1
|
Xu Y, Yang H, Hu J, Bao Z, Wang M. A unique Ca 2+-inhibited C-type lectin in shrimp Fenneropenaeuschinensis. FISH & SHELLFISH IMMUNOLOGY 2024; 150:109638. [PMID: 38754650 DOI: 10.1016/j.fsi.2024.109638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/01/2024] [Accepted: 05/14/2024] [Indexed: 05/18/2024]
Abstract
C-type lectins (CTLs) are glycan-binding pattern recognition receptors (PRRs) that can bind to carbohydrates on pathogen surfaces, triggering immune responses in shrimp innate immunity. In this study, a unique Ca2+-inhibited CTL named FcLec was identified and characterized in Chinese shrimp Fenneropenaeus chinensis. The full-length cDNA sequence of FcLec was 976 bp (GenBank accession number KU361826), with a 615 bp open reading frame (ORF) encoding 204 amino acids. FcLec possesses a C-type lectin-like domain (CTLD) containing four conserved cysteines (Cys105, Cys174, Cys192, and Cys200) and two sugar-binding site structures (QPD and LNP). The tertiary structure of FcLec deduced revealed three α-helices and eight β-pleated sheets. The mRNA expression levels of FcLec in hemocytes and the hepatopancreas were markedly elevated after stimulation with Vibrio anguillarum and white spot syndrome virus (WSSV). The recombinant FcLec protein exhibited Ca2+-independent hemagglutination and bacterial agglutination, but these activities were observed only in the presence of EDTA to chelate metal ions. These findings suggest that FcLec plays important and functionally distinct roles in the shrimp's innate immune response to bacteria and viruses, enriching the current understanding of the relationship between CTL activity and Ca2+ in invertebrates.
Collapse
Affiliation(s)
- Yajin Xu
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China; MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, 572024, China
| | - Haoran Yang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China; MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, 572024, China
| | - Jingjie Hu
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China; MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, 572024, China.
| | - Zhenmin Bao
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China; MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, 572024, China
| | - Mengqiang Wang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China; MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, 572024, China.
| |
Collapse
|
2
|
Azizan A, Venter L, Zhang J, Young T, Ericson JA, Delorme NJ, Ragg NLC, Alfaro AC. Interactive effects of elevated temperature and Photobacterium swingsii infection on the survival and immune response of marine mussels (Perna canaliculus): A summer mortality scenario. MARINE ENVIRONMENTAL RESEARCH 2024; 196:106392. [PMID: 38364448 DOI: 10.1016/j.marenvres.2024.106392] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/18/2024]
Abstract
The New Zealand Greenshell™ mussel (Perna canaliculus) is an economically important aquaculture species. Prolonged increases in seawater temperature above mussel thermotolerance ranges pose a significant threat to mussel survival and health, potentially increasing susceptibility to bacterial infections. Using challenge experiments, this study examined the combined effects of increased seawater temperature and bacterial (Photobacterium swingsii) infection on animal survival, haemocyte and biochemical responses of adult mussels. Mussels maintained at three temperatures (16, 20 and 24 °C) for seven days were either not injected (control), injected with sterile marine broth (injection control) or P. swingsii (challenged with medium and high doses) and monitored daily for five days. Haemolymph and tissue samples were collected at 24, 48, 72, 96, 120 h post-challenge and analysed to quantify bacterial colonies, haemocyte responses and biochemical responses. Mussels infected with P. swingsii exhibited mortalities at 20 and 24 °C, likely due to a compromised immune system, but no mortalities were observed when temperature was the only stressor. Bacterial colony counts in haemolymph decreased over time, suggesting bacterial clearance followed by the activation of immune signalling pathways. Total haemocyte counts and viability data supports haemocyte defence functions being stimulated in the presence of high pathogen loads at 24 °C. In the gill tissue, oxidative stress responses, measured as total antioxidant capacity and malondialdehyde (MDA) levels, were higher in infected mussels (compared to the controls) after 24h and 120h post-challenge at the lowest (16 °C) and highest temperatures (24 °C), indicating the presence of oxidative stress due to temperature and pathogen stressors. Overall, this work confirms that Photobacterium swingsii is pathogenic to P. canaliculus and indicates that mussels may be more vulnerable to bacterial pathogens under conditions of elevated temperature, such as those predicted under future climate change scenarios.
