillus subtilis. Both recombinant ACPs displayed weak or no affinities to other microbial cell wall components, including lipopolysaccharide (LPS), lipoteichoic acid (LTA), zymosan A, chitin, chitosan and cellulose, as well as to several PGN moieties, including muramyl dipeptide (MDP), N-acetylglucosamine (GlcNAc) and N-acetylmuramic acid (MurNAc). Besides, CgACP1 had the highest expression in the gill and could be greatly up-regulated quickly after bacterial challenge. This is reminiscent of the amphioxus ACP1/2 which serve as essential mucus lectins in the gill. Taken together, the current findings from mollusk and amphioxus ACPs suggest several basic common traits for the ApeC domains, including the high affinity to Lys-type PGN, the bacterial binding and agglutinating capacity, and the role as mucus proteins to protect the mucosal surface.
Collapse
Affiliation(s)
- Jin Li
- Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shumin Liu
- Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yang Zhang
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio-Resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Qiuyun Huang
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio-Resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Hao Zhang
- Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jihua OuYang
- Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Fan Mao
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio-Resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Huiping Fan
- Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Wenjie Yi
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio-Resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Meiling Dong
- Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Anlong Xu
- Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Anlong Xu, ; Shengfeng Huang,
| | - Shengfeng Huang
- Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- *Correspondence: Anlong Xu, ; Shengfeng Huang,
| |
Collapse
|
15
|
Zhu X, Mu K, Wan Y, Zhang L. Evolutionary history of the NLR gene families across lophotrochozoans. Gene 2022; 843:146807. [PMID: 35964873 DOI: 10.1016/j.gene.2022.146807] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 08/01/2022] [Accepted: 08/06/2022] [Indexed: 11/29/2022]
Abstract
NOD-like receptor (NLR) genes are critical innate immune receptors in animals and plants. Lophotrochozoans represent one of the most species-rich superphyla that includes molluscs, segmented worms, flatworms, bryozoans, and other invertebrates, which is crucial to our understanding of immune system evolution in bilaterians. However, NLRs have not been systematically described in lophotrochozoans. We annotated 185 NLRs in 29 lophotrochozoan genomes, and analyzed their domain organization, phylogenetic distribution, molecular evolution, and gene expression. We found that all the 24 molluscan genomes studied encoded no more than three NLRs. None of these molluscan NLRs represented an inducible expression pattern under the infection of eight pathogens; some molluscan NLRs showed developmental stage-specific expression patterns. Instead, 29 molluscan incomplete NLR (incNLR) genes, encoding for proteins absent in the NACHT domain were upregulated under pathogen infection. We also documented the species-specific expansion of NLRs in the clades Polychaeta and Pteriidae. Our study revealed that gene duplication, domain shuffling, gene loss, and novel expression pattern played important roles in the molecular evolution of NLRs.
Collapse
Affiliation(s)
- Xiaofei Zhu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China; CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Kang Mu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yi Wan
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Linlin Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
16
|
Dong C, Wu H, Zheng G, Peng J, Guo M, Tan Z. Transcriptome Analysis Reveals MAPK/AMPK as a Key Regulator of the Inflammatory Response in PST Detoxification in Mytilus galloprovincialis and Argopecten irradians. Toxins (Basel) 2022; 14:toxins14080516. [PMID: 36006178 PMCID: PMC9416634 DOI: 10.3390/toxins14080516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 02/01/2023] Open
Abstract
Paralytic shellfish toxins (PSTs) are an increasingly important source of pollution. Bivalves, as the main transmission medium, accumulate and metabolize PSTs while protecting themselves from damage. At present, the resistance mechanism of bivalves to PSTs is unclear. In this study, Mytilus galloprovincialis and Argopecten irradians were used as experimental shellfish species for in situ monitoring. We compared the inflammatory-related gene responses of the two shellfish during PSTs exposure by using transcriptomes. The results showed that the accumulation and metabolism rate of PSTs in M. galloprovincialis was five-fold higher than that in A. irradians. The inflammatory balance mechanism of M. galloprovincialis involved the co-regulation of the MAPK-based and AMPK-based anti-inflammatory pathways. A. irradians bore a higher risk of death because it did not have the balance system, and the regulation of apoptosis-related pathways such as the PI3K-AKT signaling pathway were upregulated. Taken together, the regulation of the inflammatory balance coincides with the ability of bivalves to cope with PSTs. Inflammation is an important factor that affects the metabolic pattern of PSTs in bivalves. This study provides new evidence to support the studies on the resistance mechanism of bivalves to PSTs.
Collapse
Affiliation(s)
- Chenfan Dong
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (C.D.); (H.W.); (G.Z.); (J.P.); (M.G.)
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Haiyan Wu
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (C.D.); (H.W.); (G.Z.); (J.P.); (M.G.)
| | - Guanchao Zheng
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (C.D.); (H.W.); (G.Z.); (J.P.); (M.G.)
| | - Jixing Peng
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (C.D.); (H.W.); (G.Z.); (J.P.); (M.G.)
| | - Mengmeng Guo
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (C.D.); (H.W.); (G.Z.); (J.P.); (M.G.)
| | - Zhijun Tan
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (C.D.); (H.W.); (G.Z.); (J.P.); (M.G.)
- Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
- Correspondence: ; Tel.: +86-532-8583-6348; Fax: +86-532-8582-5917
| |
Collapse
|
17
|
Jiang K, Nie H, Yin Z, Yan X, Li Q. Apextrin from Ruditapes philippinarum functions as pattern recognition receptor and modulates NF-κB pathway. Int J Biol Macromol 2022; 214:33-44. [PMID: 35697169 DOI: 10.1016/j.ijbiomac.2022.06.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 12/28/2022]
Abstract
Apextrin belongs to ApeC-containing proteins (ACPs) and features a signal-peptide, an N-terminal membrane attack complex component/perforin (MACPF) domain, and a C-terminal ApeC domain. Recently, apextrin-like proteins were identified as pattern recognition receptor (PRR), which recognize the bacterial cell wall component and participate in innate immunity. Here, an apextrin (Rpape) was identified and characterized in Ruditapes philippinarum. Our results showed that Rpape mRNA was significantly induced under bacterial challenges. The Rpape recombinant protein exhibited a significant inhibitory effect on gram-positive bacteria (Bacillus subtilis and Staphylococcus aureus) and bound with Vibrio anguillarum, S. aureus and B. subtilis. We found Rpape protein positively activated the NF-κB signaling cascade and increased the activity of Nitric oxide (NO). This study revealed the immunity role of apextrin in R. philippinarum and provided a reference for further study on the role of apextrin in bivalves.
Collapse
Affiliation(s)
- Kunyin Jiang
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China; Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Hongtao Nie
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China.
| | - Zhihui Yin
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China
| | - Xiwu Yan
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
18
|
Salatiello F, Gerdol M, Pallavicini A, Locascio A, Sirakov M. Comparative analysis of novel and common reference genes in adult tissues of the mussel Mytilus galloprovincialis. BMC Genomics 2022; 23:349. [PMID: 35524177 PMCID: PMC9077915 DOI: 10.1186/s12864-022-08553-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 04/14/2022] [Indexed: 11/18/2022] Open
Abstract
Background Real-time quantitative PCR is a widely used method for gene expression analyses in various organisms. Its accuracy mainly relies on the correct selection of reference genes. Any experimental plan involving real-time PCR needs to evaluate the characteristics of the samples to be examined and the relative stability of reference genes. Most studies in mollusks rely on reference genes commonly used in vertebrates. Results In this study, we focused on the transcriptome of the bivalve mollusk Mytilus galloprovincialis in physiological state to identify suitable reference genes in several adult tissues. Candidate genes with highly stable expression across 51 RNA-seq datasets from multiple tissues were selected through genome-wide bioinformatics analysis. This approach led to the identification of three genes (Rpl14, Rpl32 and Rpl34), whose suitability was evaluated together with 7 other reference genes commonly reported in literature (Act, Cyp-A, Ef1α, Gapdh, 18S, 28S and Rps4). The stability analyses performed with geNorm, NormFinder and Bestkeeper identified specific either single or pairs of genes suitable as references for gene expression analyses in specific tissues and revealed the Act/Cyp-A pair as the most appropriate to analyze gene expression across different tissues. Conclusion Mytilus galloprovincialis is a model system increasingly used in ecotoxicology and molecular studies. Our transcriptome-wide approach represents the first comprehensive investigation aimed at the identification of suitable reference genes for expression studies in this species. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08553-1.
Collapse
Affiliation(s)
- Federica Salatiello
- Stazione Zoologica Anton Dohrn, Department of Biology and Evolution of Marine Organisms, Villa Comunale 1, 80121, Naples, Italy.,Department of Life Sciences, Università degli Studi di Trieste, Via Licio Giorgieri 5, 34127, Trieste, Italy
| | - Marco Gerdol
- Department of Life Sciences, Università degli Studi di Trieste, Via Licio Giorgieri 5, 34127, Trieste, Italy
| | - Alberto Pallavicini
- Stazione Zoologica Anton Dohrn, Department of Biology and Evolution of Marine Organisms, Villa Comunale 1, 80121, Naples, Italy.,Department of Life Sciences, Università degli Studi di Trieste, Via Licio Giorgieri 5, 34127, Trieste, Italy
| | - Annamaria Locascio
- Stazione Zoologica Anton Dohrn, Department of Biology and Evolution of Marine Organisms, Villa Comunale 1, 80121, Naples, Italy
| | - Maria Sirakov
- Stazione Zoologica Anton Dohrn, Department of Biology and Evolution of Marine Organisms, Villa Comunale 1, 80121, Naples, Italy.
| |
Collapse
|
19
|
Corrochano-Fraile A, Davie A, Carboni S, Bekaert M. Evidence of multiple genome duplication events in Mytilus evolution. BMC Genomics 2022; 23:340. [PMID: 35501689 PMCID: PMC9063065 DOI: 10.1186/s12864-022-08575-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 04/20/2022] [Indexed: 12/12/2022] Open
Abstract
Background Molluscs remain one significantly under-represented taxa amongst available genomic resources, despite being the second-largest animal phylum and the recent advances in genomes sequencing technologies and genome assembly techniques. With the present work, we want to contribute to the growing efforts by filling this gap, presenting a new high-quality reference genome for Mytilus edulis and investigating the evolutionary history within the Mytilidae family, in relation to other species in the class Bivalvia. Results Here we present, for the first time, the discovery of multiple whole genome duplication events in the Mytilidae family and, more generally, in the class Bivalvia. In addition, the calculation of evolution rates for three species of the Mytilinae subfamily sheds new light onto the taxa evolution and highlights key orthologs of interest for the study of Mytilus species divergences. Conclusions The reference genome presented here will enable the correct identification of molecular markers for evolutionary, population genetics, and conservation studies. Mytilidae have the capability to become a model shellfish for climate change adaptation using genome-enabled systems biology and multi-disciplinary studies of interactions between abiotic stressors, pathogen attacks, and aquaculture practises. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08575-9.
Collapse
Affiliation(s)
- Ana Corrochano-Fraile
- Faculty of Natural Sciences, Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA, UK
| | - Andrew Davie
- Faculty of Natural Sciences, Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA, UK
| | - Stefano Carboni
- Faculty of Natural Sciences, Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA, UK. .,International Marine Centre, Loc. Sa Mardini snc, 09170, Torre Grande, OR, Italy.
| | - Michaël Bekaert
- Faculty of Natural Sciences, Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA, UK
| |
Collapse
|
20
|
Meng Y, Dai W, Lin Z, Zhang W, Dong Y. Expression and functional characterization of peptidoglycan recognition protein-S6 involved in antibacterial responses in the razor clam Sinonovacula constricta. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 129:104331. [PMID: 34883108 DOI: 10.1016/j.dci.2021.104331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/21/2021] [Accepted: 12/04/2021] [Indexed: 06/13/2023]
Abstract
It has been recognized that peptidoglycan recognition proteins (PGRPs), structurally conserved molecules, play crucial roles in the innate immunity of invertebrate. However, few studies have been taken to explore their potential functions. In this study, a novel PGRP from the razor clam Sinonovacula constrict designated as ScPGRP-S6 was identified and characterized. The open reading frame (ORF) of ScPGRP-S6 was 666 bp in length, encoding a protein of 221 amino acid with a signal peptide (1-30) and a typical PGRP domain (39-187). The sequence alignment combined with phylogenetic analysis collectively confirmed that ScPGRP-S6 was a novel member belonging to PGRP-S family. The mRNA transcript of ScPGRP-S6 in the hepatopancreases was significantly up-regulated after peptidoglycan (PGN) stimulation, while it was moderately up-regulated after lipopolysaccharide (LPS) stimulation. The result of immunofluorescence detection demonstrated that the positive signal enhanced obviously after Vibrio parahaemolyticus challenge. Notably, the recombinant protein of ScPGRP-S6 (designed as rScPGRP-S6) exhibited high agglutination activity towards V. parahaemolyticus but weak to Staphylococcus aureus. Furthermore, rScPGRP-S6 showed strong amidase and antibacterial activity in the presence of Zn2+. Collectively, our results manifested that ScPGRP-S6 could act as a scavenger in the innate immune response of S. constricta.
Collapse
Affiliation(s)
- Yiping Meng
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, PR China; College of Marine Sciences, Ningbo University, Ningbo, 315010, PR China
| | - Wenfang Dai
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ninghai, 315604, PR China
| | - Zhihua Lin
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, PR China; Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ninghai, 315604, PR China
| | - Weiwei Zhang
- College of Marine Sciences, Ningbo University, Ningbo, 315010, PR China
| | - Yinghui Dong
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, PR China; Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ninghai, 315604, PR China.
| |
Collapse
|
21
|
Witkop EM, Proestou DA, Gomez-Chiarri M. The expanded inhibitor of apoptosis gene family in oysters possesses novel domain architectures and may play diverse roles in apoptosis following immune challenge. BMC Genomics 2022; 23:201. [PMID: 35279090 PMCID: PMC8917759 DOI: 10.1186/s12864-021-08233-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/06/2021] [Indexed: 11/23/2022] Open
Abstract
Background Apoptosis plays important roles in a variety of functions, including immunity and response to environmental stress. The Inhibitor of Apoptosis (IAP) gene family of apoptosis regulators is expanded in molluscs, including eastern, Crassostrea virginica, and Pacific, Crassostrea gigas, oysters. The functional importance of IAP expansion in apoptosis and immunity in oysters remains unknown. Results Phylogenetic analysis of IAP genes in 10 molluscs identified lineage specific gene expansion in bivalve species. Greater IAP gene family expansion was observed in C. virginica than C. gigas (69 vs. 40), resulting mainly from tandem duplications. Functional domain analysis of oyster IAP proteins revealed 3 novel Baculoviral IAP Repeat (BIR) domain types and 14 domain architecture types across gene clusters, 4 of which are not present in model organisms. Phylogenetic analysis of bivalve IAPs suggests a complex history of domain loss and gain. Most IAP genes in oysters (76% of C. virginica and 82% of C. gigas), representing all domain architecture types, were expressed in response to immune challenge (Ostreid Herpesvirus OsHV-1, bacterial probionts Phaeobacter inhibens and Bacillus pumilus, several Vibrio spp., pathogenic Aliiroseovarius crassostreae, and protozoan parasite Perkinsus marinus). Patterns of IAP and apoptosis-related differential gene expression differed between the two oyster species, where C. virginica, in general, differentially expressed a unique set of IAP genes in each challenge, while C. gigas differentially expressed an overlapping set of IAP genes across challenges. Apoptosis gene expression patterns clustered mainly by resistance/susceptibility of the oyster host to immune challenge. Weighted Gene Correlation Network Analysis (WGCNA) revealed unique combinations of transcripts for 1 to 12 IAP domain architecture types, including novel types, were significantly co-expressed in response to immune challenge with transcripts in apoptosis-related pathways. Conclusions Unprecedented diversity characterized by novel BIR domains and protein domain architectures was observed in oyster IAPs. Complex patterns of gene expression of novel and conserved IAPs in response to a variety of ecologically-relevant immune challenges, combined with evidence of direct co-expression of IAP genes with apoptosis-related transcripts, suggests IAP expansion facilitates complex and nuanced regulation of apoptosis and other immune responses in oysters. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08233-6.
Collapse
|
22
|
First Insights into the Repertoire of Secretory Lectins in Rotifers. Mar Drugs 2022; 20:md20020130. [PMID: 35200659 PMCID: PMC8878817 DOI: 10.3390/md20020130] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 02/06/2023] Open
Abstract
Due to their high biodiversity and adaptation to a mutable and challenging environment, aquatic lophotrochozoan animals are regarded as a virtually unlimited source of bioactive molecules. Among these, lectins, i.e., proteins with remarkable carbohydrate-recognition properties involved in immunity, reproduction, self/nonself recognition and several other biological processes, are particularly attractive targets for biotechnological research. To date, lectin research in the Lophotrochozoa has been restricted to the most widespread phyla, which are the usual targets of comparative immunology studies, such as Mollusca and Annelida. Here we provide the first overview of the repertoire of the secretory lectin-like molecules encoded by the genomes of six target rotifer species: Brachionus calyciflorus, Brachionus plicatilis, Proales similis (class Monogononta), Adineta ricciae, Didymodactylos carnosus and Rotaria sordida (class Bdelloidea). Overall, while rotifer secretory lectins display a high molecular diversity and belong to nine different structural classes, their total number is significantly lower than for other groups of lophotrochozoans, with no evidence of lineage-specific expansion events. Considering the high evolutionary divergence between rotifers and the other major sister phyla, their widespread distribution in aquatic environments and the ease of their collection and rearing in laboratory conditions, these organisms may represent interesting targets for glycobiological studies, which may allow the identification of novel carbohydrate-binding proteins with peculiar biological properties.
Collapse
|
23
|
Gorbushin AM. Identification of peptidoglycan recognition proteins in hemocytes and kidney of common periwinkle Littorinalittorea. FISH & SHELLFISH IMMUNOLOGY 2022; 120:11-14. [PMID: 34774730 DOI: 10.1016/j.fsi.2021.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/11/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Peptidoglycan Recognition Proteins (PGRPs) are a diverse group of proteins involved in innate immunity. In particular, PGRPs have been shown to participate in immune pattern recognition in various mollusks. However, they have not been described in Caenogastropoda, a large molluscan group comprising sea, freshwater and land snails. In this study, four short PGRPs with molecular weights ranging from 21 to 34 kDa and their isoforms were identified and structurally characterized in the kidney and hemocytic transcriptomes of a caenogastropod mollusk Littorina littorea. All of them (LlPGRP1-4) are secretory, possess a signal peptide and a characteristic N-terminal N-acetylmuramoyl-l-alanine amidase (Ami) domain with conserved Zn2+ binding- and amidase catalytic sites. The shortest proteins, LlPGRP1 and LlPGRP2, have no additional conserved motifs on the N-terminus. In longer and most abundantly expressed LlPGRP3 and LlPGRP4 the Ami-domain is combined with an N-terminal SH3-domain and a cysteine-rich motif, respectively. Expression analysis showed that LlPGRPs of the common periwinkle were uninvolved in the immune response to infection with trematode Himasthla elongata though they might act in antibacterial defense.
Collapse
Affiliation(s)
- Alexander M Gorbushin
- Sechenov Institute of Evolutionary Physiology and Biochemistry (IEPhB RAS), St Petersburg, Russia.
| |
Collapse
|
24
|
Chan J, Wang L, Li L, Mu K, Bushek D, Xu Y, Guo X, Zhang G, Zhang L. Transcriptomic Response to Perkinsus marinus in Two Crassostrea Oysters Reveals Evolutionary Dynamics of Host-Parasite Interactions. Front Genet 2021; 12:795706. [PMID: 34925467 PMCID: PMC8678459 DOI: 10.3389/fgene.2021.795706] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/17/2021] [Indexed: 12/17/2022] Open
Abstract
Infectious disease outbreaks are causing widespread declines of marine invertebrates including corals, sea stars, shrimps, and molluscs. Dermo is a lethal infectious disease of the eastern oyster Crassostrea virginica caused by the protist Perkinsus marinus. The Pacific oyster Crassostrea gigas is resistant to Dermo due to differences in the host-parasite interaction that is not well understood. We compared transcriptomic responses to P. marinus challenge in the two oysters at early and late infection stages. Dynamic and orchestrated regulation of large sets of innate immune response genes were observed in both species with remarkably similar patterns for most orthologs, although responses in C. virginica were stronger, suggesting strong or over-reacting immune response could be a cause of host mortality. Between the two species, several key immune response gene families differed in their expansion, sequence variation and/or transcriptional response to P. marinus, reflecting evolutionary divergence in host-parasite interaction. Of note, significant upregulation of inhibitors of apoptosis (IAPs) was observed in resistant C. gigas but not in susceptible C. virginica, suggesting upregulation of IAPs is an active defense mechanism, not a passive response orchestrated by P. marinus. Compared with C. gigas, C. virginica exhibited greater expansion of toll-like receptors (TLRs) and positive selection in P. marinus responsive TLRs. The C1q domain containing proteins (C1qDCs) with the galactose-binding lectin domain that is involved in P. marinus recognition, were only present and significantly upregulated in C. virginica. These results point to previously undescribed differences in host defense genes between the two oyster species that may account for the difference in susceptibility, providing an expanded portrait of the evolutionary dynamics of host-parasite interaction in lophotrochozoans that lack adaptive immunity. Our findings suggest that C. virginica and P. marinus have a history of coevolution and the recent outbreaks may be due to increased virulence of the parasite.