Collapse
Affiliation(s)
- Awanis Azizan
- Aquaculture Biotechnology Research Group, Department of Environmental Sciences, School of Science, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
| | - Leonie Venter
- Aquaculture Biotechnology Research Group, Department of Environmental Sciences, School of Science, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
| | - Jingjing Zhang
- Aquaculture Biotechnology Research Group, Department of Environmental Sciences, School of Science, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand; The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland, 1142, New Zealand
| | - Tim Young
- Aquaculture Biotechnology Research Group, Department of Environmental Sciences, School of Science, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand; Centre for Biomedical & Chemical Sciences, School of Science, Auckland University of Technology, Auckland, New Zealand
| | | | | | - Norman L C Ragg
- Cawthron Institute, Private Bag 2, Nelson, 7042, New Zealand
| | - Andrea C Alfaro
- Aquaculture Biotechnology Research Group, Department of Environmental Sciences, School of Science, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand.
| |
Collapse
|
3
|
Shen X, Wang Y, Hu J, Bao Z, Wang M. Molecular characterization of an LRR-only protein gene in Pacific white shrimp Litopenaeus vannamei: Sequence feature, expression pattern, and protein activity. FISH & SHELLFISH IMMUNOLOGY 2022; 129:199-206. [PMID: 36058438 DOI: 10.1016/j.fsi.2022.08.071] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
Leucine-rich repeat (LRR)-only proteins have been proved to be involved in the innate immune responses as they could mediate protein-protein or protein-ligand interactions. In the present study, a novel LRR-only protein (LvLRRop-1) was identified and characterized from Pacific white shrimp Litopenaeus vannamei. The complete cDNA sequence of LvLRRop-1 contains an open reading frame (ORF) of 1488 bp, which encoded a polypeptide of 495 amino acids with a predicted molecular mass of 55.67 kDa and a calculated theoretical isoelectric point of 6.435. There are five LRR motifs, six LRR_TYP motifs in the protein sequence of LvLRRop-1 with consensus signature sequences of LxxLxxLxLxxNxL. The LvLRRop-1 mRNA transcripts could be detected in all the tested tissues, including eyestalk, gill, gonad, heart, hemocytes, hepatopancreas, intestine, muscle, nerve and stomach, especially highest in hemocytes and hepatopancreas. The mRNA transcripts of LvLRRop-1 increased within the first 6 h in hemocytes and hepatopancreas after Vibrio parahaemolyticus or white spot syndrome virus (WSSV) challenges. The recombinant LvLRRop-1 could bind four typical pathogen-associated molecular patterns (PAMPs), including lipopolysaccharide (LPS), peptidoglycan (PGN), glucan (GLU) and polycytidine-polycytidylic acid (poly IC), in a dose-dependent manner, and inhibit the growth of bacteria Micrococcus luteus. These data indicated that LvLRRop-1 could play a pivotal role in the innate immune response of shrimps as a kind of pattern recognition receptor (PRR).
Collapse
Affiliation(s)
- Xiaojing Shen
- MOE Key Laboratory of Marine Genetics and Breeding (Qingdao 266003), and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province of Sanya Oceanographic Institution (Sanya 572024), Ocean University of China, China
| | - Yan Wang
- MOE Key Laboratory of Marine Genetics and Breeding (Qingdao 266003), and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province of Sanya Oceanographic Institution (Sanya 572024), Ocean University of China, China; Hainan Yazhou Bay Seed Laboratory, Sanya, 572024, China
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding (Qingdao 266003), and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province of Sanya Oceanographic Institution (Sanya 572024), Ocean University of China, China; Laboratory for Marine Fisheries Science and Food Production Processes, and Center for Marine Molecular Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Hainan Yazhou Bay Seed Laboratory, Sanya, 572024, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding (Qingdao 266003), and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province of Sanya Oceanographic Institution (Sanya 572024), Ocean University of China, China; Laboratory for Marine Fisheries Science and Food Production Processes, and Center for Marine Molecular Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Hainan Yazhou Bay Seed Laboratory, Sanya, 572024, China
| | - Mengqiang Wang
- MOE Key Laboratory of Marine Genetics and Breeding (Qingdao 266003), and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province of Sanya Oceanographic Institution (Sanya 572024), Ocean University of China, China; Laboratory for Marine Fisheries Science and Food Production Processes, and Center for Marine Molecular Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Hainan Yazhou Bay Seed Laboratory, Sanya, 572024, China.
| |
Collapse
|
4
|
Saptiani G, Prayitno SB, Anggarawati S. Effect of mangrove leaf extract (Acanthus ilicifolius) on non-specific immune status and vibriosis resistance of black tiger shrimps ( Penaeus monodon) challenged with Vibrio harveyi. Vet World 2021; 14:2282-2289. [PMID: 34566350 PMCID: PMC8448654 DOI: 10.14202/vetworld.2021.2282-2289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 07/22/2021] [Indexed: 11/16/2022] Open
Abstract
Background and Aim There has been continuous effort to search for alternative medicinal plants that are applicable to ameliorate viral disease on shrimp pond. This study aimed to examine the effect of Acanthus ilicifolius leaf extract on clinical symptoms and non-specific immune response of black tiger shrimp (Penaeus monodon). Materials and Methods A total of 330 shrimps were equally assigned into three extract forms (crude extract, ethyl acetate extract, and n-butanol extract, respectively) in which three levels were provided for each extract. Negative control (without leaf extract) and positive control (with oxytetracycline at 0.05 mg/mL) were used, giving a total of 11 experimental treatments. Results The results showed that shrimps induced into all form of leaf extracts had significantly higher survival rates, clinical symptoms, and pathological anatomy than those negative control (C-) and positive control (C+). Total hemocyte cells, granulocytes, percentage of phagocytic, and prophenoloxidase activity were similar among leaf extract treatments (p>0.05), but those groups were significantly higher than those of C- and C+ (p<0.05). Conclusion n-butanol leaf extract at 300 mg/L is suggested to be the most effective treatment since it showed the highest efficacy on the parameters observed. Thus, it is possible to use the leaf extract of A. ilicifolius on-farm as a strategy to enhance bacterial disease resistance and prevent mortality.
Collapse
Affiliation(s)
- Gina Saptiani
- Aquatic Microbiology Laboratory, Faculty of Fisheries and Marine Sciences, Mulawarman University, Samarinda 75119, Indonesia.,Research Center for Natural Products from Tropical Rainforest (PUI-PT OKTAL), Mulawarman University, Samarinda 75119, Indonesia
| | - Slamet Budi Prayitno
- Department of Fisheries, Faculty of Fisheries and Marine Science, Diponegoro University, Semarang 50275, Indonesia
| | - Sari Anggarawati
- Study Program of Agribusiness, Faculty of Agriculture, Nusa Bangsa University, Bogor 16166, Indonesia
| |
Collapse
|
5
|
Interaminense JA, Vogeley JL, Gouveia CK, Portela RS, Oliveira JP, Silva SMBC, Coimbra MRM, Peixoto SM, Soares RB, Buarque DS, Bezerra RS. Effects of dietary Bacillus subtilis and Shewanella algae in expression profile of immune-related genes from hemolymph of Litopenaeus vannamei challenged with Vibrio parahaemolyticus. FISH & SHELLFISH IMMUNOLOGY 2019; 86:253-259. [PMID: 30468891 DOI: 10.1016/j.fsi.2018.11.051] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/17/2018] [Accepted: 11/19/2018] [Indexed: 06/09/2023]
Abstract
B. subtilis and S. algae effects in growth, survival and innate immunity were assessed on L. vannamei juveniles. During 60 days, shrimp were reared in three treatments: Bs, fed with 106 CFU of B. subtilis per gram of commercial feed, Sa, fed with 106 CFU of S. algae per gram of commercial feed and Control (without bacterial addition). Then, the animals were subjected to a V. parahaemolyticus challenge. For this purpose, four treatments were established: Control (shrimp not submitted to probiotic treatments), Vibrio (Vibrio challenged shrimp), Vibrio + Bs (Bs challenged shrimp) and Vibrio + Sa (Sa challenged shrimp). Shrimp hemolymph was sampled 45-days after rearing and 24 h post-challenge for quantification of prophenoloxidase (proPO), lipopolysaccharide and β-1,3-glucan-binding protein (LGBP) and hemocyanin (HEM) transcripts by qPCR. Moreover, shrimp final weight and survival were also verified. B. subtilis administration enhanced shrimp growth and improved proPO, LGBP and HEM expression levels before and after challenge. After 60-days of feeding, Sa final weight was higher than the Control, whereas Vibrio + Sa cumulative mortality after 48 h of Vibrio challenge was lower than Vibrio group. These results could be correlated with the proPO and LGBP up regulation in Vibrio + Sa compared to Vibrio group, protecting L. vannamei from the bacterial infection. Together, these results suggest the probiotic potential of B. subtilis e S. algae in the modulation of immune-related genes as a tool to control V. parahaemolyticus infection inside shrimp.
Collapse
Affiliation(s)
- Juliana A Interaminense
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife, Pernambuco, 50670-901, Brazil.
| | - Joana L Vogeley
- Instituto Federal da Paraíba, Cabedelo, Paraíba, 58.015-020, Brazil.
| | - Carol K Gouveia
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife, Pernambuco, 50670-901, Brazil.
| | - Rogério S Portela
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife, Pernambuco, 50670-901, Brazil.
| | - José P Oliveira
- Instituto Agronômico de Pernambuco, Recife, Pernambuco, 50761-000, Brazil.
| | - Suzianny M B C Silva
- Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco, Recife, Pernambuco, 52171-900, Brazil.
| | - Maria Raquel M Coimbra
- Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco, Recife, Pernambuco, 52171-900, Brazil.