Collapse
Affiliation(s)
- Jiulin Chan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology and Center of Deep Sea Research, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Lu Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology and Center of Deep Sea Research, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- University of Chinese Academy of Sciences, College of Marine Science, Beijing, China
| | - Li Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology and Center of Deep Sea Research, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- University of Chinese Academy of Sciences, College of Marine Science, Beijing, China
| | - Kang Mu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology and Center of Deep Sea Research, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- University of Chinese Academy of Sciences, College of Marine Science, Beijing, China
| | - David Bushek
- Haskin Shellfish Research Laboratory, Department of Marine and Coastal Sciences, Rutgers University, Port Norris, NJ, United States
| | - Yue Xu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology and Center of Deep Sea Research, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Ximing Guo
- Haskin Shellfish Research Laboratory, Department of Marine and Coastal Sciences, Rutgers University, Port Norris, NJ, United States
| | - Guofan Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology and Center of Deep Sea Research, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- University of Chinese Academy of Sciences, College of Marine Science, Beijing, China
| | - Linlin Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology and Center of Deep Sea Research, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- University of Chinese Academy of Sciences, College of Marine Science, Beijing, China
| |
Collapse
|
25
|
Liang B, Su J. Advances in aquatic animal RIG-I-like receptors. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2021; 2:100012. [DOI: 10.1016/j.fsirep.2021.100012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/29/2021] [Accepted: 05/16/2021] [Indexed: 01/12/2023] Open
|
26
|
Sun J, Wang L, Yang W, Li Y, Jin Y, Wang L, Song L. A novel C-type lectin activates the complement cascade in the primitive oyster Crassostrea gigas. J Biol Chem 2021; 297:101352. [PMID: 34715129 PMCID: PMC8605247 DOI: 10.1016/j.jbc.2021.101352] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 10/17/2021] [Accepted: 10/22/2021] [Indexed: 12/20/2022] Open
Abstract
The ancient origin of the lectin pathway of the complement system can be traced back to protochordates (such as amphioxus and tunicates) by the presence of components such as ficolin, glucose-binding lectin, mannose-binding lectin-associated serine protease (MASP), and C3. Evidence for a more primitive origin is offered in the present study on the Pacific oyster Crassostrea gigas. C3 protein in C. gigas (CgC3) was found to be cleaved after stimulation with the bacteria Vibrio splendidus. In addition, we identified a novel C-type lectin (defined as CgCLec) with a complement control protein (CCP) domain, which recognized various pathogen-associated molecular patterns (PAMPs) and bacteria. This protein was involved in the activation of the complement system by binding CgMASPL-1 to promote cleavage of CgC3. The production of cytokines and antibacterial peptides, as well as the phagocytotic ratio of haemocytes in CgCLec-CCP-, CgMASPL-1-, or CgC3-knockdown oysters, decreased significantly after V. splendidus stimulation. Moreover, this activated CgC3 participated in perforation of bacterial envelopes and inhibiting survival of the infecting bacteria. These results collectively suggest that there existed an ancient lectin pathway in molluscs, which was activated by a complement cascade to regulate the production of immune effectors, phagocytosis, and bacterial lysis.
Collapse
Affiliation(s)
- Jiejie Sun
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, China
| | - Liyan Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, China
| | - Wenwen Yang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, China
| | - Yinan Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, China
| | - Yingnan Jin
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, China; Dalian Key Laboratory of Aquatic Animal Diseases Prevention and Control, Dalian Ocean University, Dalian, China.
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, China.
| |
Collapse
|
27
|
Pereiro P, Moreira R, Novoa B, Figueras A. Differential Expression of Long Non-Coding RNA (lncRNA) in Mediterranean Mussel ( Mytilus galloprovincialis) Hemocytes under Immune Stimuli. Genes (Basel) 2021; 12:genes12091393. [PMID: 34573375 PMCID: PMC8468332 DOI: 10.3390/genes12091393] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/31/2021] [Accepted: 09/07/2021] [Indexed: 02/07/2023] Open
Abstract
The Mediterranean mussel is one of the most economically relevant bivalve mollusk species in Europe and China. The absence of massive mortalities and their resistance to pathogens affecting other cultured bivalves has been under study in recent years. The transcriptome response of this species to different immune stimuli has been extensively studied, and even the complexity of its genome, which has recently been sequenced, has been suggested as one of the factors contributing to this resistance. However, studies concerning the non-coding RNA profiles remain practically unexplored-especially those corresponding to the lncRNAs. To the best of our knowledge, this is the second characterization and study of lncRNAs in this bivalve species. In this work, we identified the potential repertoire of lncRNAs expressed in mussel hemocytes, and using RNA-Seq we analyzed the lncRNA profile of mussel hemocytes stimulated in vitro with three different immune stimuli: LPS, poly I:C, and β-glucans. Compared to unstimulated hemocytes, LPS induced the highest modulation of lncRNAs, whereas poly I:C and β-glucans induced a similar discrete response. Based on the potential cis-regulatory activity of the lncRNAs, we identified the neighboring protein-coding genes of the regulated lncRNAs to estimate-at least partially-the processes in which they are implicated. After applying correlation analyses, it seems that-especially for LPS-the lncRNAs could participate in the regulation of gene expression, and substantially contribute to the immune response.
Collapse
|
28
|
Pacor S, Benincasa M, Musso MV, Krce L, Aviani I, Pallavicini A, Scocchi M, Gerdol M, Mardirossian M. The proline-rich myticalins from Mytilus galloprovincialis display a membrane-permeabilizing antimicrobial mode of action. Peptides 2021; 143:170594. [PMID: 34118363 DOI: 10.1016/j.peptides.2021.170594] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/19/2021] [Accepted: 06/03/2021] [Indexed: 12/15/2022]
Abstract
Bivalve mollusks are continuously exposed to potentially pathogenic microorganisms living in the marine environment. Not surprisingly, these filter-feeders developed a robust innate immunity to protect themselves, which includes a broad panel of antimicrobial peptides. Among these, myticalins represent a recently discovered family of linear cationic peptides expressed in the gills of Mytilus galloprovincialis. Even though myticalins and insect and mammalian proline-rich antimicrobial peptides (PrAMPs) share a similar amino acid composition, we here show that none of the tested mussel peptides use a non-lytic mode of action relying on the bacterial transporter SbmA. On the other hand, all the tested myticalins perturbed and permeabilized the membranes of E. coli BW25113, as shown by flow-cytometry and atomic force microscopy. Circular dichroism spectra revealed that most myticalins did not adopt recognizable secondary structures in the presence of amphipathic environments, such as biological membranes. To explore possible uses of myticalins for biotech, we assessed their biocompatibility with a human cell line. Non-negligible cytotoxic effects displayed by myticalins indicate that their optimization would be required before their further use as lead compounds in the development of new antibiotics.
Collapse
Affiliation(s)
- Sabrina Pacor
- Department of Life Sciences, Via Licio Giorgieri 5, University of Trieste, 34127 Trieste, Italy.
| | - Monica Benincasa
- Department of Life Sciences, Via Licio Giorgieri 5, University of Trieste, 34127 Trieste, Italy.
| | - Maria Valentina Musso
- Department of Life Sciences, Via Licio Giorgieri 5, University of Trieste, 34127 Trieste, Italy.
| | - Lucija Krce
- Department of Physics, Faculty of Science, University of Split, Soba B3-18, Ruđera Boškovića 33, 21000 Split, Croatia.
| | - Ivica Aviani
- Department of Physics, Faculty of Science, University of Split, Soba B3-18, Ruđera Boškovića 33, 21000 Split, Croatia.
| | - Alberto Pallavicini
- Department of Life Sciences, Via Licio Giorgieri 5, University of Trieste, 34127 Trieste, Italy.
| | - Marco Scocchi
- Department of Life Sciences, Via Licio Giorgieri 5, University of Trieste, 34127 Trieste, Italy.
| | - Marco Gerdol
- Department of Life Sciences, Via Licio Giorgieri 5, University of Trieste, 34127 Trieste, Italy.
| | - Mario Mardirossian
- Department of Medical Sciences, University of Trieste, Laboratorio Clinica Odontostomatologica, Piazza dell'Ospitale 1, 34125 Trieste, Italy.
| |
Collapse
|
29
|
Diverse Localization Patterns of an R-Type Lectin in Marine Annelids. Molecules 2021; 26:molecules26164799. [PMID: 34443386 PMCID: PMC8399747 DOI: 10.3390/molecules26164799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/01/2021] [Accepted: 08/03/2021] [Indexed: 11/17/2022] Open
Abstract
Lectins facilitate cell–cell contact and are critical in many cellular processes. Studying lectins may help us understand the mechanisms underlying tissue regeneration. We investigated the localization of an R-type lectin in a marine annelid (Perinereis sp.) with remarkable tissue regeneration abilities. Perinereis nuntia lectin (PnL), a galactose-binding lectin with repeating Gln-X-Trp motifs, is derived from the ricin B-chain. An antiserum was raised against PnL to specifically detect a 32-kDa lectin in the crude extracts from homogenized lugworms. The antiserum detected PnL in the epidermis, setae, oblique muscle, acicula, nerve cord, and nephridium of the annelid. Some of these tissues and organs also produced Galactose (Gal) or N-acetylgalactosamine (GalNAc), which was detected by fluorescent-labeled plant lectin. These results indicated that the PnL was produced in the tissues originating from the endoderm, mesoderm, and ectoderm. Besides, the localizing pattern of PnL partially merged with the binding pattern of a fluorescent-labeled mushroom lectin that binds to Gal and GalNAc. It suggested that PnL co-localized with galactose-containing glycans in Annelid tissue; this might be the reason PnL needed to be extracted with haptenic sugar, such as d-galactose, in the buffer. Furthermore, we found that a fluorescein isothiocyanate-labeled Gal/GalNAc-binding mushroom lectin binding pattern in the annelid tissue overlapped with the localizing pattern of PnL. These findings suggest that lectin functions by interacting with Gal-containing glycoconjugates in the tissues.
Collapse
|
30
|
Furr D, Ketchum RN, Phippen BL, Reitzel AM, Ivanina AV. Physiological Variation in Response to Vibrio and Hypoxia by Aquacultured Eastern Oysters in the Southeastern United States. Integr Comp Biol 2021; 61:1715-1729. [PMID: 34351419 DOI: 10.1093/icb/icab176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/12/2021] [Indexed: 02/04/2023] Open
Abstract
Eastern oysters (Crassostrea virginica) have long been recognized as model organisms of extreme environmental tolerance, showing resilience to variation in temperature, salinity, hypoxia and microbial pathogens. These phenotypic responses, however, show variability between geographic locations or habitats (e.g., tidal). Physiological, morphological and genetic differences occur in populations throughout a species' geographical range, which may have been shaped by regional abiotic and biotic variations. Few studies of C. virginica have explored the combined factors of physiological mechanisms of divergent phenotypes between locations and the genetic relationships of individuals between these locations. To characterize genetic relationships of four locations with aquacultured oysters along the North Carolina and Virginia coast, we sequenced a portion of cytochrome oxidase subunit I (COI) that revealed significant variation in haplotype distribution between locations. We then measured mitochondrial physiology and expression of the innate immunity response of hemocytes to lab acclimation and combined stress conditions to compare basal expression and stress response in oysters between these locations. For stress sensing genes, toll-like receptors had the strongest location-specific response to hypoxia and Vibrio, whereas mannose receptor and a stress-receptor were specific to hypoxia and bacteria, respectively. The expression of stress response genes also showed location-specific and stressor-specific changes in expression, particularly for big defensin and the complement gene Cq3. Our results further suggested that genetic similarity of oysters from different locations was not clearly related to physiological and molecular responses. These results are informative for understanding the range of physiological plasticity for stress responses in this commercially important oyster species. They also have implications in the oyster farming industry as well as conservation efforts to restore endangered native oyster beds.
Collapse
Affiliation(s)
- Denise Furr
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Remi N Ketchum
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Britney L Phippen
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Adam M Reitzel
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Anna V Ivanina
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA.,Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| |
Collapse
|
31
|
Li J, Li Y, Fan Z, Chen S, Yan X, Yue Z, Huang G, Liu S, Zhang H, Chen S, Dong M, Xu A, Huang S. Two Amphioxus ApeC-Containing Proteins Bind to Microbes and Inhibit the TRAF6 Pathway. Front Immunol 2021; 12:715245. [PMID: 34394119 PMCID: PMC8361754 DOI: 10.3389/fimmu.2021.715245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/12/2021] [Indexed: 11/13/2022] Open
Abstract
The apextrin C-terminal (ApeC) domain is a class of newly discovered protein domains with an origin dating back to prokaryotes. ApeC-containing proteins (ACPs) have been found in various marine and aquatic invertebrates, but their functions and the underlying mechanisms are largely unknown. Early studies suggested that amphioxus ACP1 and ACP2 bind to bacterial cell walls and have a role in immunity. Here we identified another two amphioxus ACPs (ACP3 and ACP5), which belong to the same phylogenetic clade with ACP1/2, but show distinct expression patterns and sequence divergence (40-50% sequence identities). Both ACP3 and ACP5 were mainly expressed in the intestine and hepatic cecum, and could be up-regulated after bacterial challenge. Both prokaryotic-expressed recombinant ACP3 and ACP5 could bind with several species of bacteria and yeasts, showing agglutinating activity but no microbicidal activity. ELISA assays suggested that their ApeC domains could interact with peptidoglycan (PGN), but not with lipoteichoic acid (LTA), lipopolysaccharides (LPS) and zymosan A. Furthermore, they can only bind to Lys-type PGN from Staphylococcus aureus, but not to DAP-type PGN from Bacillus subtilis and not to moieties of PGN such as MDPs, NAMs and NAGs. This recognition spectrum is different from that of ACP1/2. We also found that when expressed in mammalian cells, ACP3 could interact with TRAF6 via a conserved non-ApeC region, which inhibited the ubiquitination of TRAF6 and hence suppressed downstream NF-κB activation. This work helped define a novel subfamily of ACPs, which have conserved structures, and have related yet diversified molecular functions. Its members have dual roles, with ApeC as a lectin and a conserved unknown region as a signal transduction regulator. These findings expand our understanding of the ACP functions and may guide future research on the role of ACPs in different animal clades.
Collapse
Affiliation(s)
- Jin Li
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yuhui Li
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhaoyu Fan
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shenghui Chen
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xinyu Yan
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zirui Yue
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Guangrui Huang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Shumin Liu
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hao Zhang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shangwu Chen
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Meiling Dong
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Anlong Xu
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Shengfeng Huang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
32
|
Saco A, Rey-Campos M, Rosani U, Novoa B, Figueras A. The Evolution and Diversity of Interleukin-17 Highlight an Expansion in Marine Invertebrates and Its Conserved Role in Mucosal Immunity. Front Immunol 2021; 12:692997. [PMID: 34386003 PMCID: PMC8353272 DOI: 10.3389/fimmu.2021.692997] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/13/2021] [Indexed: 01/13/2023] Open
Abstract
The interleukin-17 (IL-17) family consists of proinflammatory cytokines conserved during evolution. A comparative genomics approach was applied to examine IL-17 throughout evolution from poriferans to higher vertebrates. Cnidaria was highlighted as the most ancient diverged phylum, and several evolutionary patterns were revealed. Large expansions of the IL-17 repertoire were observed in marine molluscs and echinoderm species. We further studied this expansion in filter-fed Mytilus galloprovincialis, which is a bivalve with a highly effective innate immune system supported by a variable pangenome. We recovered 379 unique IL-17 sequences and 96 receptors from individual genomes that were classified into 23 and 6 isoforms after phylogenetic analyses. Mussel IL-17 isoforms were conserved among individuals and shared between closely related Mytilidae species. Certain isoforms were specifically implicated in the response to a waterborne infection with Vibrio splendidus in mussel gills. The involvement of IL-17 in mucosal immune responses could be conserved in higher vertebrates from these ancestral lineages.
Collapse
Affiliation(s)
- Amaro Saco
- Institute of Marine Research (IIM), National Research Council (CSIC), Vigo, Spain
| | - Magalí Rey-Campos
- Institute of Marine Research (IIM), National Research Council (CSIC), Vigo, Spain
| | - Umberto Rosani
- Department of Biology, University of Padova, Padova, Italy
| | - Beatriz Novoa
- Institute of Marine Research (IIM), National Research Council (CSIC), Vigo, Spain
| | - Antonio Figueras
- Institute of Marine Research (IIM), National Research Council (CSIC), Vigo, Spain
| |
Collapse
|
33
|
Ben Younes R, Bouallegui Y, Fezai O, Mezni A, Touaylia S, Oueslati R. Silver nanoparticles' impact on the gene expression of the cytosolic adaptor MyD-88 and the interferon regulatory factor IRF in the gills and digestive gland of mytilus galloprovincialis. Drug Chem Toxicol 2021; 45:2371-2378. [PMID: 34225533 DOI: 10.1080/01480545.2021.1945128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Silver nanoparticles (AgNPs) have been reported as stressors for the bivalves' immune system at different regulatory levels, impacting the detection step and receptors, and other mediators, as well as effector molecules. However, studies on how AgNPs impact the transmission of signals from receptors and whether they have an effect on mediators and transcription factors are still scarce. This study aims to investigate the effect of 12 hours of in vivo exposure to 100 µg/L of AgNPs on the gene expression of the cytosolic adaptor Myeloid, the differentiation protein 88 (MgMyD88-b), and the interferon regulatory factor (Me4-IRF) in the gills and digestive gland of Mytilus galloprovincialis, before and after blocking two major uptake pathways of nanoparticles (clathrin- and caveolae-mediated endocytosis). The results illustrate a tissue-specific gene expression of the MgMyD88-b and the Me4-IRF in the gills and digestive gland of M. galloprovincialis. In the gills, AgNPs did not significantly impact the expression of the two genes. However, blocking the caveolae-mediated endocytosis decreased the expression of Me4-IRF. However, inhibition of clathrin-mediated endocytosis in the digestive gland recorded a significant decrease in the expression of MgMyD88-b. Overall, the inhibition of the AgNPs' uptake routes have highlighted their potential interference with the immune response through the studied mediators' genes, which need to be studied further in future investigations.