| | - Sílvio M Peixoto
- Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco, Recife, Pernambuco, 52171-900, Brazil.
| | - Roberta B Soares
- Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco, Recife, Pernambuco, 52171-900, Brazil.
| | - Diego S Buarque
- Universidade Federal Rural de Pernambuco, Unidade Acadêmica de Serra Talhada, Pernambuco, 55608-680, Brazil.
| | - Ranilson S Bezerra
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife, Pernambuco, 50670-901, Brazil.
| |
Collapse
|
6
|
Arkoosh MR, Van Gaest AL, Strickland SA, Hutchinson GP, Krupkin AB, Hicks MBR, Dietrich JP. Dietary exposure to a binary mixture of polybrominated diphenyl ethers alters innate immunity and disease susceptibility in juvenile Chinook salmon (Oncorhynchus tshawytscha). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 163:96-103. [PMID: 30041130 DOI: 10.1016/j.ecoenv.2018.07.052] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 07/11/2018] [Accepted: 07/13/2018] [Indexed: 06/08/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) have been used as flame retardants in consumer products and are now found in the aquatic environment. The presence of PBDEs puts the health and survival of aquatic species at risk due to the various toxic effects associated with exposure to these compounds. The effects of a binary dietary mixture of PBDEs on innate immunity and disease susceptibility of juvenile Chinook salmon (Oncorhynchus tshawytscha) were examined in the present study. Salmon were fed roughly 1:1 mixtures of two environmentally predominant PBDE congeners, BDE-47 and BDE-99. The six resulting whole body total PBDE concentrations ranged from less than the limit of quantification to 184 ng/g, wet weight (ww). The innate immune system was assessed by using two in vitro macrophage function assays. Specifically, assays that examined the ability of head kidney macrophages to: (1) engulf sheep red blood cells (SRBCs); and (2) produce a respiratory burst, as determined by the production of a reactive oxygen species, superoxide anion. Macrophages from salmon fed the BDE-47/99 mixture diets engulfed more SRBCs and produced greater superoxide anion than salmon fed the control diet. An increase in macrophage function was observed in fish with whole body total PBDE concentrations ranging from 2.81 ng/g, ww to 184 ng/g, ww. The mechanism for this increase in macrophage function due to PBDE exposure is currently unknown, but may be due to the ability of PBDEs to act as an endocrine receptor agonist and/or antagonist. Salmon exposed to the BDE-47/99 mixture diets were also challenged with the pathogenic bacteria, Vibrio (Listonella) anguillarum to determine disease susceptibility. Kaplan-Meier survival curves of fish exposed to the BDE-47/99 mixture and control diets were significantly different. The Cox proportional hazard risk ratios of disease-induced mortality in juvenile Chinook salmon with whole body concentrations of total PBDEs of 10.9, 36.8, and 184 ng/g, ww were significantly greater than the fish fed the control diet by 1.56, 1.83 and 1.50 times, respectively. Not all concentrations of the binary mixture diets had significant hazard ratios relative to the control diet, due to a non-monotonic concentration response curve. The mixture of PBDE congeners resulted in interactive effects that were generally non-additive and dependent upon the congener concentrations and metric examined. Consequently, predicting the interactive effects in juvenile Chinook salmon exposed to mixtures of PBDE congeners on innate immunity and disease susceptibility cannot be readily determined from the adverse effects of individual PBDE congeners.
Collapse
Affiliation(s)
- Mary R Arkoosh
- Environmental & Fisheries Sciences Division, Northwest Fisheries Science Center National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2032 South East OSU Drive, Newport, OR 97365, USA.
| | - Ahna L Van Gaest
- Frank Orth & Associates, Under Contract to Northwest Fisheries Science Center National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2032 South East OSU Drive, Newport, OR 97365, USA.
| | - Stacy A Strickland
- Frank Orth & Associates, Under Contract to Northwest Fisheries Science Center National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2032 South East OSU Drive, Newport, OR 97365, USA.
| | - Greg P Hutchinson
- Frank Orth & Associates, Under Contract to Northwest Fisheries Science Center National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2032 South East OSU Drive, Newport, OR 97365, USA.
| | - Alex B Krupkin
- Frank Orth & Associates, Under Contract to Northwest Fisheries Science Center National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2032 South East OSU Drive, Newport, OR 97365, USA.
| | - Mary Beth Rew Hicks
- Lynker Technologies, Under Contract to Northwest Fisheries Science Center National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2032 South East OSU Drive, Newport, OR 97365, USA.
| | - Joseph P Dietrich
- Environmental & Fisheries Sciences Division, Northwest Fisheries Science Center National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2032 South East OSU Drive, Newport, OR 97365, USA.
| |
Collapse
|