Collapse
Affiliation(s)
- Ridha Ben Younes
- Research Unit of Immuno-Microbiology, Environment and Carcinogenesis, Faculty of Sciences of Bizerte, University of Carthage, Tunisia
| | - Younes Bouallegui
- Research Unit of Immuno-Microbiology, Environment and Carcinogenesis, Faculty of Sciences of Bizerte, University of Carthage, Tunisia.,LR01ES14 Laboratory of Environmental Biomonitoring, University of Carthage, Faculty of Sciences of Bizerte, Bizerte, Tunisia
| | - Olfa Fezai
- LR01ES14 Laboratory of Environmental Biomonitoring, University of Carthage, Faculty of Sciences of Bizerte, Bizerte, Tunisia
| | - Amine Mezni
- Department of Chemistry, College of Science, Taif University, Taif, Saudi Arabia
| | - Samir Touaylia
- LR01ES14 Laboratory of Environmental Biomonitoring, University of Carthage, Faculty of Sciences of Bizerte, Bizerte, Tunisia
| | - Ridha Oueslati
- Research Unit of Immuno-Microbiology, Environment and Carcinogenesis, Faculty of Sciences of Bizerte, University of Carthage, Tunisia
| |
Collapse
|
34
|
Ventoso P, Pazos AJ, Blanco J, Pérez-Parallé ML, Triviño JC, Sánchez JL. Transcriptional Response in the Digestive Gland of the King Scallop ( Pecten maximus) After the Injection of Domoic Acid. Toxins (Basel) 2021; 13:toxins13050339. [PMID: 34067146 PMCID: PMC8150855 DOI: 10.3390/toxins13050339] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/05/2021] [Accepted: 05/05/2021] [Indexed: 01/18/2023] Open
Abstract
Some diatom species of the genus Pseudo-nitzschia produce the toxin domoic acid. The depuration rate of domoic acid in Pecten maximus is very low; for this reason, king scallops generally contain high levels of domoic acid in their tissues. A transcriptomic approach was used to identify the genes differentially expressed in the P. maximus digestive gland after the injection of domoic acid. The differential expression analysis found 535 differentially expressed genes (226 up-regulated and 309 down-regulated). Protein–protein interaction networks obtained with the up-regulated genes were enriched in gene ontology terms, such as vesicle-mediated transport, response to stress, signal transduction, immune system process, RNA metabolic process, and autophagy, while networks obtained with the down-regulated genes were enriched in gene ontology terms, such as response to stress, immune system process, ribosome biogenesis, signal transduction, and mRNA processing. Genes that code for cytochrome P450 enzymes, glutathione S-transferase theta-1, glutamine synthase, pyrroline-5-carboxylate reductase 2, and sodium- and chloride-dependent glycine transporter 1 were among the up-regulated genes. Therefore, a stress response at the level of gene expression, that could be caused by the domoic acid injection, was evidenced by the alteration of several biological, cellular, and molecular processes.
Collapse
Affiliation(s)
- Pablo Ventoso
- Departamento de Bioquímica y Biología Molecular, Instituto de Acuicultura, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (P.V.); (M.L.P.-P.); (J.L.S.)
| | - Antonio J. Pazos
- Departamento de Bioquímica y Biología Molecular, Instituto de Acuicultura, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (P.V.); (M.L.P.-P.); (J.L.S.)
- Correspondence:
| | - Juan Blanco
- Centro de Investigacións Mariñas, Xunta de Galicia, Pedras de Corón s/n Apdo. 13, 36620 Vilanova de Arousa, Spain;
| | - M. Luz Pérez-Parallé
- Departamento de Bioquímica y Biología Molecular, Instituto de Acuicultura, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (P.V.); (M.L.P.-P.); (J.L.S.)
| | - Juan C. Triviño
- Sistemas Genómicos, Ronda G. Marconi 6, Paterna, 46980 Valencia, Spain;
| | - José L. Sánchez
- Departamento de Bioquímica y Biología Molecular, Instituto de Acuicultura, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (P.V.); (M.L.P.-P.); (J.L.S.)
| |
Collapse
|
35
|
Li M, Chen H, Wang M, Zhong Z, Wang H, Zhou L, Zhang H, Li C. A Toll-like receptor identified in Gigantidas platifrons and its potential role in the immune recognition of endosymbiotic methane oxidation bacteria. PeerJ 2021; 9:e11282. [PMID: 33986997 PMCID: PMC8092104 DOI: 10.7717/peerj.11282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/24/2021] [Indexed: 11/20/2022] Open
Abstract
Symbiosis with chemosynthetic bacteria is an important ecological strategy for the deep-sea megafaunas including mollusks, tubeworms and crustacean to obtain nutrients in hydrothermal vents and cold seeps. How the megafaunas recognize symbionts and establish the symbiosis has attracted much attention. Bathymodiolinae mussels are endemic species in both hydrothermal vents and cold seeps while the immune recognition mechanism underlying the symbiosis is not well understood due to the nonculturable symbionts. In previous study, a lipopolysaccharide (LPS) pull-down assay was conducted in Gigantidas platifrons to screen the pattern recognition receptors potentially involved in the recognition of symbiotic methane-oxidizing bacteria (MOB). Consequently, a total of 208 proteins including GpTLR13 were identified. Here the molecular structure, expression pattern and immune function of GpTLR13 were further analyzed. It was found that GpTLR13 could bind intensively with the lipid A structure of LPS through surface plasmon resonance analysis. The expression alternations of GpTLR13 transcripts during a 28-day of symbiont-depletion assay were investigated by real-time qPCR. As a result, a robust decrease of GpTLR13 transcripts was observed accompanying with the loss of symbionts, implying its participation in symbiosis. In addition, GpTLR13 transcripts were found expressed exclusively in the bacteriocytes of gills of G. platifrons by in situ hybridization. It was therefore speculated that GpTLR13 may be involved in the immune recognition of symbiotic methane-oxidizing bacteria by specifically recognizing the lipid A structure of LPS. However, the interaction between GpTLR13 and symbiotic MOB was failed to be addressed due to the nonculturable symbionts. Nevertheless, the present result has provided with a promising candidate as well as a new approach for the identification of symbiont-related genes in Bathymodiolinae mussels.
Collapse
Affiliation(s)
- Mengna Li
- Center of Deep Sea Research and Key Laboratory of Marine Ecology & Environmental Sciences (CODR and KLMEES), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hao Chen
- Center of Deep Sea Research and Key Laboratory of Marine Ecology & Environmental Sciences (CODR and KLMEES), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Minxiao Wang
- Center of Deep Sea Research and Key Laboratory of Marine Ecology & Environmental Sciences (CODR and KLMEES), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Zhaoshan Zhong
- Center of Deep Sea Research and Key Laboratory of Marine Ecology & Environmental Sciences (CODR and KLMEES), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Hao Wang
- Center of Deep Sea Research and Key Laboratory of Marine Ecology & Environmental Sciences (CODR and KLMEES), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Li Zhou
- Center of Deep Sea Research and Key Laboratory of Marine Ecology & Environmental Sciences (CODR and KLMEES), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Huan Zhang
- Center of Deep Sea Research and Key Laboratory of Marine Ecology & Environmental Sciences (CODR and KLMEES), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Chaolun Li
- Center of Deep Sea Research and Key Laboratory of Marine Ecology & Environmental Sciences (CODR and KLMEES), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
36
|
Wang Z, Liang X, Li G, Liufu B, Lin K, Li J, Wang J, Wang B. Molecular Characterization of Complement Component 3 (C3) in the Pearl Oyster Pinctada fucata Improves Our Understanding of the Primitive Complement System in Bivalve. Front Immunol 2021; 12:652805. [PMID: 33953719 PMCID: PMC8089394 DOI: 10.3389/fimmu.2021.652805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/25/2021] [Indexed: 11/16/2022] Open
Abstract
As the central component in the complement system, complement component 3 (C3) plays essential roles in both the innate and adaptive immune responses. Here, a C3 gene (designated as pf-C3) was obtained from the pearl oyster Pinctada fucata by RT-PCR and rapid amplification of cDNA ends (RACE). The pf-C3 cDNA consists of 5,634 bp with an open reading frame (ORF) of 5,193 bp encoding a protein of 1,730 amino acids with a 19 residue signal peptide. The deduced pf-C3 protein possessed the characteristic structural features present in its homologs and contained the A2M_N_2, ANATO, A2M, A2M_comp, A2M_recep, and C345C domains, as well as the C3 convertase cleavage site, thioester motif, and conserved Cys, His, and Glu residues. Phylogenetic analysis revealed that pf-C3 is closely related to the C3s from other mollusks. Pf-C3 mRNA was expressed in all examined tissues including gill, digestive gland, adductor muscle, mantle and foot, while the highest expression was found in the digestive gland. Following the challenge with Vibrio alginolyticus, pf-C3 expression was significantly induced in hemocytes. Luciferase reporter assays indicated that pf-C3a could activate the NF-κB signal pathway in HEK293T cells. Further knockdown of pf-C3 by specific siRNA could significantly reduce the phagocytosis of V. alginolyticus by hemocytes in vitro. These results would help increase understanding of the function of C3 in the invertebrate immune system and therefore provide new insights into the roles of the primitive complement system in invertebrates.
Collapse
Affiliation(s)
- Zhongliang Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China.,Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Guangdong Ocean University, Zhanjiang, China
| | - Xueru Liang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Guiying Li
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Bai Liufu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Kaiqi Lin
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Jinfeng Li
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Jing Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Bei Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China.,Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
37
|
Jiang K, Yin Z, Zhang Y, Xu Q, Yu Y, Cong W, Yan X, Nie H. Genome-wide investigation and expression analysis of MACPF gene family reveals its immune role in response to bacterial challenge of Manila clam. Genomics 2021; 113:1136-1145. [PMID: 33639237 DOI: 10.1016/j.ygeno.2021.02.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/14/2021] [Accepted: 02/17/2021] [Indexed: 01/26/2023]
Abstract
In this study, 18 MACPF genes (RpMACPF) were identified and classed into three types (Macrophage-expressed gene 1, Apextrin, and MACPF domain contain protein) based on gene structure and phylogenetic relationship in R. philippinarum. The length of RpMACPF proteins varied from 287 to 785 amino acids. The molecular weights and Theoretical PI values ranged from 3.2 kDa to 8.7 kDa and 4.7 to 8.6, respectively. RNA-seq data analysis revealed that 14 of 18 RpMACPF genes were highly expressed at the pediveliger larvae stage indicate RpMACPF might contribute to the early development and metamorphosis processes of the R. philippinarum. Besides, we found RpMACPF genes were significantly regulated by pathogen-associated molecular patterns (PAMPs) and Vibrio parahemolyticus, which indicates RpMACPF genes may play significant roles in response to invading pathogens. The results obtained in this work will provide valuable insight into the immune function of MACPF gene in R. philippinarum.
Collapse
Affiliation(s)
- Kunyin Jiang
- School of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China
| | - Zhihui Yin
- School of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China
| | - Yanming Zhang
- School of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China
| | - Qiaoyue Xu
- School of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China
| | - Yongchao Yu
- Rongcheng Marine Economic Development Center, 264300 Rongcheng, China
| | - Wanlin Cong
- Rongcheng Marine Economic Development Center, 264300 Rongcheng, China
| | - Xiwu Yan
- School of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China
| | - Hongtao Nie
- School of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China.
| |
Collapse
|
38
|
Portelinha J, Duay SS, Yu SI, Heilemann K, Libardo MDJ, Juliano SA, Klassen JL, Angeles-Boza AM. Antimicrobial Peptides and Copper(II) Ions: Novel Therapeutic Opportunities. Chem Rev 2021; 121:2648-2712. [PMID: 33524257 DOI: 10.1021/acs.chemrev.0c00921] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The emergence of new pathogens and multidrug resistant bacteria is an important public health issue that requires the development of novel classes of antibiotics. Antimicrobial peptides (AMPs) are a promising platform with great potential for the identification of new lead compounds that can combat the aforementioned pathogens due to their broad-spectrum antimicrobial activity and relatively low rate of resistance emergence. AMPs of multicellular organisms made their debut four decades ago thanks to ingenious researchers who asked simple questions about the resistance to bacterial infections of insects. Questions such as "Do fruit flies ever get sick?", combined with pioneering studies, have led to an understanding of AMPs as universal weapons of the immune system. This review focuses on a subclass of AMPs that feature a metal binding motif known as the amino terminal copper and nickel (ATCUN) motif. One of the metal-based strategies of hosts facing a pathogen, it includes wielding the inherent toxicity of copper and deliberately trafficking this metal ion into sites of infection. The sudden increase in the concentration of copper ions in the presence of ATCUN-containing AMPs (ATCUN-AMPs) likely results in a synergistic interaction. Herein, we examine common structural features in ATCUN-AMPs that exist across species, and we highlight unique features that deserve additional attention. We also present the current state of knowledge about the molecular mechanisms behind their antimicrobial activity and the methods available to study this promising class of AMPs.
Collapse
Affiliation(s)
- Jasmin Portelinha
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Searle S Duay
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States.,Chemistry Department, Adamson University, 900 San Marcelino Street, Ermita, Manila 1000, Philippines
| | - Seung I Yu
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Kara Heilemann
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - M Daben J Libardo
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Samuel A Juliano
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Jonathan L Klassen
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Alfredo M Angeles-Boza
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States.,Institute of Material Science, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| |
Collapse
|
39
|
Li L, Cardoso JCR, Félix RC, Mateus AP, Canário AVM, Power DM. Fish lysozyme gene family evolution and divergent function in early development. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 114:103772. [PMID: 32730854 DOI: 10.1016/j.dci.2020.103772] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 06/03/2020] [Accepted: 06/14/2020] [Indexed: 06/11/2023]
Abstract
Lysozymes are an ancient group of antimicrobial enzymes of the innate immune system. Here we provide a comparative analysis of the evolution and function of lysozymes during early development in fish, the most speciose vertebrate group. In fishes, lineage and species-specific evolution of both C-type (chicken or conventional) and G-type (goose type) genes occurred. Phylogenetic analysis revealed that the teleost lysozyme G-type members group with the tetrapod homologues but the teleost C-type form three different clusters with the tetrapods. Most of the teleost C-type cluster with tetrapod Lyz but there are some that group with the mammalian Lyzl1/2 and LALBA. This suggests that early in gnathostome evolution these genes already existed and that lyzl1/2 and lalba genes are present in fish and tetrapods. Gene synteny analysis to confirm sequence orthologies failed to identify conserved genome regions between teleosts and other vertebrates lysozyme gene regions suggesting that in the ancestral bony fish genome lyz, lyzl1/2, lalba and lyg precursor genes were transposed to different chromosome regions. The homologue of the mammalian lactalbumin (LALBA) gene was identified for the first time in teleosts and was expressed in skin and during egg and larval development. Lysozyme activity was detected in teleost eggs and varied between species and in the gilthead sea bream lyg and lalba transcript abundance differed in eggs and larvae from different brood stock suggesting differences exist in maternal innate immune protection.
Collapse
Affiliation(s)
- Lisen Li
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade Do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - João C R Cardoso
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade Do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.
| | - Rute C Félix
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade Do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Ana Patrícia Mateus
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade Do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Adelino V M Canário
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade Do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Deborah M Power
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade Do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.
| |
Collapse
|
40
|
Moreira R, Romero A, Rey-Campos M, Pereiro P, Rosani U, Novoa B, Figueras A. Stimulation of Mytilus galloprovincialis Hemocytes With Different Immune Challenges Induces Differential Transcriptomic, miRNomic, and Functional Responses. Front Immunol 2020; 11:606102. [PMID: 33391272 PMCID: PMC7773633 DOI: 10.3389/fimmu.2020.606102] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022] Open
Abstract
Mediterranean mussels (Mytilus galloprovincialis) are marine bivalve molluscs with high resilience to biotic and abiotic stress. This resilience is one of the reasons why this species is such an interesting model for studying processes such as the immune response. In this work, we stimulated mussel hemocytes with poly I:C, β-glucans, and LPS and then sequenced hemocyte mRNAs (transcriptome) and microRNAs (miRNome) to investigate the molecular basis of the innate immune responses against these pathogen-associated molecular patterns (PAMPs). An immune transcriptome comprising 219,765 transcripts and an overview of the mussel miRNome based on 5,175,567 non-redundant miRNA reads were obtained. The expression analyses showed opposite results in the transcriptome and miRNome; LPS was the stimulus that triggered the highest transcriptomic response, with 648 differentially expressed genes (DEGs), while poly I:C was the stimulus that triggered the highest miRNA response, with 240 DE miRNAs. Our results reveal a powerful immune response to LPS as well as activation of certain immunometabolism- and ageing/senescence-related processes in response to all the immune challenges. Poly I:C exhibited powerful stimulating properties in mussels, since it triggered the highest miRNomic response and modulated important genes related to energy demand; these effects could be related to the stronger activation of these hemocytes (increased phagocytosis, increased NO synthesis, and increased velocity and accumulated distance). The transcriptome results suggest that after LPS stimulation, pathogen recognition, homeostasis and cell survival processes were activated, and phagocytosis was induced by LPS. β-glucans elicited a response related to cholesterol metabolism, which is important during the immune response, and it was the only stimulus that induced the synthesis of ROS. These results suggest a specific and distinct response of hemocytes to each stimulus from a transcriptomic, miRNomic, and functional point of view.
Collapse
Affiliation(s)
- Rebeca Moreira
- Institute of Marine Research (IIM), Spanish National Research Council (CSIC), Vigo, Spain
| | - Alejandro Romero
- Institute of Marine Research (IIM), Spanish National Research Council (CSIC), Vigo, Spain
| | - Magalí Rey-Campos
- Institute of Marine Research (IIM), Spanish National Research Council (CSIC), Vigo, Spain
| | - Patricia Pereiro
- Institute of Marine Research (IIM), Spanish National Research Council (CSIC), Vigo, Spain
| | - Umberto Rosani
- Department of Biology, University of Padova, Padova, Italy.,Helmholtz Centre for Polar and Marine Research, Alfred Wegener Institute (AWI), List auf Sylt, Germany
| | - Beatriz Novoa
- Institute of Marine Research (IIM), Spanish National Research Council (CSIC), Vigo, Spain
| | - Antonio Figueras
- Institute of Marine Research (IIM), Spanish National Research Council (CSIC), Vigo, Spain
| |
Collapse
|
41
|
Saco A, Rey-Campos M, Novoa B, Figueras A. Transcriptomic Response of Mussel Gills After a Vibrio splendidus Infection Demonstrates Their Role in the Immune Response. Front Immunol 2020; 11:615580. [PMID: 33391288 PMCID: PMC7772429 DOI: 10.3389/fimmu.2020.615580] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/16/2020] [Indexed: 12/15/2022] Open
Abstract
Mussels (Mytilus galloprovincialis) are filter feeder bivalves that are constantly in contact with a wide range of microorganisms, some of which are potentially pathogenic. How mussels recognize and respond to pathogens has not been fully elucidated to date; therefore, we investigated the immune mechanisms that these animals employ in response to a bacterial bath infection from the surrounding water, mimicking the response that mussels mount under natural conditions. After the bath infection, mussels were able to remove the bacteria from their bodies and from the water tank. Accordingly, antibacterial activity was detected in gill extracts, demonstrating that this tissue plays a central role in removing and clearing potential pathogens. A transcriptomic study performed after a bath infection with Vibrio splendidus identified a total of 1,156 differentially expressed genes. The expression levels of genes contributing to a number of biological processes, such as immune response activation pathways and their regulation with cytokines, cell recognition, adhesion and apoptosis, were significantly modulated after infection, suggesting that the gills play important roles in pathogen recognition, as well as being activators and regulators of the mussel innate immune response. In addition to RNA-seq analysis, long non-coding RNAs and their neighboring genes were also analyzed and exhibited modulation after the bacterial challenge. The response of gills against bath infection was compared with the findings of a previous transcriptomic study on hemocytes responding to systemic infection, demonstrating the different and specific functions of gills. The results of this study indicate that recognition processes occur in the gill, thereby activating the effector agents of the immune response to overcome bacterial infection.
Collapse
Affiliation(s)
- Amaro Saco
- Institute of Marine Research (IIM), National Research Council (CSIC), Vigo, Spain
| | - Magalí Rey-Campos
- Institute of Marine Research (IIM), National Research Council (CSIC), Vigo, Spain
| | - Beatriz Novoa
- Institute of Marine Research (IIM), National Research Council (CSIC), Vigo, Spain
| | - Antonio Figueras
- Institute of Marine Research (IIM), National Research Council (CSIC), Vigo, Spain
| |
Collapse
|
42
|
Kamata K, Mizutani K, Takahashi K, Marchetti R, Silipo A, Addy C, Park SY, Fujii Y, Fujita H, Konuma T, Ikegami T, Ozeki Y, Tame JRH. The structure of SeviL, a GM1b/asialo-GM1 binding R-type lectin from the mussel Mytilisepta virgata. Sci Rep 2020; 10:22102. [PMID: 33328520 PMCID: PMC7744527 DOI: 10.1038/s41598-020-78926-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/24/2020] [Indexed: 11/12/2022] Open
Abstract
SeviL is a recently isolated lectin found to bind to the linear saccharides of the ganglioside GM1b (Neu5Ac\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\alpha$$\end{document}α(2-3)Gal\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta$$\end{document}β(1-3)GalNAc\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta$$\end{document}β(1-4)Gal\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta$$\end{document}β(1-4)Glc) and its precursor, asialo-GM1 (Gal\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta$$\end{document}β(1-3)GalNAc\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta$$\end{document}β(1-4)Gal\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta$$\end{document}β(1-4)Glc). The crystal structures of recombinant SeviL have been determined in the presence and absence of ligand. The protein belongs to the \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta$$\end{document}β-trefoil family, but shows only weak sequence similarity to known structures. SeviL forms a dimer in solution, with one binding site per subunit, close to the subunit interface. Molecular details of glycan recognition by SeviL in solution were analysed by ligand- and protein-based NMR techniques as well as ligand binding assays. SeviL shows no interaction with GM1 due to steric hindrance with the sialic acid branch that is absent from GM1b. This unusual specificity makes SeviL of great interest for the detection and control of certain cancer cells, and cells of the immune system, that display asialo-GM1.
Collapse
Affiliation(s)
- Kenichi Kamata
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Yokohama, Kanagawa, 230-0045, Japan
| | - Kenji Mizutani
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Yokohama, Kanagawa, 230-0045, Japan
| | - Katsuya Takahashi
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Yokohama, Kanagawa, 230-0045, Japan
| | - Roberta Marchetti
- Department of Chemical Sciences, Università di Napoli Federico II, Via Cintia 4, 80126, Naples, Italy
| | - Alba Silipo
- Department of Chemical Sciences, Università di Napoli Federico II, Via Cintia 4, 80126, Naples, Italy
| | - Christine Addy
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Yokohama, Kanagawa, 230-0045, Japan
| | - Sam-Yong Park
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Yokohama, Kanagawa, 230-0045, Japan
| | - Yuki Fujii
- Department of Pharmacy, Graduate School of Pharmaceutical Science, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo, Nagasaki, 859-3298, Japan
| | - Hideaki Fujita
- Department of Pharmacy, Graduate School of Pharmaceutical Science, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo, Nagasaki, 859-3298, Japan
| | - Tsuyoshi Konuma
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Yokohama, Kanagawa, 230-0045, Japan
| | - Takahisa Ikegami
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Yokohama, Kanagawa, 230-0045, Japan
| | - Yasuhiro Ozeki
- Laboratory of Glycobiology and Marine Biochemistry, Graduate School of NanoBio Sciences, Yokohama City University, 22-2, Seto, Yokohama, Kanagawa, 236-0027, Japan
| | - Jeremy R H Tame
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Yokohama, Kanagawa, 230-0045, Japan.
| |
Collapse
|
43
|
Zhong M, Wu H, Li F, Shan X, Ji C. Proteomic analysis revealed gender-specific responses of mussels (Mytilus galloprovincialis) to trichloropropyl phosphate (TCPP) exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115537. [PMID: 32892020 DOI: 10.1016/j.envpol.2020.115537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/11/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
Trichloropropyl phosphate (TCPP) is a halogenated organophosphate ester that is widely used as flame retardants and plasticizers. In this study, gender-specific accumulation and responses in mussel Mytilus galloprovincialis to TCPP exposure were focused and highlighted. After TCPP (100 nmol L-1) exposure for 42 days, male mussels showed similar average bioaccumulation (37.14 ± 6.09 nmol g-1 fat weight (fw)) of TCPP with that in female mussels (32.28 ± 4.49 nmol g-1 fw). Proteomic analysis identified 219 differentially expressed proteins (DEPs) between male and female mussels in control group. There were 52 and 54 DEPs induced by TCPP in male and female mussels, respectively. Interestingly, gender-specific DEPs included 37 and 41 DEPs induced by TCPP in male and female mussels, respectively. The proteomic differences between male and female mussels were related to protein synthesis and degradation, energy metabolism, and functions of cytoskeleton and motor proteins. TCPP influenced protein synthesis, energy metabolism, cytoskeleton functions, immunity, and reproduction in both male and female mussels. Protein-protein interaction (PPI) networks indicated that protein synthesis and energy metabolism were the main biological processes influenced by TCPP. However, DEPs involved in these processes and their interaction patterns were quite different between male and female mussels. Basically, twelve ribosome DEPs which directly or indirectly interacted were found in protein synthesis in TCPP-exposed male mussels, while only 3 ribosome DEPs (not interacted) in TCPP-exposed female mussels. In energy metabolism, only 4 DEPs (with the relatively simple interaction pattern) mainly resided in fatty acid metabolism, butanoate/propanoate metabolism and glucose metabolism were discovered in TCPP-exposed male mussels, and more DEPs (with multiple interactions) functioned in TCA cycle and pyruvate/glyoxylate/dicarboxylate metabolism were found in TCCP-exposed female mussels. Taken together, TCPP induced gender-specific toxicological effects in mussels, which may shed new lights on further understanding the toxicological mechanisms of TCPP in aquatic organisms.
Collapse
Affiliation(s)
- Mingyu Zhong
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China
| | - Huifeng Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, PR China.
| | - Fei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, PR China
| | - Xiujuan Shan
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China
| | - Chenglong Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, PR China
| |
Collapse
|
44
|
Mendes AF, Goncalves P, Serrano-Solis V, Silva PMD. Identification of candidate microRNAs from Ostreid herpesvirus-1 (OsHV-1) and their potential role in the infection of Pacific oysters (Crassostrea gigas). Mol Immunol 2020; 126:153-164. [PMID: 32853878 DOI: 10.1016/j.molimm.2020.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/31/2020] [Accepted: 08/06/2020] [Indexed: 12/21/2022]
Abstract
Oyster production is an economic activity of great interest worldwide. Recently, oysters have been suffering significant mortalities from OsHV-1infection, which has resulted in substantial economic loses in several countries around the world. Understanding viral pathogenicity mechanisms is of central importance for the establishment of disease control measures. Thus, the present work aimed to identify and characterize miRNAs from OsHV-1 as well as to predict their target transcripts in the virus and the host. OsHV-1 genome was used for the in silico discovery of pre-miRNAs. Subsequently, viral and host target transcripts of the OsHV-1 miRNAs were predicted according to the base pairing interaction between mature miRNAs and mRNA 3' untranslated regions (UTRs). Six unique pre-miRNAs were found in different regions of the viral genome, ranging in length from 85 to 172 nucleotides. A complex network of self-regulation of viral gene expression mediated by the miRNAs was identified. These sequences also seem to have a broad ability to regulate the expression of host immune-related genes, especially those associated with pathogen recognition. Our results suggest that OsHV-1 encodes miRNAs with important functions in the infection process, inducing self-regulation of viral transcripts, as well as affecting the regulation of Pacific oyster transcripts related to immunity. Understanding the molecular basis of host-pathogen interactions can help mitigate the recurrent events of oyster mass mortalities by OsHV-1 observed worldwide.
Collapse
Affiliation(s)
- Andrei Félix Mendes
- Laboratório de Imunologia e Patologia de Invertebrados (LABIPI), Departamento de Biologia Molecular, Universidade Federal da Paraíba (UFPB), 58051-900, João Pessoa, Paraíba, Brazil
| | - Priscila Goncalves
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
| | - Victor Serrano-Solis
- Laboratório de Imunologia e Patologia de Invertebrados (LABIPI), Departamento de Biologia Molecular, Universidade Federal da Paraíba (UFPB), 58051-900, João Pessoa, Paraíba, Brazil
| | - Patricia Mirella da Silva
- Laboratório de Imunologia e Patologia de Invertebrados (LABIPI), Departamento de Biologia Molecular, Universidade Federal da Paraíba (UFPB), 58051-900, João Pessoa, Paraíba, Brazil.
| |
Collapse
|
45
|
Kamei R, Devi OS, Singh SJ, Singh SS. Roles and Biomedical Applications of Haemolymph Lectin. Curr Pharm Biotechnol 2020; 21:1444-1450. [PMID: 32744967 DOI: 10.2174/1389201021666200730123330] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/24/2020] [Accepted: 06/29/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Lectins are class of proteins characterized by their ability to selectively bind carbohydrate moieties of glycoproteins. Many invertebrate lectins, especially derived from hemolymph, are being purified, and yet their functions and medical applications are subjects of major interest. METHODS Hemolymph lectins in invertebrates play a major role in protecting against many pathogens and microbes. Further, many hemolymph lectins show anticancer properties towards various cancer cell lines, which expresses globotriaosyl ceramides on their cell surface. RESULTS These vast repertoires of hemolymph lectins in recognizing and inhibiting the growth of various harmful microbes and cancerous cells have spurred the biochemist to use them in histochemical and cytochemical studies. CONCLUSION The present review will address the biological roles and biomedical applications of hemolymph lectin.
Collapse
Affiliation(s)
- Rana Kamei
- Laboratory of Protein Biochemistry, Biochemistry Department, Manipur University, Canchipur, Imphal 795003, India
| | - Oinam S Devi
- Laboratory of Protein Biochemistry, Biochemistry Department, Manipur University, Canchipur, Imphal 795003, India
| | - Sorokhaibam J Singh
- Laboratory of Protein Biochemistry, Biochemistry Department, Manipur University, Canchipur, Imphal 795003, India
| | - Senjam S Singh
- Laboratory of Protein Biochemistry, Biochemistry Department, Manipur University, Canchipur, Imphal 795003, India
| |
Collapse
|
46
|
Wang Z, Li C. Xenophagy in innate immunity: A battle between host and pathogen. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 109:103693. [PMID: 32243873 DOI: 10.1016/j.dci.2020.103693] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 06/11/2023]
Abstract
Autophagy is a fundamental bulk intracellular degradation and recycling process that directly eliminates intracellular microorganisms through "xenophagy" in various types of cells, especially in macrophages. Meanwhile, bacteria have evolved strategies and cellular self-defense mechanisms to prevent autophagosomal degradation and even attack the immune system of host. The lack of knowledge about the roles of autophagy in innate immunity severely limits our understanding of host defensive system and the development of farmed industry consisting of aquaculture. Increasing evidence in recent decades has shown the importance of autophagy. This review focuses on the triggering of xenophagy, targeting of invading pathogens to autophagosomes and elimination in the autophagolysosomes during pathogen infection. How the pathogen can escape from the xenophagy pathway was also discussed. Overall, we aim to reduce diseases and improve industrial production in aquaculture by providing theoretical and technical guidance on xenophagy.
Collapse
Affiliation(s)
- Zhenhui Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, PR China
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China.
| |
Collapse
|
47
|
Kang V, Lengerer B, Wattiez R, Flammang P. Molecular insights into the powerful mucus-based adhesion of limpets ( Patella vulgata L.). Open Biol 2020; 10:200019. [PMID: 32543352 PMCID: PMC7333891 DOI: 10.1098/rsob.200019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/14/2020] [Indexed: 12/23/2022] Open
Abstract
Limpets (Patella vulgata L.) are renowned for their powerful attachments to rocks on wave-swept seashores. Unlike adult barnacles and mussels, limpets do not adhere permanently; instead, they repeatedly transition between long-term adhesion and locomotive adhesion depending on the tide. Recent studies on the adhesive secretions (bio-adhesives) of marine invertebrates have expanded our knowledge on the composition and function of temporary and permanent bio-adhesives. In comparison, our understanding of the limpets' transitory adhesion remains limited. In this study, we demonstrate that suction is not the primary attachment mechanism in P. vulgata; rather, they secrete specialized pedal mucus for glue-like adhesion. Through combined transcriptomics and proteomics, we identified 171 protein sequences from the pedal mucus. Several of these proteins contain conserved domains found in temporary bio-adhesives from sea stars, sea urchins, marine flatworms and sea anemones. Many of these proteins share homology with fibrous gel-forming glycoproteins, including fibrillin, hemolectin and SCO-spondin. Moreover, proteins with potential protein- and glycan-degrading domains could have an immune defence role or assist degrading adhesive mucus to facilitate the transition from stationary to locomotive states. We also discovered glycosylation patterns unique to the pedal mucus, indicating that specific sugars may be involved in transitory adhesion. Our findings elucidate the mechanisms underlying P. vulgata adhesion and provide opportunities for future studies on bio-adhesives that form strong attachments and resist degradation until necessary for locomotion.
Collapse
Affiliation(s)
- Victor Kang
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Birgit Lengerer
- Biology of Marine Organisms and Biomimetics Unit, Research Institute for Biosciences, University of Mons, Mons 7000, Belgium
- Institute of Zoology, University of Innsbruck, 6020 Innsbruck, Austria
| | - Ruddy Wattiez
- Laboratory of Proteomics and Microbiology, Research Institute for Biosciences, University of Mons, Mons 7000, Belgium
| | - Patrick Flammang
- Biology of Marine Organisms and Biomimetics Unit, Research Institute for Biosciences, University of Mons, Mons 7000, Belgium
| |
Collapse
|
48
|
López-Carvallo JA, Mazón-Suástegui JM, Hernández-Oñate MÁ, Tovar-Ramírez D, Abasolo-Pacheco F, Morelos-Castro RM, Arcos-Ortega GF. Transcriptome analysis of Catarina scallop (Argopecten ventricosus) juveniles treated with highly-diluted immunomodulatory compounds reveals activation of non-self-recognition system. PLoS One 2020; 15:e0233064. [PMID: 32407349 PMCID: PMC7224555 DOI: 10.1371/journal.pone.0233064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 04/27/2020] [Indexed: 12/14/2022] Open
Abstract
Marine bivalve hatchery productivity is continuously challenged by apparition and propagation of new diseases, mainly those related to vibriosis. Disinfectants and antibiotics are frequently overused to prevent pathogen presence, generating a potential negative impact on the environment. Recently, the use of highly diluted compounds with immunostimulant properties in marine organisms has been trailed successfully to activate the self-protection mechanisms of marine bivalves. Despite their potential as immunostimulants, little is known about their way of action. To understand their effect, a comparative transcriptomic analysis was performed with Argopecten ventricosus juveniles. The experimental design consisted of four treatments formulated from pathogenic Vibrio lysates at two dilutions: [(T1) Vibrio parahaemolyticus and Vibrio alginolyticus 1D; (T2) V. parahaemolyticus and V. alginolyticus 7C]; minerals [(T3) PhA+SiT 7C], scorpion venom [(T4) ViT 31C]; and one control (C1) hydro-alcoholic solution (ethanol 1%). The RNA sequencing (RNAseq) analysis showed a higher modulation of differentially expressed genes (DEG) in mantle tissue compared to gill tissue. The scallops that showed a higher number of DEG related to immune response in mantle tissue corresponded to T1 (V. parahaemolyticus and V. alginolyticus lysate) and T3 (Silicea terra® - Phosphoric acid®). The transcriptome analysis allowed understanding some interactions between A. ventricosus juveniles and highly-diluted treatments.
Collapse
Affiliation(s)
- Jesús Antonio López-Carvallo
- Laboratorio Experimental de Cultivo de Moluscos, Centro de Investigaciones Biológicas del Noroeste, La Paz, México
| | - José Manuel Mazón-Suástegui
- Laboratorio Experimental de Cultivo de Moluscos, Centro de Investigaciones Biológicas del Noroeste, La Paz, México
| | - Miguel Ángel Hernández-Oñate
- CONACyT, Centro de Investigación en Alimentación y Desarrollo A.C, Hermosillo, Sonora, México
- * E-mail: (GFAO); (MAHO)
| | - Dariel Tovar-Ramírez
- Laboratorio de Fisiología Comparada y Genómica Funcional, Centro de Investigaciones Biológicas del Noroeste, La Paz, México
| | - Fernando Abasolo-Pacheco
- Facultad de Ciencias Agrarias, Universidad Técnica Estatal de Quevedo, Quevedo, Los Ríos, Ecuador
| | - Rosa María Morelos-Castro
- Laboratorio de Imunogenómica Marina, Centro de Investigaciones Biológicas del Noroeste, La Paz, México
| | - Guadalupe Fabiola Arcos-Ortega
- Laboratorio de Imunogenómica Marina, Centro de Investigaciones Biológicas del Noroeste, La Paz, México
- * E-mail: (GFAO); (MAHO)
| |
Collapse
|
49
|
Auguste M, Balbi T, Ciacci C, Canonico B, Papa S, Borello A, Vezzulli L, Canesi L. Shift in Immune Parameters After Repeated Exposure to Nanoplastics in the Marine Bivalve Mytilus. Front Immunol 2020; 11:426. [PMID: 32351496 PMCID: PMC7174705 DOI: 10.3389/fimmu.2020.00426] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 02/25/2020] [Indexed: 12/14/2022] Open
Abstract
Bivalves are widespread in coastal environments subjected to a wide range of environmental fluctuations: however, the rapidly occurring changes due to several anthropogenic factors can represent a significant threat to bivalve immunity. The mussel Mytilus spp. has extremely powerful immune defenses toward different potential pathogens and contaminant stressors. In particular, the mussel immune system represents a significant target for different types of nanoparticles (NPs), including amino-modified nanopolystyrene (PS-NH2) as a model of nanoplastics. In this work, the effects of repeated exposure to PS-NH2 on immune responses of Mytilus galloprovincialis were investigated after a first exposure (10 μg/L; 24 h), followed by a resting period (72-h depuration) and a second exposure (10 μg/L; 24 h). Functional parameters were measured in hemocytes, serum, and whole hemolymph samples. In hemocytes, transcription of selected genes involved in proliferation/apoptosis and immune response was evaluated by qPCR. First exposure to PS-NH2 significantly affected hemocyte mitochondrial and lysosomal parameters, serum lysozyme activity, and transcription of proliferation/apoptosis markers; significant upregulation of extrapallial protein precursor (EPp) and downregulation of lysozyme and mytilin B were observed. The results of functional hemocyte parameters indicate the occurrence of stress conditions that did not however result in changes in the overall bactericidal activity. After the second exposure, a shift in hemocyte subpopulations, together with reestablishment of basal functional parameters and of proliferation/apoptotic markers, was observed. Moreover, hemolymph bactericidal activity, as well as transcription of five out of six immune-related genes, all codifying for secreted proteins, was significantly increased. The results indicate an overall shift in immune parameters that may act as compensatory mechanisms to maintain immune homeostasis after a second encounter with PS-NH2.
Collapse
Affiliation(s)
- Manon Auguste
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| | - Teresa Balbi
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| | - Caterina Ciacci
- Department of Biomolecular Sciences (DIBS), University of Urbino, Urbino, Italy
| | - Barbara Canonico
- Department of Biomolecular Sciences (DIBS), University of Urbino, Urbino, Italy
| | - Stefano Papa
- Department of Biomolecular Sciences (DIBS), University of Urbino, Urbino, Italy
| | - Alessio Borello
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| | - Luigi Vezzulli
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| | - Laura Canesi
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| |
Collapse
|
50
|
Sousa H, Hinzmann M. Review: Antibacterial components of the Bivalve's immune system and the potential of freshwater bivalves as a source of new antibacterial compounds. FISH & SHELLFISH IMMUNOLOGY 2020; 98:971-980. [PMID: 31676427 DOI: 10.1016/j.fsi.2019.10.062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/09/2019] [Accepted: 10/28/2019] [Indexed: 06/10/2023]
Abstract
Antibacterial research is reaching new heights due to the increasing demand for the discovery of new substances capable of inhibiting bacteria, especially to respond to the appearance of more and more multi-resistant strains. Bivalves show enormous potential for the finding of new antibacterial compounds, although for that to be further explored, more research needs to be made regarding the immune system of these organisms. Beyond their primary cellular component responsible for bacterial recognition and destruction, the haemocytes, bivalves have various other antibacterial units dissolved in the haemolymph that intervene in the defense against bacterial infections, from the recognition factors that detect different bacteria to the effector molecules carrying destructive properties. Moreover, to better comprehend the immune system, it is important to understand the different survival strategies that bacteria possess in order to stay alive from the host's defenses. This work reviews the current literature regarding the components that intervene in a bacterial infection, as well as discussing the enormous potential that freshwater bivalves have in the discovery of new antibacterial compounds.
Collapse
Affiliation(s)
- Henrique Sousa
- ICBAS - Abel Salazar Institute of Biomedical Sciences, R. Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| | - Mariana Hinzmann
- ICBAS - Abel Salazar Institute of Biomedical Sciences, R. Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal; CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros de Leixões, Av. General Norton de Matos, 4450-208, Matosinhos, Portugal.
| |
Collapse
|